REFERENCES
1. Wang HF, Gan W, Lu R, Rao Y, Wu BH. Quantitative spectral
and orientational analysis in surface sum frequency generation
vibrational spectroscopy (SFG-VS). International Reviews in
Physical Chemistry. Apr 2005;24(2):191-256.
2. Du Q, Superfine R, Freysz E, Shen YR. VIBRATIONAL
SPECTROSCOPY OF WATER AT THE VAPOR WATER INTERFACE. Phys. Rev.
Lett. Apr 1993;70(15):2313-2316.
3. Richmond G. STRUCTURE AND BONDING OF MOLECULES AT AQUEOUS
SURFACES. Annual Review of Physical Chemistry.2001;52(1):357-389.
4. Tian CS, Shen YR. Recent progress on sum-frequency
spectroscopy. Surface Science Reports. Sep-Oct
2014;69(2-3):105-131.
5. Jubb AM, Hua W, Allen HC. Environmental Chemistry at
Vapor/Water Interfaces: Insights from Vibrational Sum Frequency
Generation Spectroscopy. Annual Review of Physical Chemistry.2012;63(1):107-130.
6. Sovago M, Campen RK, Wurpel GWH, Muller M, Bakker HJ, Bonn
M. Vibrational response of hydrogen-bonded interfacial water is
dominated by intramolecular coupling. Phys. Rev. Lett. May
2008;100(17).
7. Hommel EL, Allen HC. The air-liquid interface of benzene,
toluene, m-xylene, and mesitylene: a sum frequency, Raman, and infrared
spectroscopic study. Analyst. 2003;128(6):750-755.
8. Baldelli S, Schnitzer C, Shultz MJ, Campbell DJ. Sum
frequency generation investigation of glycerol/water surfaces. J.
Phys. Chem. B. Jun 1997;101(23):4607-4612.
9. Matsuzaki K, Nihonyanagi S, Yamaguchi S, Nagata T, Tahara T.
Vibrational Sum Frequency Generation by the Quadrupolar Mechanism at the
Nonpolar Benzene/Air Interface. J. Phys. Chem. Lett. May
2013;4(10):1654-1658.
10. Rivera-Rubero S, Baldelli S. Surface characterization of
1-butyl-3-methylimidazollum Br-, I-, PF6-, BF4-, (CF3SO2)(2)N-,SCN-,
CH3SO3-, CH3SO4-, and (CN)(2)N- ionic liquids by sum frequency
generation. J. Phys. Chem. B. Mar 2006;110(10):4756-4765.
11. Richmond GL. Molecular bonding and interactions at aqueous
surfaces as probed by vibrational sum frequency spectroscopy.Chem. Rev. Aug 2002;102(8):2693-2724.
12. Kim J, Chou KC, Somorjai GA. Structure and dynamics of
acetonitrile at the air/liquid interface of binary solutions studied by
infrared-visible sum frequency generation. J. Phys. Chem. B. Feb
2003;107(7):1592-1596.
13. Shen YR, Ostroverkhov V. Sum-frequency vibrational
spectroscopy on water interfaces: Polar orientation of water molecules
at interfaces. Chem. Rev. Apr 2006;106(4):1140-1154.
14. Henry MC, Piagessi EA, Zesotarski JC, Messmer MC.
Sum-frequency observation of solvent structure at model chromatographic
interfaces: Acetonitrile-water and methanol-water systems.Langmuir. Jul 2005;21(14):6521-6526.
15. Chen H, Gan W, Wu B-h, Wu D, Guo Y, Wang H-f. Determination
of Structure and Energetics for Gibbs Surface Adsorption Layers of
Binary Liquid Mixture 1. Acetone + Water. The Journal of Physical
Chemistry B. 2005/04/01 2005;109(16):8053-8063.
16. Chen X, Minofar B, Jungwirth P, Allen HC. Interfacial
Molecular Organization at Aqueous Solution Surfaces of Atmospherically
Relevant Dimethyl Sulfoxide and Methanesulfonic Acid Using Sum Frequency
Spectroscopy and Molecular Dynamics Simulation. The Journal of
Physical Chemistry B. 2010/12/02 2010;114(47):15546-15553.
17. Rivera-Rubero S, Baldelli S. Influence of water on the
surface of hydrophilic and hydrophobic room-temperature ionic liquids.J. Am. Chem. Soc. Sep 2004;126(38):11788-11789.
18. McGuire JA, Shen YR. Ultrafast vibrational dynamics at
water interfaces. Science. Sep 2006;313(5795):1945-1948.
19. Nihonyanagi S, Yamaguchi S, Tahara T. Ultrafast Dynamics at
Water Interfaces Studied by Vibrational Sum Frequency Generation
Spectroscopy. Chem. Rev. Aug 2017;117(16):10665-10693.
20. Ma G, Allen HC. Surface Studies of Aqueous Methanol
Solutions by Vibrational Broad Bandwidth Sum Frequency Generation
Spectroscopy. The Journal of Physical Chemistry B. 2003/07/01
2003;107(26):6343-6349.
21. Sugimoto T, Otsuki Y, Ishiyama T, Morita A, Watanabe K,
Matsumoto Y. Topologically disordered mesophase at the topmost surface
layer of crystalline ice between 120 and 200 K. Phys. Rev. B. Mar
2019;99(12):7.
22. Strazdaite S, Versluis J, Backus EHG, Bakker HJ. Enhanced
ordering of water at hydrophobic surfaces. J. Chem. Phys. Feb
2014;140(5):6.
23. Moberg DR, Straight SC, Paesani F. Temperature Dependence
of the Air/Water Interface Revealed by Polarization Sensitive
Sum-Frequency Generation Spectroscopy. J Phys Chem B. Apr 19
2018;122(15):4356-4365.
24. Souna AJ, Clark TL, Fourkas JT. Effect of Temperature on
the Organization of Acetonitrile at the Silica/Liquid Interface.The Journal of Physical Chemistry C. 2017;121(47):26432-26437.
25. Abdelmonem A, Backus EHG, Bonn M. Ice Nucleation at the
Water-Sapphire Interface: Transient Sum-Frequency Response without
Evidence for Transient Ice Phase. J. Phys. Chem. C. Nov
2018;122(43):24760-24764.
26. Yamaguchi S, Suzuki Y, Nojima Y, Otosu T. Perspective on
sum frequency generation spectroscopy of ice surfaces and interfaces.Chemical Physics. Jun 2019;522:199-210.
27. Lu R, Gan W, Wu BH, Chen H, Wang HF. Vibrational
polarization spectroscopy of CH stretching modes of the methylene goup
at the vapor/liquid interfaces with sum frequency generation. J.
Phys. Chem. B. Jun 2004;108(22):7297-7306.
28. Yue HR, Zhao YJ, Ma XB, Gong JL. Ethylene glycol:
properties, synthesis, and applications. Chemical Society
Reviews. 2012;41(11):4218-4244.
29. Wen C, Cui YY, Dai WL, Xie SH, Fan KN. Solvent feedstock
effect: the insights into the deactivation mechanism of Cu/SiO2
catalysts for hydrogenation of dimethyl oxalate to ethylene glycol.Chemical Communications. 2013;49(45):5195-5197.
30. Wen C, Cui YY, Chen X, Zong BN, Dai WL. Reaction
temperature controlled selective hydrogenation of dimethyl oxalate to
methyl glycolate and ethylene glycol over copper-hydroxyapatite
catalysts. Appl. Catal. B-Environ. Jan 2015;162:483-493.
31. Li H, Zhao ZY, Qin J, Wang R, Li XG, Gao X. Reversible
Reaction-Assisted Intensification Process for Separating the Azeotropic
Mixture of Ethanediol and 1,2-Butanediol: Vapor-Liquid Equilibrium and
Economic Evaluation. Ind. Eng. Chem. Res. Apr
2018;57(14):5083-5092.
32. Li H, Huang WJ, Li XG, Gao X. Application of the
Aldolization Reaction in Separating the Mixture of Ethylene Glycol and
1,2-Butanediol: Thermodynamics and New Separation Process. Ind.
Eng. Chem. Res. Sep 2016;55(37):9994-10003.
33. Li XG, Wang R, Na J, Li H, Gao X. Reversible
Reaction-Assisted Intensification Process for Separating the Azeotropic
Mixture of Ethanediol and 1,2-Butanediol: Reactants Screening.Ind. Eng. Chem. Res. Jan 2018;57(2):710-717.
34. Hou J, Sun GL, Liu JC, Gao X, Zhang XY, Lu Z. Liquid/Vapor
Interface of Dimethyl Carbonate-Methanol Binary Mixtures Investigated by
Sum Frequency Generation Vibrational Spectroscopy and Molecular Dynamics
Simulation. J. Phys. Chem. B. May 2020;124(20):4211-4221.
35. Nagata Y, Hasegawa T, Backus EH, et al. The surface
roughness, but not the water molecular orientation varies with
temperature at the water-air interface. Phys Chem Chem Phys. Sep
28 2015;17(36):23559-23564.
36. Yang Z, Xia SQ, Shang QY, Yan FY, Ma PS. Isobaric Vapor
Liquid Equilibrium for the Binary System (Ethane-1,2-diol +
Butan-1,2-diol) at (20, 30, and 40) kPa. J. Chem. Eng. Data. Mar
2014;59(3):825-831.
37. Zhang LH, Wu WH, Sun YL, et al. Isobaric Vapor-Liquid
Equilibria for the Binary Mixtures Composed of Ethylene Glycol,
1,2-Propylene Glycol, 1,2-Butanediol, and 1,3-Butanediol at 10.00 kPa.J. Chem. Eng. Data. May 2013;58(5):1308-1315.
38. Yang CS, Feng X, Sun YK, Yang Q, Zhi J. Isobaric Vapor
Liquid Equilibrium for Two Binary Systems{Propane-1,2-diol +
Ethane-1,2-diol and Propane-1,2-diol + Butane-1,2-diol} at p = (10.0,
20.0, and 40.0) kPa. J. Chem. Eng. Data. Apr
2015;60(4):1126-1133.
39. Ma YX, Hou J, Hao WY, Liu JC, Meng LW, Lu Z. Influence of
riboflavin on the oxidation kinetics of unsaturated fatty acids at the
air/aqueous interface revealed by sum frequency generation vibrational
spectroscopy. Phys. Chem. Chem. Phys. Jul
2018;20(25):17199-17207.
40. Li YY, Feng RJ, Lin L, Liu MH, Guo Y, Zhang Z. Ordering
effects of cholesterol on sphingomyelin monolayers investigated by
high-resolution broadband sum-frequency generation vibrational
spectroscopy. Chin. Chem. Lett. Mar 2018;29(3):357-360.
41. Abraham MJ, Murtola T, Schulz R, et al. GROMACS: High
performance molecular simulations through multi-level parallelism from
laptops to supercomputers. SoftwareX. 2015; 1-2:19-25.
42. Martinez L, Andrade R, Birgin EG, Martinez JM. PACKMOL: A
Package for Building Initial Configurations for Molecular Dynamics
Simulations. Journal of Computational Chemistry. Oct
2009;30(13):2157-2164.
43. Ma G, Allen HC. DPPC Langmuir monolayer at the air-water
interface: Probing the tail and head groups by vibrational sum frequency
generation spectroscopy. Langmuir. Jun 2006;22(12):5341-5349.
44. Johnson CM, Tyrode E, Baldelli S, Rutland MW, Leygraf C. A
vibrational sum frequency spectroscopy study of the liquid-gas interface
of acetic acid-water mixtures: 1. Surface speciation. J. Phys.
Chem. B. Jan 2005;109(1):321-328.
45. Liu WT, Zhang LN, Shen YR. Interfacial layer structure at
alcohol/silica interfaces probed by sum-frequency vibrational
spectroscopy. Chemical Physics Letters. Aug
2005;412(1-3):206-209.
46. Lu R, Gan W, Wu BH, Zhang Z, Guo Y, Wang HF. C-H stretching
vibrations of methyl, methylene and methine groups at the vapor/alcohol
(n=1-8) interfaces. J. Phys. Chem. B. Jul
2005;109(29):14118-14129.
47. Zhuang X, Miranda PB, Kim D, Shen YR. Mapping molecular
orientation and conformation at interfaces by surface nonlinear optics.Phys. Rev. B. May 1999;59(19):12632-12640.
48. Hirose C, Akamatsu N, Domen K. Formulas for the analysis of
surface sum‐frequency generation spectrum by CH stretching modes of
methyl and methylene groups. The Journal of Chemical Physics.1992;96(2):997-1004.
49. Wei X, Shen YR. Motional effect in surface sum-frequency
vibrational spectroscopy. Phys. Rev. Lett. May
2001;86(21):4799-4802.
50. Joutsuka T, Morita A. Electrolyte and Temperature Effects
on Third-Order Susceptibility in Sum-Frequency Generation Spectroscopy
of Aqueous Salt Solutions. The Journal of Physical Chemistry C.2018;122(21):11407-11413.
51. Souna AJ, Clark TL, Fourkas JT. Effect of Temperature on
the Organization of Acetonitrile at the Silica/Liquid Interface.J. Phys. Chem. C. Nov 2017;121(47):26432-26437.
52. Liu J, Li X, Hou J, Li X, Lu Z. The Influence of Sodium
Iodide Salt on the Interfacial Properties of Aqueous Methanol Solution
by a Combined Molecular Simulation and Sum Frequency Generation
Vibrational Spectroscopy Study. Langmuir. May 28
2019;35(21):7050-7059.
53. Li X, Liu JC, Zhang K, et al. Toward Unraveling the Puzzle
of Sum Frequency Generation Spectra at Interface of Aqueous Methanol
Solution: Effects of Concentration-Dependent Hyperpolarizability.J. Phys. Chem. C. May 2019;123(20):12975-12983.
54. Kataoka S, Cremer PS. Probing molecular structure at
interfaces for comparison with bulk solution behavior: Water/2-propanol
mixtures monitored by vibrational sum frequency spectroscopy. J.
Am. Chem. Soc. Apr 2006;128(16):5516-5522.