REFERENCES
1. Wang HF, Gan W, Lu R, Rao Y, Wu BH. Quantitative spectral and orientational analysis in surface sum frequency generation vibrational spectroscopy (SFG-VS). International Reviews in Physical Chemistry. Apr 2005;24(2):191-256.
2. Du Q, Superfine R, Freysz E, Shen YR. VIBRATIONAL SPECTROSCOPY OF WATER AT THE VAPOR WATER INTERFACE. Phys. Rev. Lett. Apr 1993;70(15):2313-2316.
3. Richmond G. STRUCTURE AND BONDING OF MOLECULES AT AQUEOUS SURFACES. Annual Review of Physical Chemistry.2001;52(1):357-389.
4. Tian CS, Shen YR. Recent progress on sum-frequency spectroscopy. Surface Science Reports. Sep-Oct 2014;69(2-3):105-131.
5. Jubb AM, Hua W, Allen HC. Environmental Chemistry at Vapor/Water Interfaces: Insights from Vibrational Sum Frequency Generation Spectroscopy. Annual Review of Physical Chemistry.2012;63(1):107-130.
6. Sovago M, Campen RK, Wurpel GWH, Muller M, Bakker HJ, Bonn M. Vibrational response of hydrogen-bonded interfacial water is dominated by intramolecular coupling. Phys. Rev. Lett. May 2008;100(17).
7. Hommel EL, Allen HC. The air-liquid interface of benzene, toluene, m-xylene, and mesitylene: a sum frequency, Raman, and infrared spectroscopic study. Analyst. 2003;128(6):750-755.
8. Baldelli S, Schnitzer C, Shultz MJ, Campbell DJ. Sum frequency generation investigation of glycerol/water surfaces. J. Phys. Chem. B. Jun 1997;101(23):4607-4612.
9. Matsuzaki K, Nihonyanagi S, Yamaguchi S, Nagata T, Tahara T. Vibrational Sum Frequency Generation by the Quadrupolar Mechanism at the Nonpolar Benzene/Air Interface. J. Phys. Chem. Lett. May 2013;4(10):1654-1658.
10. Rivera-Rubero S, Baldelli S. Surface characterization of 1-butyl-3-methylimidazollum Br-, I-, PF6-, BF4-, (CF3SO2)(2)N-,SCN-, CH3SO3-, CH3SO4-, and (CN)(2)N- ionic liquids by sum frequency generation. J. Phys. Chem. B. Mar 2006;110(10):4756-4765.
11. Richmond GL. Molecular bonding and interactions at aqueous surfaces as probed by vibrational sum frequency spectroscopy.Chem. Rev. Aug 2002;102(8):2693-2724.
12. Kim J, Chou KC, Somorjai GA. Structure and dynamics of acetonitrile at the air/liquid interface of binary solutions studied by infrared-visible sum frequency generation. J. Phys. Chem. B. Feb 2003;107(7):1592-1596.
13. Shen YR, Ostroverkhov V. Sum-frequency vibrational spectroscopy on water interfaces: Polar orientation of water molecules at interfaces. Chem. Rev. Apr 2006;106(4):1140-1154.
14. Henry MC, Piagessi EA, Zesotarski JC, Messmer MC. Sum-frequency observation of solvent structure at model chromatographic interfaces: Acetonitrile-water and methanol-water systems.Langmuir. Jul 2005;21(14):6521-6526.
15. Chen H, Gan W, Wu B-h, Wu D, Guo Y, Wang H-f. Determination of Structure and Energetics for Gibbs Surface Adsorption Layers of Binary Liquid Mixture 1. Acetone + Water. The Journal of Physical Chemistry B. 2005/04/01 2005;109(16):8053-8063.
16. Chen X, Minofar B, Jungwirth P, Allen HC. Interfacial Molecular Organization at Aqueous Solution Surfaces of Atmospherically Relevant Dimethyl Sulfoxide and Methanesulfonic Acid Using Sum Frequency Spectroscopy and Molecular Dynamics Simulation. The Journal of Physical Chemistry B. 2010/12/02 2010;114(47):15546-15553.
17. Rivera-Rubero S, Baldelli S. Influence of water on the surface of hydrophilic and hydrophobic room-temperature ionic liquids.J. Am. Chem. Soc. Sep 2004;126(38):11788-11789.
18. McGuire JA, Shen YR. Ultrafast vibrational dynamics at water interfaces. Science. Sep 2006;313(5795):1945-1948.
19. Nihonyanagi S, Yamaguchi S, Tahara T. Ultrafast Dynamics at Water Interfaces Studied by Vibrational Sum Frequency Generation Spectroscopy. Chem. Rev. Aug 2017;117(16):10665-10693.
20. Ma G, Allen HC. Surface Studies of Aqueous Methanol Solutions by Vibrational Broad Bandwidth Sum Frequency Generation Spectroscopy. The Journal of Physical Chemistry B. 2003/07/01 2003;107(26):6343-6349.
21. Sugimoto T, Otsuki Y, Ishiyama T, Morita A, Watanabe K, Matsumoto Y. Topologically disordered mesophase at the topmost surface layer of crystalline ice between 120 and 200 K. Phys. Rev. B. Mar 2019;99(12):7.
22. Strazdaite S, Versluis J, Backus EHG, Bakker HJ. Enhanced ordering of water at hydrophobic surfaces. J. Chem. Phys. Feb 2014;140(5):6.
23. Moberg DR, Straight SC, Paesani F. Temperature Dependence of the Air/Water Interface Revealed by Polarization Sensitive Sum-Frequency Generation Spectroscopy. J Phys Chem B. Apr 19 2018;122(15):4356-4365.
24. Souna AJ, Clark TL, Fourkas JT. Effect of Temperature on the Organization of Acetonitrile at the Silica/Liquid Interface.The Journal of Physical Chemistry C. 2017;121(47):26432-26437.
25. Abdelmonem A, Backus EHG, Bonn M. Ice Nucleation at the Water-Sapphire Interface: Transient Sum-Frequency Response without Evidence for Transient Ice Phase. J. Phys. Chem. C. Nov 2018;122(43):24760-24764.
26. Yamaguchi S, Suzuki Y, Nojima Y, Otosu T. Perspective on sum frequency generation spectroscopy of ice surfaces and interfaces.Chemical Physics. Jun 2019;522:199-210.
27. Lu R, Gan W, Wu BH, Chen H, Wang HF. Vibrational polarization spectroscopy of CH stretching modes of the methylene goup at the vapor/liquid interfaces with sum frequency generation. J. Phys. Chem. B. Jun 2004;108(22):7297-7306.
28. Yue HR, Zhao YJ, Ma XB, Gong JL. Ethylene glycol: properties, synthesis, and applications. Chemical Society Reviews. 2012;41(11):4218-4244.
29. Wen C, Cui YY, Dai WL, Xie SH, Fan KN. Solvent feedstock effect: the insights into the deactivation mechanism of Cu/SiO2 catalysts for hydrogenation of dimethyl oxalate to ethylene glycol.Chemical Communications. 2013;49(45):5195-5197.
30. Wen C, Cui YY, Chen X, Zong BN, Dai WL. Reaction temperature controlled selective hydrogenation of dimethyl oxalate to methyl glycolate and ethylene glycol over copper-hydroxyapatite catalysts. Appl. Catal. B-Environ. Jan 2015;162:483-493.
31. Li H, Zhao ZY, Qin J, Wang R, Li XG, Gao X. Reversible Reaction-Assisted Intensification Process for Separating the Azeotropic Mixture of Ethanediol and 1,2-Butanediol: Vapor-Liquid Equilibrium and Economic Evaluation. Ind. Eng. Chem. Res. Apr 2018;57(14):5083-5092.
32. Li H, Huang WJ, Li XG, Gao X. Application of the Aldolization Reaction in Separating the Mixture of Ethylene Glycol and 1,2-Butanediol: Thermodynamics and New Separation Process. Ind. Eng. Chem. Res. Sep 2016;55(37):9994-10003.
33. Li XG, Wang R, Na J, Li H, Gao X. Reversible Reaction-Assisted Intensification Process for Separating the Azeotropic Mixture of Ethanediol and 1,2-Butanediol: Reactants Screening.Ind. Eng. Chem. Res. Jan 2018;57(2):710-717.
34. Hou J, Sun GL, Liu JC, Gao X, Zhang XY, Lu Z. Liquid/Vapor Interface of Dimethyl Carbonate-Methanol Binary Mixtures Investigated by Sum Frequency Generation Vibrational Spectroscopy and Molecular Dynamics Simulation. J. Phys. Chem. B. May 2020;124(20):4211-4221.
35. Nagata Y, Hasegawa T, Backus EH, et al. The surface roughness, but not the water molecular orientation varies with temperature at the water-air interface. Phys Chem Chem Phys. Sep 28 2015;17(36):23559-23564.
36. Yang Z, Xia SQ, Shang QY, Yan FY, Ma PS. Isobaric Vapor Liquid Equilibrium for the Binary System (Ethane-1,2-diol + Butan-1,2-diol) at (20, 30, and 40) kPa. J. Chem. Eng. Data. Mar 2014;59(3):825-831.
37. Zhang LH, Wu WH, Sun YL, et al. Isobaric Vapor-Liquid Equilibria for the Binary Mixtures Composed of Ethylene Glycol, 1,2-Propylene Glycol, 1,2-Butanediol, and 1,3-Butanediol at 10.00 kPa.J. Chem. Eng. Data. May 2013;58(5):1308-1315.
38. Yang CS, Feng X, Sun YK, Yang Q, Zhi J. Isobaric Vapor Liquid Equilibrium for Two Binary Systems{Propane-1,2-diol + Ethane-1,2-diol and Propane-1,2-diol + Butane-1,2-diol} at p = (10.0, 20.0, and 40.0) kPa. J. Chem. Eng. Data. Apr 2015;60(4):1126-1133.
39. Ma YX, Hou J, Hao WY, Liu JC, Meng LW, Lu Z. Influence of riboflavin on the oxidation kinetics of unsaturated fatty acids at the air/aqueous interface revealed by sum frequency generation vibrational spectroscopy. Phys. Chem. Chem. Phys. Jul 2018;20(25):17199-17207.
40. Li YY, Feng RJ, Lin L, Liu MH, Guo Y, Zhang Z. Ordering effects of cholesterol on sphingomyelin monolayers investigated by high-resolution broadband sum-frequency generation vibrational spectroscopy. Chin. Chem. Lett. Mar 2018;29(3):357-360.
41. Abraham MJ, Murtola T, Schulz R, et al. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015; 1-2:19-25.
42. Martinez L, Andrade R, Birgin EG, Martinez JM. PACKMOL: A Package for Building Initial Configurations for Molecular Dynamics Simulations. Journal of Computational Chemistry. Oct 2009;30(13):2157-2164.
43. Ma G, Allen HC. DPPC Langmuir monolayer at the air-water interface: Probing the tail and head groups by vibrational sum frequency generation spectroscopy. Langmuir. Jun 2006;22(12):5341-5349.
44. Johnson CM, Tyrode E, Baldelli S, Rutland MW, Leygraf C. A vibrational sum frequency spectroscopy study of the liquid-gas interface of acetic acid-water mixtures: 1. Surface speciation. J. Phys. Chem. B. Jan 2005;109(1):321-328.
45. Liu WT, Zhang LN, Shen YR. Interfacial layer structure at alcohol/silica interfaces probed by sum-frequency vibrational spectroscopy. Chemical Physics Letters. Aug 2005;412(1-3):206-209.
46. Lu R, Gan W, Wu BH, Zhang Z, Guo Y, Wang HF. C-H stretching vibrations of methyl, methylene and methine groups at the vapor/alcohol (n=1-8) interfaces. J. Phys. Chem. B. Jul 2005;109(29):14118-14129.
47. Zhuang X, Miranda PB, Kim D, Shen YR. Mapping molecular orientation and conformation at interfaces by surface nonlinear optics.Phys. Rev. B. May 1999;59(19):12632-12640.
48. Hirose C, Akamatsu N, Domen K. Formulas for the analysis of surface sum‐frequency generation spectrum by CH stretching modes of methyl and methylene groups. The Journal of Chemical Physics.1992;96(2):997-1004.
49. Wei X, Shen YR. Motional effect in surface sum-frequency vibrational spectroscopy. Phys. Rev. Lett. May 2001;86(21):4799-4802.
50. Joutsuka T, Morita A. Electrolyte and Temperature Effects on Third-Order Susceptibility in Sum-Frequency Generation Spectroscopy of Aqueous Salt Solutions. The Journal of Physical Chemistry C.2018;122(21):11407-11413.
51. Souna AJ, Clark TL, Fourkas JT. Effect of Temperature on the Organization of Acetonitrile at the Silica/Liquid Interface.J. Phys. Chem. C. Nov 2017;121(47):26432-26437.
52. Liu J, Li X, Hou J, Li X, Lu Z. The Influence of Sodium Iodide Salt on the Interfacial Properties of Aqueous Methanol Solution by a Combined Molecular Simulation and Sum Frequency Generation Vibrational Spectroscopy Study. Langmuir. May 28 2019;35(21):7050-7059.
53. Li X, Liu JC, Zhang K, et al. Toward Unraveling the Puzzle of Sum Frequency Generation Spectra at Interface of Aqueous Methanol Solution: Effects of Concentration-Dependent Hyperpolarizability.J. Phys. Chem. C. May 2019;123(20):12975-12983.
54. Kataoka S, Cremer PS. Probing molecular structure at interfaces for comparison with bulk solution behavior: Water/2-propanol mixtures monitored by vibrational sum frequency spectroscopy. J. Am. Chem. Soc. Apr 2006;128(16):5516-5522.