References:
Aguirre-Gutiérrez, C. A., Holwerda, F., Goldsmith, G. R., Delgado, J.,
Yepez, E., Carbajal, N., Escoto-Rodríguez M., & Arredondo, J. T.
(2019). The importance of dew in the water balance of a continental
semiarid grassland. Journal of Arid Environments , 168, 26–35.
Alvin, K. L. (1987). Leaf anatomy of Androstachys johnsonii Prain
and its functional significance. Annals of Botany , 59(5),
579–591.
Arzeee, T. (1953). Morphology and ontogeny of foliar sclereids inOlea europaea . I. Distribution and structure. American
Journal of Botany , 680–687.
Bailey, I. W., & Nast, C. G. (1945). Morphology and relationships ofTrochodendron and Tetracentron , I. Stem, root, and leaf.Journal of the Arnold Arboretum , 26(2), 143–154.
Barrell, P., & Grossniklaus U. (2005). Confocal microscopy of whole
ovules for analysis of reproductive development: the elongate1 mutant
affects meiosis II. The Plant Journal 43, 309–320.
Benz, B. W., & Martin, C. E. (2006). Foliar trichomes, boundary layers,
and gas exchange in 12 species of epiphytic Tillandsia(Bromeliaceae). Journal of Plant Physiology , 163(6), 648–656.
Benzing, D. H. (1976). Bromeliad trichomes: structure, function, and
ecological significance. Selbyana 1: 330–348.
Benzing, D. H., & Burt, K. M. (1970). Foliar permeability among twenty
species of the Bromeliaceae. Bulletin of the Torrey Botanical
Club , 269–279.
Benzing, D. H., Seemann, J., & Renfrow, A. (1978). The foliar epidermis
in Tillandsioideae (Bromeliaceae) and its role in habitat selection.American Journal of Botany , 65(3), 359–365.
Berry, Z. C., Emery, N. C., Gotsch, S. G., & Goldsmith, G. R. (2019).
Foliar water uptake: Processes, pathways, and integration into plant
water budgets. Plant, Cell and Environment , 42(2), 410–423.
Berry, Z. C., White, J. C., & Smith, W. K. (2014). Foliar uptake,
carbon fluxes and water status are affected by the timing of daily fog
in saplings from a threatened cloud forest. Tree Physiology ,
34(5), 459–470.
Bickford, C. P. (2016). Ecophysiology of leaf trichomes.Functional Plant Biology , 43(9), 807–814.
Bloch, R. (1946). Differentiation and pattern in Monstera deliciosa. The
idioblastic development of the trichosclereids in the air root.American Journal of Botany , 33(6), 544–551.
Boanares, D., Ferreira, B. G., Kozovits, A. R., Sousa, H. C., Isaias, R.
M. S., & França, M. G. C. (2018). Pectin and cellulose cell wall
composition enables different strategies to leaf water uptake in plants
from tropical fog mountain. Plant Physiology and Biochemistry ,
122, 57–64.
Boanares, D., Kozovits, A. R., Lemos‐Filho, J. P., Isaias, R. M., Solar,
R. R., Duarte, A. A., Vilas-Boas T., & França, M. G. (2019). Foliar
water‐uptake strategies are related to leaf water status and gas
exchange in plants from a ferruginous rupestrian field. American
Journal of Botany , 106 (7), 935–942.
Breshears, D. D. McDowell N.G., Goddard K.L., Dayem K.E., Martens S.N.,
Meyer C., & Brown K.M. (2008). Foliar absorption of intercepted
rainfall improves woody plant water status most during drought.Ecology 89, 41–47.
Bickford, C. P. (2016). Ecophysiology of leaf trichomes.Functional Plant Biology , 43(9), 807–814.
Burkhardt, J., Basi, S., Pariyar, S., & Hunsche, M. (2012). Stomatal
penetration by aqueous solutions–an update involving leaf surface
particles. New Phytologist , 196(3), 774–787.
Burgess, S. S. O., & Dawson, T. E. (2004). The contribution of fog to
the water relations of Sequoia sempervirens (D. Don): foliar
uptake and prevention of dehydration. Plant, Cell and
Environment , 27(8), 1023–1034.
Choat, B., Jansen, S., Brodribb, T. J., Cochard, H., Delzon, S.,
Bhaskar, R., Bucci S., Feild T.S., Gleason S.M., Hacke U.G., Jacobsen
A.L., Lens F., Maherali H., Martinez-Vilalta J., Mayr S., Mecuccini M.,
Mitchell P.J., Nardini A., Pittermann J., Pratt R.B., Sperry J.S.,
Westoby M., Wright I.J. & Zanne A.E.. (2012). Global convergence in the
vulnerability of forests to drought. Nature , 491 (7426),
752 –755.
Colombo, P. M., & Rascio, N. (1977). Ruthenium red staining for
electron microscopy of plant material. Journal of Ultrastructure
Research , 60(2), 135–139.
Crane, C. F., & Carman, J. G. (1987). Mechanisms of apomixis inElymus rectisetus from eastern Australia and New Zealand.American Journal of Botany , 74(4), 477–496.
Dawson, T. E., & Goldsmith, G. R. (2018). The value of wet leaves.New Phytologist , 219(4), 1156–1169.
Díaz, M., & Granadillo, E. (2005). The significance of episodic rains
for reproductive phenology and productivity of trees in semiarid regions
of northwestern Venezuela. Trees , 19(3), 336–348.
Duursma, R. A., Blackman, C. J., Lopéz, R., Martin‐StPaul, N. K.,
Cochard, H., & Medlyn, B. E. (2019). On the minimum leaf conductance:
its role in models of plant water use, and ecological and environmental
controls. New Phytologist , 221(2), 693–705.
Eller, C. B., Lima, A. L., & Oliveira, R. S. (2013). Foliar uptake of
fog water and transport belowground alleviates drought effects in the
cloud forest tree species, Drimys brasiliensis (W interaceae).New Phytologist , 199, 151-162.
Eller, C. B., Lima, A. L., & Oliveira, R. S. (2016). Cloud forest trees
with higher foliar water uptake capacity and anisohydric behavior are
more vulnerable to drought and climate change. New Phytologist ,
211(2), 489–501.
Ellis, M., Egelund, J., Schultz, C. J., & Bacic, A. (2010).
Arabinogalactan-proteins: key regulators at the cell surface?Plant Physiology , 153, 403–419.
Evert, R. F. (2006). Esau’s plant anatomy: meristems, cells, and
tissues of the plant body: their structure, function, and development .
John Wiley & Sons.
Fahn, A. (1986). Structural and functional properties of trichomes of
xeromorphic leaves. Annals of Botany , 57, 631–637.
Feder, N. E. D., & O’brien, T. P. (1968). Plant microtechnique: some
principles and new methods. American Journal of Botany , 55,
123–142.
Fernández, V., Bahamonde, H. A., Javier Peguero–Pina, J., Gil-Pelegrín,
E., Sancho-Knapik, D., Goldbach, H. E., Gil, L., & Eichert, T. (2017).
Physico-chemical properties of plant cuticles and their functional and
ecological significance. Journal of Experimental Botany , 68,
5293–5306.
Fernández, V., Sancho-Knapik, D., Guzmán, P., Peguero-Pina, J. J., Gil,
L., Karabourniotis, G., Khayet, M., Fasseas, C., Heredia-Guerrero, J.
A., Heredia, A., & Gil-Pelegrín, E. (2014). Wettability, polarity, and
water absorption of holm oak leaves: effect of leaf side and age.Plant Physiology , 166, 168–180.
Foster, A. S. (1944). Structure and Development of sclereids in the
petiole of Camellia japonica L. Bulletin of the Torrey
Botanical Club , 71, 302–326.
Foster, A. S. (1945a). Origin and development of sclereids in the
foliage leaf of Trochodendron aralioides Sieb. & Zucc.American Journal of Botany , 32, 456–468.
Foster, A. S. (1945b). The foliar sclereids of Trochodendron
aralioides sieb. & zucc. Journal of the Arnold Arboretum , 26,
155–162.
Foster, A. S. (1947). Structure and ontogeny of the terminal sclereids
in the leaf of Mouriria huberi Cogn. American Journal of
Botany , 34(9), 501–514.
Foster, A. S. (1955a). Comparative morphology of the foliar sclereids inBoronella Baill. Journal of the Arnold Arboretum , 36,
189–198.
Foster, A. S. (1955b). Structure and ontogeny of terminal sclereids inBoronia serrulata . American Journal of Botany , 42,
551–560.
Foster, A. S. (1956). Plant idioblasts: remarkable examples of cell
specialization. Protoplasma , 46, 184–193.
Franke, W. (1967). Mechanisms of foliar penetration of solutions.Annual Review of Plant Physiology , 18, 281–300.
Gan, L., Zhang, C., Yin, Y., Lin, Z., Huang, Y., Xiang, J., & Fu, C.
(2013). Anatomical adaptations of the xerophilous medicinal plant,Capparis spinosa , to drought conditions. Horticulture,
Environment, and Biotechnology , 54, 156–161.
Gardingen, P. R. V., & Grace, J. (1992). Vapour pressure deficit
response of cuticular conductance in intact leaves of Fagus
sylvatica L. Journal of Experimental Botany , 43, 1293–1299.
Grammatikopoulos, G., & Manetas, Y. (1994). Direct absorption of water
by hairy leaves of Phlomis fruticosa and its contribution to
drought avoidance. Canadian Journal of Botany , 72, 1805–1811.
Gotsch, S. G., Asbjornsen, H., Holwerda, F., Goldsmith, G. R.,
Weintraub, A. E., & Dawson, T. E. (2014). Foggy days and dry nights
determine crown‐level water balance in a seasonal tropical montane cloud
forest. Plant, Cell and Environment , 37, 261–272.
Gouvra, E., & Grammatikopoulos, G. (2003). Beneficial effects of direct
foliar water uptake on shoot water potential of five chasmophytes.Canadian Journal of Botany , 81, 1278–1284.
Heide-Jorgensen, H. S. (1990). Xeromorphic leaves of Hakea
suaveolens R. Br. IV. Ontogeny, structure and function of the
sclereids. Australian Journal of Botany , 38, 25–43.
Heslop-Harrison, Y., & Shivanna, K. R. (1977). The receptive surface of
the angiosperm stigma. Annals of Botany , 41, 1233–1258.
Hughes, J., & McCully, M. E. (1975). The use of an optical brightener
in the study of plant structure. Stain Technology, 50, 319–329.
Ito, S., Suzuki, Y., Miyamoto, K., Ueda, J., & Yamaguchi, I. (2005).
AtFLA11, a fasciclin-like arabinogalactan-protein, specifically
localized in sclerenchyma cells. Bioscience and Biotechnological
Biochemistry , 69, 1963–1969.
Johansen, D. A. (1940). Plant Microtechnique . McGraw‐Hill Book,
New York, USA.
Karabourniotis, G. (1998). Light-guiding function of foliar sclereids in
the evergreen sclerophyll Phillyrea latifolia : a quantitative
approach. Journal of Experimental Botany , 49, 739–746.
Kerstiens, G. (1996). Cuticular water permeability and its physiological
significance. Journal of Experimental Botany , 47, 1813–1832.
Kreft, H., & Jetz, W. (2007). Global patterns and determinants of
vascular plant diversity. Proceedings of the National Academy of
Sciences , 104, 5925–5930.
Limm, E. B., Simonin, K. A., Bothman, A. G., & Dawson, T. E. (2009).
Foliar water uptake: a common water acquisition strategy for plants of
the redwood forest. Oecologia , 161, 449–459.
Liu D., Tu L., Li Y., Wang L., Zhu L., & Zhang X. (2008). Genes
encoding fasciclin-like arabinogalactan proteins are specifically
expressed during cotton fiber development. Plant Molecular Biology
Reporter 26, 98–113.
Liu, H., Shi, R., Wang, X., Pan, Y., Li, Z., Yang, X., Zhang G., & Ma,
Z. (2013). Characterization and expression analysis of a fiber
differentially expressed Fasciclin-like arabinogalactan protein gene in
Sea Island cotton fibers. PloS one , 8, e70185.
Majewska-Sawka, A., & Nothnagel, E. A. (2000). The multiple roles of
arabinogalactan proteins in plant development. Plant Physiology ,
122, 3–10.
Colombo M.P., & Rascio N. (1977). Ruthenium red staining for electron
microscopy of plant material. Journal of Ultrastructure Research ,
60, 135–139.
Martin, C. E., & von Willert D.J. (2000). Leaf epidermal hydathodes and
the ecophysiological consequences of foliar water uptake in species ofCrassula from the Namib Desert in southern Africa. Plant
Biology , 2, 229–242.
Mayr S., Schmid P., Laur J., Rosner S., Charra-Vaskou K., Dämon B., &
Hacke U.G. (2014) Uptake of water via branches helps timberline conifers
refill embolized xylem in late winter. Plant Physiology , 164,
1731–1740.
Metcalfe, C. R., & Chalk, L. (1950). Anatomy of the Dicotyledons
1 & 2 . Clarendon Press. Oxford.
Nobel P.S. (2009). Physicochemical and Environmental Plant
Physiology (4th edition). Elsevier Inc. New York.
Olson, M. E., Soriano, D., Rosell, J. A., Anfodillo, T., Donoghue, M.
J., Edwards, E. J., León-Gómez C., Dawson T., Camarero Martínez J.J.,
Castorena M., Echeverría A., Espinosa C.I., Fajardo A., Gazol A., Isnard
S., Lima R.S., Marcati C.R., Méndez-Alonzo R. (2018). Plant height and
hydraulic vulnerability to drought and cold. Proceedings of the
National Academy of Sciences , 115(29), 7551–7556.
Ohrui, T., Nobira, H., Sakata, Y., Taji, T., Yamamoto, C., Nishida, K.,
Yamakawa T., Yaguchi Y., Tanekaga H., Tanaka, S. (2007). Foliar
trichome-and aquaporin-aided water uptake in a drought-resistant
epiphyte Tillandsia ionantha Planchon. Planta , 227(1),
47–56.
Pereira, A. M., Lopes, A. L., Coimbra, S. (2016). Arabinogalactan
proteins as interactors along the crosstalk between the pollen tube and
the female tissues. Frontiers in plant science , 7, 1895.
Pina, A. L., Zandavalli, R. B., Oliveira, R. S., Martins, F. R., Soares,
A. A. (2016). Dew absorption by the leaf trichomes of Combretum
leprosum in the Brazilian semiarid region. Functional Plant
Biology , 43(9), 851-861.
Pisek, A., & Berger, E. (1938). Kutikuläre Transpiration und
Trockenresistenz isolierter Blätter und Sprosse. Planta , 28(1),
124–155.
Rao, T. A., Mody, K. J. (1961). On terminal sclereids and tracheoid
idioblasts. Proceedings of the Indian Academy of Sciences-Section
B , 53(5), 257–262.
Rao, A. R., Sharma, M. (1968). The terminal sclereids and tracheids ofBruguiera gymnorhiza Blume and the cauline sclereids ofCeriops roxburghiana Arn. Proceedings of the Indian Academy
of Sciences-Section B , 34(6), 267–275.
Raux, P.S., Gravelle, S. Dumais, J. (2020). Design of a unidirectional
water valve in Tillandsia . Nature Communications , 11, 396,
1-7.
Rhizopoulou, S. (1990). Physiological responses of Capparis
spinosa L. to drought. Journal of Plant Physiology , 136(3),
341–348.
Rhizopoulou, S., Psaras, G. K. (2003). Development and structure of
drought‐tolerant leaves of the Mediterranean shrub Capparis
spinosa L. Annals of Botany , 92(3), 377–383.
Schreel, J. D., Leroux, O., Goossens, W., Brodersen, C., Rubinstein, A.,
Steppe, K. (2020). Identifying the pathways for foliar water uptake in
beech (Fagus sylvatica L.): a major role for trichomes. The
Plant Journal . doi.org/10.1111/tpj.14770.
Schreel, J. D., von der Crone, J. S., Kangur, O., Steppe, K. (2019).
Influence of drought on foliar water uptake capacity of temperate tree
species. Forests , 10(7), 562.
Schuster, A. C., Burghardt, M., Riederer, M. (2017). The ecophysiology
of leaf cuticular transpiration: are cuticular water permeabilities
adapted to ecological conditions? Journal of Experimental Botany ,
68(19), 5271–5279.
Shields, L. M. (1950). Leaf xeromorphy as related to physiological and
structural influences. The Botanical Review , 16(8), 399–447.
Solereder, H. (1908). Systematic Anatomy of the Dicotyledons .
Oxford.
Steppe K., Vandegehuchte M.W., van de Wal B,A,E,, Hoste P., Guyot A.,
Lovelock C.E., Lockington D.A. (2018). Direct uptake of canopy rainwater
causes turgor-driven growth spurts in the mangrove Avicennia
marina . Tree Physiology , 38, 979–991.
Schwendener, S. (1874). Das mechanische Prinicip im aiiatomischen Bau
der Moniocotylen.
Tognetti, R. (2015). Trees harvesting the clouds: fog nets threatened by
climate change. Tree Physiology , 35(9), 921–924.
Tomlinson, P. B., & Fisher, J. B. (2005). Development of non-lignified
fibers in leaves of Gnetum gnemon (Gnetales). American
Journal of Botany , 92, 383–389.
Tucker, S. C. (1964). The terminal idioblasts in magnoliaceous leaves.American Journal of Botany , 51, 1051–1062.
Vaadia, Y., & Waisel, Y. (1963). Water absorption by the aerial organs
of plants. Physiologia Plantarum , 16, 44–51.
Vaughn, K. C., Talbot, M. J., Offler, C. E., & McCurdy, D. W. (2007).
Wall ingrowths in epidermal transfer cells of Vicia fabacotyledons are modified primary walls marked by localized accumulations
of arabinogalactan proteins. Plant and Cell Physiology , 48,
159–168.
Vicré, M., Lerouxel, O., Farrant, J., Lerouge, P., & Driouich, A.
(2004). Composition and desiccation‐induced alterations of the cell wall
in the resurrection plant Craterostigma wilmsii .Physiologia Plantarum , 120, 229–239.
Vitarelli, N. C., Riina, R., Cassino, M. F., & Meira, R.M. S. A.
(2016). Trichome-like emergences in croton of Brazilian highland rock
outcrops: evidences for atmospheric water uptake. Perspectives in
Plant Ecology, Evolution and Systematics , 22, 23–35.
Weathers, K. C., Ponette-González, A. G., & Dawson, T. E. (2019).
Medium, vector, and connector: fog and the maintenance of ecosystems.Ecosystems , 1–13. https://doi.org/10.1007/s10021-019-00388-4
Yates, D. J., & Hutley, L. B. (1995). Foliar uptake of water by wet
leaves of Sloanea woollsii , an Australian subtropical rainforest
tree. Australian Journal of Botany , 43, 157–167.
Yariv J., Lis H., & Katchalski, E. (1967). Precipitation of arabic acid
and some seed polysaccharides by glycosylphenylazo dyes. The
Biochemical Journal 105, 1C – 2C.
Zhang, W., Hu, Y., Li, Z., Wang, P., Xu, M. (2009). Foliar sclereids in
tea and its wild allies, with reference to their taxonomy.Australian Systematic Botany , 22, 286–295.