References

  1. https://www.meti.go.jp/policy/mono_info_service/mono/chemistry/toukei_archives.html
  2. Barecka MH, Skiborowski M, Gorak A, A novel approach for process retrofitting through process intensification: Ethylene oxide case study. Chem. Eng. Res. 2017;123:295-316
  3. Zhou XG, Yuan WK, Optimization of the fixed-bed reactor for ethylene epoxidation. Chem. Eng. Process. 2005;44(10):1098-1107
  4. Lahiri SK, Khalfe N, PROCESS MODELING AND OPTIMIZATION OF INDUSTRIAL ETHYLENE OXIDE REACTOR BY INTEGRATING SUPPORT VECTOR REGRESSION AND GENETIC ALGORITHM. Can. J. Chem. Eng. 2009;87(1):118-128
  5. Yang XT, Xu Q, Li KY, Sagar CD, Dynamic Simulation and Optimization for the Start-up Operation of An Ethylene Oxide Plant. Ind. Eng. Chem. Res. 2010;49(9):4360-4371
  6. Rahimpour MR, Shayanmehr M, Nazari M, Modeling and Simulation of an Industrial Ethylene Oxide (EO) Reactor Using Artificial Neural Networks (ANN). Ind. Eng. Chem. Res. 2011;50(10):6044-6052
  7. Luo N, Du WL, Ye ZC, Qian F, Development of a Hybrid Model for Industrial Ethylene Oxide Reactor. Ind. Eng. Chem. Res. 2012;51(19):6926-6932
  8. Nawaz Z, Heterogeneous Reactor Modeling of an Industrial Multitubular Packed-Bed Ethylene Oxide Reactor. Chem. Eng. Technol. 2016;39(10):1845-1857
  9. Peschel A, Jorke A, Sundmacher K, Freund H, Optimal reaction concept and plant wide optimization of the ethylene oxide process. Chem. Eng. J. 2012;207:656-674
  10. Freguia S, Rochelle GT, Modeling of CO2 Capture by Aqueous Monoethanolamine. AIChE J. 2003;49(7):1676-1686
  11. Jassim MS, Rochelle GT, Innovative absorber/stripper configurations for CO2 capture by aqueous monoethanolamine. Ind. Eng. Chem. Res. 2006;45(8):2465-2472
  12. Shahriari B, Swersky K, Wang ZY, Adams RP, Freitas ND, Taking the Human Out of the Loop: A Review of Bayesian Optimization. Proceeding of the IEEE. 2016;104(1):148-175
  13. http://scejcontest.chem-eng.kyushu-u.ac.jp/
  14. Brandmaier S, Sahlin U, Tetko IV, Oberg T, PLS-Optimal: A Stepwise D-Optimal Design Based on Latent Variables. J. Chem. Inf. Model. 2012;52(4):975-983
  15. Bezerra MA, Santelli RE, Oliveira EP, Villar LS, Escaleira LA, Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta. 2008;76(5):965-977
  16. Niktin A, Fastovets I, Shadrin D, Pukalchik M, Oseledets I, Bayesian optimization for seed germination. Plants Methods. 2019;15:43
  17. Tanaka R, Iwata H, Bayesian optimization for genomic selection: a method for discovering the best genotype among a large number of candidates. Theor. Appl. Genet. 2018;131(1):93-105
  18. Pruksawan S, Lambard G, Samitsu S, Sodeyama K, Prediction and optimization of epoxy adhesive strength from a small dataset through active learning. STAM. 2019;20(1):1010-1021
  19. Seko A, Togo A, Hayashi H, Tsuda K, Chaput L, Tanaka I, Prediction of Low-Thermal-Conductivity Compounds with First-Principles Anharmonic Lattice-Dynamics Calculations and Bayesian Optimization. Phys. Rev. Lett. 2015;115(20): 205901-1-5
  20. Overstall AM, Woods DC, Martin KJ, Bayesian prediction for physical models with application to the optimization of the synthesis of pharmaceutical products using chemical kinetics. Comput. Statist. Data Anal. 2019;132:126-142
  21. Chen HP, Bowels S, Zhang B, Fuhlbrigge T, Controller parameter optimization for complex industrial system with uncertainties. Measurement and control. 2019;52(7-8):888-895
  22. Geng ZY, Yang F, Chen X, Wu NQ, Gaussian process based modeling and experimental design for sensor calibration in drifting environments. Sens. Actuators B. Chem. 2015;216:321-331
  23. Katakami S, Sakamoto H, Okada M, Bayesian Hyperparameter Estimation using Gaussian Process and Bayesian Optimization. J. Phys. Soc. Jpn. 2019;88(7):2019
  24. Rasmussen CE, Nickisch H, Gaussian Processes for Machine Learning (GPML) Toolbox. J. Mach. Learn. Res. 2010;11:3011-3015
  25. Kishio T, Kaneko H, Funatsu K, Strategic parameter search method based on prediction errors and data density for efficient product design. Chemometr. Intell. Lab. Syst. 2013;127:70-79
  26. AVEVA™ Process Simulation (formerly known as SimCentral)