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Abstract. In this paper, we consider the following wave equation with
time-varying delay and acoustic boundary conditions

utt(t)−∆u(t) + µ1ut(x, t) + µ2ut(x, t− τ(t)) + f(u) = h(x)

in a bounded domain. By virtue of Galerkin method, we prove the the ex-
istence and uniqueness of global solution under some general assumptions
for the above equation. And the existence of a compact global attractor is
proved.
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1. Introduction

In this paper, we consider the following wave equation with time-varying
delay and acoustic boundary conditions:




utt(t)−∆u(t) + µ1ut(x, t) + µ2ut(x, t− τ(t))
+f(u) = h(x), x ∈ Ω, t ≥ 0,

u = 0, x ∈ Γ0, t ≥ 0,

δtt(t) + kδt(t) + δ(t) = −ut(t), x ∈ Γ1, t ≥ 0,
∂u(t)
∂ν = δt(t), x ∈ Γ1, t ≥ 0,

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

δ(x, 0) = δ0(x), δt(x, 0) = δ1(x), x ∈ Γ1,

ut(x, t) = f0(x, t), x ∈ Ω, t ∈ [−τ(0), 0),

(1.1)

where Ω is a bounded domain of Rn(n ≥ 1) with smooth boundary Γ = Γ0∪Γ1.
Here, Γ0 and Γ1 are closed and disjoint with meas(Γ0) > 0, ν represent the
outward normal to Γ and k is a positive constant. Moreover, f and h are
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external forcing terms, µ1, µ2 are some constants, τ(t) represents the time
delay and u0, u1, δ0, δ1, f0 are given functions belonging to some suitable
spaces.

The acoustic boundary conditions are introduced by Morse and Ingard [13]
and developed by Beale and Rosenerans [3]. In [3], the authors proved the
global existence and regularity of the linear problem. Some authors studied
the existence and decay of solutions for wave equations with acoustic boundary
conditions.

The time delay aries in many physical, chemical, biological and economical
phenomena. Because this phenomena depend not only on the present state
but also on the past history of the system in a more complicated way. The
differential equations with time delay effects becomes an active area of research
(see [6,9,15]).

In [8], Frigeri considered the semilinear damped wave equation with an
acoustic boundary condition:





utt + ωut −∆u + u + f(u) = 0 in Ω× (0,∞),
δtt + νδt + δ = −ut on Γ× (0,∞),
δt = ∂u

∂n on Γ× (0,∞),

where n is the exterior normal to Γ and ω, ν are an interior and a surface
damping parameter, respectively. The author proved the existence of global
attractors for semilinear damped wave equations with an acoustic boundary
condition. Moreover, Ma and Souza [12] considered a non-autonomous wave
equation with acoustic boundary condition of the following form:





utt −∆u + ωut + u + f(u) = h, x ∈ Ω, t ≥ τ,

δtt + νδt + δ = −ut, x ∈ Γ, t ≥ τ,

δt = ∂nu, x ∈ Γ, t ≥ τ

u(x, τ) = u0
τ (x), ut(x, τ) = u1

τ (x), x ∈ Ω,

δ(x, τ) = δ0
τ (x), δt(x, τ) = δ1

τ (x), x ∈ Γ,

where Ω is a bounded domain of R3 with regular boundary Γ and ω, ν > 0
are damping coefficients. They also investigated the existence of a pullback
attractor and the upper semicontinuity of pullback attractors.

In [11], Liu et al. studied the existence, uniqueness and asymptotic behavior
of global solution of the following class of a wave equation with time delay:





utt(x, t)−∆u(x, t) + µ1ut(x, t) + µ2ut(x, t− τ)
+f(x, u) = h(x), x ∈ Ω, t > 0,

u(x, t) = 0, x ∈ ∂Ω, t ≥ 0,

u(0, x) = u0(x), ut(0, x) = u1(x), x ∈ Ω,

ut(x, t− τ) = f0(x, t− τ), x ∈ Ω, 0 < t < τ,
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where Ω is a bounded domain of RN , N ≥ 1, with a sufficiently smooth bound-
ary ∂Ω, f and h are external forcing terms, µ1 and µ2 are some constants,
τ > 0 represents the time delay, u0, u1, f0 are given functions.

Recently, Feng [7] studied the long-time dynamics of a plate equation with
memory and time delay of the following form:





utt(x, t) + α∆2u(x, t)− ∫ t
−∞ g(t− s)∆2u(x, s)ds + µ1ut(x, t)

+µ2ut(x, t− τ(t)) + f(u) = h(x),
u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

ut(x, t) = f0(x, t), x ∈ Ω, t ∈ [−τ(0), 0),
u(x, 0) = 0, ∆u(x, t) = 0 on ∂Ω× R+,

where Ω ⊂ Rn (n ≥ 1) is a bounded domain with a sufficiently smooth bound-
ary ∂Ω. Moreover, Park [16] considered the following von Karman system:





utt + ∆2u + a0ut(x, t) + a1ut(x, t− τ) = [u, F (u)] + g, in Ω× R+,

∆2F (u) = −[u, u] in Ω× R+,

u = ∂u
∂ν = 0, F (u) = ∂F (u)

∂ν = 0 on ∂Ω× R+,

u(0) = u0, ut(0) = u1 on Ω,

ut(x, t) = f0(x, t) for (x, t) ∈ Ω× (−τ, 0),

where a0, a1 are real numbers, τ > 0 is time delay, g ∈ L2(Ω) and f0 ∈
L2(Ω × (−τ, 0)). The author investigated the long-time dynamics of a von
Karman equation with time delay.

Motivated and inspired by the works mentioned above results, we prove the
existence of a compact global attractor of the wave equation with time-varying
delay and acoustic boundary conditions (1.1) under suitable assumptions. To
the best of our knowledge, the long time behavior of a wave equation with time-
varying delay and acoustic boundary conditions has not yet been considered.
It is presently our concern.

The plan of this paper is as follows. In section2, we present some notations
and assumptions needed for our work. Moreover, we recall the preliminaries
facts which are used throughout this work. In section 3, we get the main
results. The proof of main theorem is given in section 4.

2. Preliminaries

In this section, we present some notations and assumptions that we shall
use in order to prove our results.

Let H1(Ω) be the real sobolev space of first order, ‖ · ‖ be a L2-norm and
(·, ·) be the scalar product in L2(Ω), i.e., (u, v) =

∫
Ω u(x, t)v(x, t)dx. Also, we

mean by ‖ · ‖q the Lq(Ω) norm for 1 ≤ q < ∞. We denote by V the closure
in H1(Ω) of {u ∈ C1(Ω) : u = 0 on Γ0}. Since Γ0 has nonempty interior
and Ω is a regular domain, V = {u ∈ H1(Ω) : γ0(u) = 0 on Γ0} is a closed
subspace of H1(Ω), where γ0 : H1(Ω) → H

1
2 (Γ) (see [1]). We define in V the
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inner product and norm by

((u, v)) =
n∑

i=1

∫

Ω

∂u

∂xi

∂v

∂xi
dx, ‖u‖2 =

n∑

i=1

∫

Ω

∣∣∣∣
∂u

∂xi

∣∣∣∣
2

dx,

which are equivalent to the usual inner product and the norm in H1(Ω).
The poincare inequality holds on V , i.e., there exists a constant c∗ > 0 such

that for u ∈ V ,

‖u(t)‖2
p ≤ c∗‖∇u(t)‖2, 2 ≤ p ≤ p, (2.1)

where

p =

{
2n−2
n−2 if n ≥ 3,

+∞ if n = 1, 2.
(2.2)

The trace map γ0 is a continuous function. Then there exists a constant c̃∗ > 0
such that

‖γ0(u(t))‖2
Γ1
≤ c̃∗‖∇u(t)‖2, ∀u ∈ V. (2.3)

Now we define the phase spaceH = H1(Ω)×L2(Ω)×L2(Γ1)×L2(Γ1) equipped
with the norm

‖(u(t), ut(t), δ(t), δt(t))‖2
H = ‖∇u(t)‖2 + ‖ut(t)‖2 + ‖δ(t)‖2

L2(Γ1)

+ ‖δt(t)‖2
L2(Γ1).

Let us state assumptions on the external forcing terms f(u(t)), h(x).
(H1) Concerning the forcing term f ∈ C1(R), we assume that

f(x, 0) = 0, |f(u)− f(v)| ≤ cf (1 + |u|p + |v|p)|u− v|, ∀u, v ∈ R, (2.4)

where cf > 0 and

0 < p ≤ 2
n− 2

if n ≥ 3 or p > 0 if n = 1, 2. (2.5)

In addition, we assume that there exist constants cf > 0 and β ∈ [0, 5
8c∗ ) such

that

f̃(u(t)) ≥ −β

2
u2(t)− cf and f(u(t))u(t)− f̃(u(t)) ≥ −β

2
u2(t)− cf , ∀u ∈ R,

(2.6)

where f̃(u(t)) =
∫ u
0 f(s)ds.

(H2) With respect to h(x), we assume that

h ∈ L2(Ω). (2.7)

(H3) With respect to the delay τ(t), we assume that there exist two positive
constants τ0 and τ1 such that

0 < τ0 ≤ τ(t) ≤ τ1, ∀t > 0, (2.8)
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and further

τ(t) ∈ W 2,∞(0, T ), τ ′(t) ≤ d < 1, ∀T, t > 0. (2.9)

The existence of solutions for problem (1.1) can be proved by the Fadeo-
Galerkin method (see [11,12,14]).

Theorem 2.1. Assume that (2.1)-(2.9) hold. Then given initial data
(u0, u1, δ0, δ1, f0) ∈ H × L2(Ω, (−τ(0), 0)), problem (1.1) has a unique weak
solution z(t) = (u(t), ut(t), δ(t), δt(t)) satisfying

z(t) ∈ C((0,∞),H). (2.10)

In addition, if zi(t) = (ui(t), ui
t(t), δ

i(t), δi
t(t)), i = 1, 2, are two weak solutions

of (1.1), then for any T > 0

‖z1(t)− z2(t)‖2
H ≤ eC0T ‖z1

0 − z2
0‖2
H,

where C0 is a constant depending on the initial data.

Remark 2.1. The uniqueness of problem (1.1) defines the operator S(t) :
H → H such that

S(t)(u0, u1, δ0, δ1) = (u(t), ut(t), δ(t), δt(t)), ∀t > 0,

where (u(t), ut(t), δ(t), δt(t)) is the weak solution corresponding to initial data
(u0, u1, δ0, δ1) ∈ H. It turns out that S(t) satisfies the semigroup properties
S(0) = I and S(t + s) = S(t)S(s). Moreover, the continuous dependence
on the initial data in H and the condition (2.10) imply that S(t) is strongly
continuous on H. Then the long-time dynamic of problem (1.1) can be studied
by the continuous dynamical system (H, S(t)).

The energy functional to problem (1.1) is defined by

E(t) =
1
2
‖ut(t)‖2 +

1
2
‖∇u(t)‖2 +

1
2
‖δt(t)‖2

L2(Γ1) +
1
2
‖δ(t)‖2

L2(Γ1)

+
∫

Ω

(
f̃(u(t))− h(x)u(t)

)
dx.

Then we can get the following lemma concerning the energy functional E(t).

Lemma 2.1. For a weak solution (u(t), ut(t), δ(t), δt(t)) ∈ H, the energy
functional E(t) satisfies that there exists a a constant β0 > 0 such that

E(t) ≥ β0

(‖ut(t)‖2 + ‖∇u(t)‖2 + ‖δ(t)‖2
L2(Γ1) + ‖δt(t)‖2

L2(Γ1)

)−K, (2.11)

where K = cf |Ω|+ ‖h‖2
c∗ρ and ρ > 0.

Proof. To prove (2.11), we define

Ẽ(t) = E(t) + K,
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where K = cf |Ω| + 1
c∗ρ‖h‖2 and ρ > 0 is a constant. By using (2.6) and

Young’s inequality, we obtain
∫

Ω
f̃(u(t))dx ≥ −βc∗

2
‖∇u(t)‖2 − cf |Ω|

and for any ρ > 0

−
∫

Ω
h(x)u(t)dx ≥ −ρ

4
‖∇u(t)‖2 − 1

c∗ρ
‖h‖2.

Then we get

Ẽ(t) ≥
(

1
2
− βc∗

2
− ρ

4

)
‖∇u(t)‖2 +

1
2
‖ut(t)‖2 +

1
2
‖δt(t)‖2

L2(Γ1) +
1
2
‖δ(t)‖2

L2(Γ1).

Noticing β ∈ [0, 1
c∗ ), taking ρ > 0 so small, we derive

E(t) ≥ β0

(‖ut(t)‖2 + ‖∇u(t)‖2 + ‖δt(t)‖2
L2(Γ1) + ‖δ(t)‖2

L2(Γ1)

)−K.

The proof is complete.

3. Long-time dynamics

First we recall some fundamentals of the theory of infinite dimensional dy-
namical systems. They can be found in, for instant, Bain and Vishik [2],
Chueshov and Lasiecka [4,5], Hale [10].

A compact set A ⊂ H is a global attractor for a dynamical system (H, S(t))
if it is fully invariant and uniformly attracting, that is, S(t)A = A for all t ≥ 0
and for every bounded subset B ⊂ H,

lim
t→∞distH(S(t)B,A) = 0,

where distH is the Housdorff semidistance in H.
A bounded set B ⊂ H is an absorbing set for S(t) if any bounded set B ⊂ H,

there exists tB > 0 satisfying

S(t)B ⊂ B, ∀t ≥ tB,

which characterizes S(t) as a dissipative semigroup.
A semigroup S(t) is asymptotically smooth in H if for any bounded posi-

tively invariant set B ⊂ H, there exists a compact set K ⊂ B such that

lim
t→+∞ distH(S(t)B, K) = 0.

The following theorem is well-known result (see [2,5,10]).

Theorem 3.1. A dissipative dynamical system (H, S(t)) has a compact
global attractor if and only if it is asymptotically smooth.

We present here a more recent method by Chueshov and Lasiecka [5] to
verify the asymptotic smoothness property.
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Theorem 3.2. Suppose that for any positively bounded invariant set B ⊂
H and for any ε > 0, there exists T = T (ε,B) such that

‖S(t)x− S(T )y‖H ≤ ε + φT (x, y), ∀x, y ∈ B,

where φT : B ×B → R satisfies

lim inf
n→∞ lim inf

m→∞ φT (zn, zm) = 0 (3.1)

for any sequence {zn}n∈N in B. Then S(t) is asymptotically smooth in H.

When a suitable smallness condition on the time-delay feedback is satisfied
(i.e., 0 < |µ2| < µ1), our main result in this paper is the following.

Theorem 3.3. Assume that the hypotheses of Theorem 2.1 and 0 < |µ2| <√
1− dµ1 hold. Then the dynamical system (H, S(t)) corresponding to the

system (1.1) possesses a compact global attractor A.

4. Proof of the main result

In order to prove Theorem 3.3, we will apply the abstract results presented
in Section 3. The first step is to show that the dynamical system (H, S(t))
is dissipative. The second step is to verify that it is asymptotically smooth.
Then the existence of a compact global attractor is guaranteed by Theorem
3.1.

Inspired by [14], the modified energy functional corresponding to the prob-
lem (1.1) is given by

E(t) =
1
2
‖ut(t)‖2 +

1
2
‖∇u(t)‖2 +

1
2
‖δt(t)‖2

L2(Γ1) +
1
2
‖δ(t)‖2

L2(Γ1)

+
ξ

2

∫ t

t−τ(t)

∫

Ω
eσ(s−t)u2

t (x, s)dxds +
∫

Ω

(
f̃(u(t))− h(x)u(t)

)
dx, (4.1)

where ξ > 0 will be determined later and the constant σ > 0, as below, has
been introduced in [14]:

σ <
1
τ1

∣∣∣∣log
|µ2|√
1− d

∣∣∣∣.

To prove our result, we obtain the following lemmas.

Lemma 4.1. Let (u(t), ut(t), δ(t), δt(t)) be the weak solution of (1.1). Then
the energy functional defined by (4.1) satisfies

E′(t) ≤
( |µ2|

2
√

1− d
− µ1 +

ξ

2

)
‖ut(t)‖2 +

( |µ2|
√

1− d

2
− ξ(1− d)

2eστ1

)
‖ut(t− τ(t))‖2

− σξ

2

∫ t

t−τ(t)

∫

Ω
e−σ(t−s)u2

t (x, s)dxds− k‖δt(t)‖2
L2(Γ1)

≤ 0. (4.2)
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Proof. Differentiating (4.1) and using (1.1), we obtain

E′(t) = −µ1‖ut(t)‖2 − µ2

∫

Ω
ut(t)ut(t− τ(t))dx +

ξ

2
‖ut(t)‖2

− ξ

2
e−στ(t)

∫

Ω
u2

t (t− τ(t))(1− τ ′(t))dx

− σξ

2

∫ t

t−τ(t)

∫

Ω
e−σ(t−s)u2

t (x, s)dxds

− k‖δt(t)‖2
L2(Γ1).

By using (2.8) and (2.9), we get

E′(t) ≤ −µ1‖ut(t)‖2 − µ2

∫

Ω
ut(t)ut(t− τ(t))dx +

ξ

2
‖ut(t)‖2

− ξ

2
(1− d)e−στ1

∫

Ω
u2

t (t− τ(t))dx− σξ

2

∫ t

t−τ(t)

∫

Ω
e−σ(t−s)u2

t (x, s)dxds

− k‖δt(t)‖2
L2(Γ1). (4.3)

It follows from Young’s inequality that

−µ2

∫

Ω
ut(t)ut(t− τ(t))dx ≤ |µ2|

2
√

1− d
‖ut(t)‖2 +

|µ2|
√

1− d

2

∫

Ω
u2

t (t− τ(t))dx.

(4.4)

Thus from (4.3) and (4.4), we deduce that

E′(t) ≤
( |µ2|

2
√

1− d
− µ1 +

ξ

2

)
‖ut(t)‖2 +

{ |µ2|
√

1− d

2

− ξ

2
e−στ1(1− d)

}
‖u2

t (t− τ(t))‖2 − σξ

2

∫ t

t−τ(t)

∫

Ω
e−σ(t−s)u2

t (x, s)dxds

− k‖δt(t)‖2
L2(Γ1).

Notice that eστ1 → 1+ as σ → 0+. Using the continuity of set of real numbers,
we can choose σ > 0 so small that there exists a positive constant ξ > 0 such
that

eστ1 |µ2|√
1− d

< ξ < µ1. (4.5)

It follows from (4.5) that

|µ2|
2
√

1− d
− µ1 +

ξ

2
< 0, (4.6)

and

|µ2|
√

1− d

2
− ξ

2
e−στ1(1− d) < 0. (4.7)
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Therefore

E′(t) ≤ 0.

The proof is complete.

Now, we define a Lyapunov functional

Eε(t) = E(t) + εφ(t), ε > 0, (4.8)

where

φ(t) =
∫

Ω
u(t)ut(t)dx +

∫

Γ1

δ(t)δt(t)dΓ +
∫

Γ1

u(t)δ(t)dΓ. (4.9)

Then, first we prove there exists ε0 > 0 such that

1
2
E(t)− 1

2
K ≤ Eε(t) ≤ 3

2
E(t) +

1
2
K, ∀ε ∈ [0, ε0], (4.10)

where K = cf |Ω|+ 1
c∗ρ‖h‖2 and ρ > 0.

Indeed, from (2.1) we deduce
∫

Γ1

u(t)δ(t)dΓ ≤ c∗
2
‖∇u(t)‖2 +

1
2
‖δ(t)‖2

L2(Γ1)

and using (2.11) and(4.9), we can write

‖φ(t)‖ ≤ (1 + c∗)‖(u(t), ut(t), δ(t), δt(t))‖2
H

≤ (1 + c∗)β−1
0 (E(t) + K).

Then, taking ε0 = 1
2β0(1 + c∗)−1, we obtain

ε0‖φ(t)‖ ≤ 1
2
(E(t) + K)

for ε < ε0 and (4.10) follows.
Next, we shall estimate φ′(t) as

φ′(t) ≤ −E(t)− 5− 8βc∗
16

‖∇u(t)‖2 +
(

3
2

+ 4µ2
1c∗

)
‖ut(t)‖2

+
(

16c∗ +
3
2

+
k2

2

)
‖δt(t)‖2

L2(Γ1)

+ 4|µ2|2c∗
∫

Ω
u2

t (t− τ(t))dx +
ξ

2

∫ t

t−τ(t)

∫

Ω
eσ(s−t)u2

t (x, s)dxds

+ Cf , ∀t ≥ 0, (4.11)
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where Cf = cf |Ω|. For this purpose, using (4.9) and (1.1), we have

φ′(t) =
∫

Ω
u2

t (t)dx +
∫

Ω
u(t)utt(t)dx +

∫

Γ1

δ2
t (t)dΓ

+
∫

Γ1

δ(t)δtt(t)dΓ +
∫

Γ1

ut(t)δ(t)dΓ +
∫

Γ1

u(t)δt(t)dΓ

=
∫

Ω
u2

t (t)dx +
∫

Ω

{
∆u(t)− µ1ut(t)− µ2ut(t− τ(t))− f(u(t))

+ h(x)
}

u(t)dx +
∫

Γ1

δ2
t (t)dΓ +

∫

Γ1

{
−kδt(t)− δ(t)− ut(t)

}
δ(t)dΓ

+
∫

Γ1

ut(t)δ(t)dΓ +
∫

Γ1

u(t)δt(t)dΓ

=
∫

Ω
u2

t (t)dx +
∫

Γ1

∂u(t)
∂ν

u(t)dΓ−
∫

Ω
|∇u(t)|2dx

− µ1

∫

Ω
ut(t)u(t)dx− µ2

∫

Ω
ut(t− τ(t))u(t)dx

−
∫

Ω
f(u(t))u(t)dx +

∫

Ω
h(x)u(t)dx +

∫

Γ1

δ2
t (t)dΓ

− k

∫

Γ1

δt(t)δ(t)dΓ−
∫

Γ1

δ2(t)dΓ +
∫

Γ1

u(t)δt(t)dΓ, ∀t ≥ 0.

Inserting E(t) in (4.1) and using (2.6), it becomes

φ′(t) ≤ −E(t)− 1− βc∗
2

‖∇u(t)‖2 +
3
2
‖ut(t)‖2 − 1

2
‖δ(t)‖2

L2(Γ1)

+
3
2
‖δt(t)‖2

L2(Γ1) +
ξ

2

∫ t

t−τ(t)

∫

Ω
eσ(s−t)ut(x, s)dxds

− µ1

∫

Ω
ut(t)u(t)dx− µ2

∫

Ω
ut(t− τ(t))u(t)dx

− k

∫

Γ1

δt(t)δ(t)dΓ + 2
∫

Γ1

u(t)δt(t)dΓ + Cf , ∀t ≥ 0. (4.12)

Using Young’s inequalities, we obtain

−µ1

∫

Ω
u(t)ut(t)dx ≤ 1

16

∫

Ω
|∇u(t)|2dx + 4µ2

1c∗
∫

Ω
|ut(t)|2dx, (4.13)

−µ2

∫

Ω
ut(t− τ(t))u(t)dx ≤ 1

16

∫

Ω
|∇u(t)|2dx + 4|µ2|2c∗

∫

Ω
u2

t (t− τ(t))dx,

(4.14)

−k

∫

Γ1

δ(t)δt(t)dΓ ≤ 1
2
‖δ(t)‖2

L2(Γ1) +
k2

2
‖δt(t)‖2

L2(Γ1) (4.15)
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and

2
∫

Γ1

u(t)δt(t)dΓ ≤ 1
16

∫

Ω
|∇u(t)|2dx + 16c∗‖δt(t)‖2

L2(Γ1). (4.16)

Combining with (4.12)-(4.16), we get

φ′(t) ≤ −E(t)− 5− 8βc∗
16

‖∇u(t)‖2 +
(

3
2

+ 4µ2
1c∗

)
‖ut(t)‖2

+
(

16c∗ +
3
2

+
k2

2

)
‖δt(t)‖2

L2(Γ1) + 4|µ2|2c∗
∫

Ω
u2

t (t− τ(t))dx

+
ξ

2

∫ t

t−τ(t)

∫

Ω
eσ(s−t)u2

t (x, s)dxds + Cf , ∀t ≥ 0.

The proof is complete.

Furthermore, from (4.2), (4.8) and (4.11), we derive

E′
ε(t) ≤ −εE(t)−

{
µ1 − |µ2|

2
√

1− d
− ξ

2
− ε

(
3
2

+ 4µ2
1c∗

)}
‖ut(t)‖2

− (5− 8βc∗)ε
16

‖∇u(t)‖2

−
(

ξ(1− d)
2eστ1

− |µ2|
√

1− d

2
− 4ε|µ2|2c∗

) ∫

Ω
u2

t (t− τ(t))dx

− ξ

2
(σ − ε)

∫ t

t−τ(t)

∫

Ω
e−σ(t−s)u2

t (x, s)dxds

−
{

k − ε

(
16c∗ +

3
2

+
k2

2

)}
‖δt(t)‖2

L2(Γ1) + εCf , ∀t ≥ 0. (4.17)

Here, using (4.6), (4.7) and choosing ε > 0 sufficiently small such that

µ1 − |µ2|
2
√

1− d
− ξ

2
− ε

(
3
2

+ 4µ2
1c∗

)
> 0,

ξ(1− d)
2eστ1

− |µ2|
√

1− d

2
− 4ε|µ2|2c∗ > 0,

σ − ε > 0,

k − ε

(
16c∗ +

3
2

+
k2

2

)
> 0.

Since β < 5
8c∗ , (4.17) becomes

E
′
ε(t) ≤ −εE(t) + εCf .

Using (4.10), we have

E
′
ε(t) ≤ −2ε

3
Eε(t) + ε

(
K

3
+ Cf

)
, ∀t ≥ 0,
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where K = cf |Ω|+ ‖h‖2
c∗ρ , ρ > 0 and by using Gronwall’s inequality,

Eε(t) ≤ Eε(0)e−
2ε
3

t +
3
2

(
Cf +

K

3

)
.

Using again (4.10) and taking δ1 = 2ε
3 , we obtain

E(t) ≤ (3E(0) + K)e−δ1t + 3Cf + 2K, ∀t ≥ 0.

In view of (2.11), we conclude that

‖(u(t), ut(t), δ(t), δt(t)‖2
H ≤

1
β0

{
(3E(0) + K)e−δ1t + δ2

}
,

where δ2 = 3(Cf + K). This shows that any closed ball B = B(0, r) with r =√
δ2
β0

is a bounded absorbing set of (H, S(t)). The existence of a bounded ab-
sorbing set implies that for initial data lying in bounded sets B ⊂ H, the solu-
tions of problem (1.1) are globally bounded. More precisely, let (u(t), ut(t), δ(t), δt(t))
be a solution of (1.1) with initial data (u0, u1, δ0, δ1) in a bounded set B. Then
one has

‖(u(t), ut(t), δ(t), δt(t))‖H ≤ CB, ∀t ≥ 0,

where CB > 0 is a constant depending on B.

Lemma 4.2. Under the hypotheses of Theorem 3.3, given a bounded set
B ⊂ H, let z1(t) = (u1(t), u1

t (t), δ
1(t), δ1

t (t)), z2(t) = (u2(t), u2
t (t), δ

2(t), δ2
t (t))

be two weak solutions of problem (1.1) such that z1(0) = (u1
0, u

1
1, δ

1
0, δ

1
1) and

z2(0) = (u2
0, u

2
1, δ

2
0, δ

2
1) are in B. Then we have

‖z1(t)− z2(t)‖2
H ≤ CBe−γt + CB

∫ t

0
e−γ(t−s)‖w(s)‖2

2(p+1)ds, (4.18)

where w = u1 − u2, γ > 0 is a small positive constant and CB is a constant
depending on a bounded set B.

Proof. The proof is also divided into three parts.
First, we denote w(t) = u1(t) − u2(t) and ζ(t) = δ1(t) − δ2(t). Then

(w(t), ζ(t)) is a solution of

wtt(t)−∆w(t) + µ1wt(t) + µ2wt(t− τ(t)) = f(u1(t))− f(u2(t)), x ∈ Ω, t ≥ 0,
(4.19)

ζtt(t) + kζt(t) + ζ(t) = −wt(t), x ∈ Γ1, t ≥ 0, (4.20)

∂w(t)
∂ν

= ζt(t), x ∈ Γ1, t ≥ 0, (4.21)

with initial conditions

w(0) = u1
0 − u2

0, w1(0) = u1
1 − u2

1, x ∈ Ω, (4.22)

ζ(0) = δ1
0 − δ2

0, ζ1(0) = δ1
1 − δ2

1 , x ∈ Γ1. (4.23)
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We define energy functional of problem (4.19)-(4.23) by

G(t) =
1
2
‖wt(t)‖2 +

1
2
‖∇w(t)‖2 +

1
2
‖ζt(t)‖2

L2(Γ1) +
1
2
‖ζ(t)‖2

L2(Γ1)

+
ξ

2

∫ t

t−τ(t)

∫

Ω
eσ(s−t)w2

t (x, s)dxds. (4.24)

Then, differentiating G(t) and using (4.19)-(4.21), we obtain

G′(t) = −µ1‖wt(t)‖2 − µ2

∫

Ω
wt(t− τ(t))wt(t)dx

+
∫

Ω

(
f(u1(t))− f(u2(t))

)
wt(t)dx− k‖ζt(t)‖2

L2(Γ1) +
ξ

2
‖wt(t)‖2

− ξ

2
e−στ(t)

∫

Ω
w2

t (t− τ(t))(1− τ ′(t))dx− σξ

2

∫ t

t−τ(t)

∫

Ω
e−σ(t−s)w2

t (x, s)dxds

≤
( |µ2|

2
√

1− d
− µ1 +

ξ

2

)
‖wt(t)‖2 +

{ |µ2|
√

1− d

2
− ξ(1− d)

2eστ1

}
‖wt(t− τ(t))‖2

− k‖ζt(t)‖2
L2(Γ1) −

σξ

2

∫ t

t−τ(t)

∫

Ω
e−σ(t−s)w2

t (x, s)dxds

+
∫

Ω

(
f(u1(t))− f(u2(t))

)
wt(t)dx. (4.25)

Next, we define the perturbed energy

Gε(t) = G(t) + εψ(t), (4.26)

where ε > 0 will be fixed and

ψ(t) =
∫

Ω
w(t)wt(t)dx +

∫

Γ1

ζ(t)ζt(t)dΓ +
∫

Γ1

w(t)ζ(t)dΓ. (4.27)

Note that |ψ(t)| ≤ 2(1 + c∗)G(t). It follows that

1
2
G(t) ≤ Gε(t) ≤ 3

2
G(t), ∀ε ≥ 0, ε ≤ ε0 =

1
4(1 + c∗)

. (4.28)
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In what follows, we show the estimate of ψ′(t). By differentiating the function
ψ(t) in (4.27) and using (4.19)-(4.20), we have

ψ′(t) =
∫

Ω
|wt(t)|2dx +

∫

Ω
w(t)wtt(t)dx +

∫

Γ1

|ζt(t)|2dΓ +
∫

Γ1

ζ(t)ζtt(t)dΓ

+
∫

Γ1

wt(t)ζ(t)dΓ +
∫

Γ1

w(t)ζt(t)dΓ

=
∫

Ω
|wt(t)|2dx +

∫

Ω
w(t)

{
∆w(t)− µ1wt(t)− µ2wt(t− τ(t))

+ f(u1(t))− f(u2(t))
}

dx +
∫

Γ1

|ζt(t)|2dΓ−
∫

Γ1

ζ(t)
{

kζt(t)

+ ζ(t) + wt(t)
}

dΓ +
∫

Γ1

wt(t)ζ(t)dΓ +
∫

Γ1

w(t)ζt(t)dΓ

=
∫

Ω
|wt(t)|2dx−

∫

Ω
|∇w(t)|2dx

− µ1

∫

Ω
wt(t)w(t)dx− µ2

∫

Ω
wt(t− τ(t))w(t)dx

+
∫

Ω

(
f(u1(t))− f(u2(t))

)
w(t)dx− k

∫

Γ1

ζ(t)ζt(t)dΓ

−
∫

Γ1

|ζ(t)|2dΓ +
∫

Γ1

|ζt(t)|2dΓ + 2
∫

Γ1

w(t)ζt(t)dΓ. (4.29)

Using (4.24) and (4.29), we get

ψ′(t) = −G(t) +
3
2

∫

Ω
|wt(t)|2dx− 1

2
‖∇w(t)‖2 − µ1

∫

Ω
wt(t)w(t)dx

− µ2

∫

Ω
wt(t− τ(t))w(t)dx +

∫

Ω

(
f(u1(t))− f(u2(t))

)
w(t)dx

− k

∫

Γ1

ζ(t)ζt(t)dΓ− 1
2

∫

Γ1

|ζ(t)|2dΓ +
3
2

∫

Γ1

|ζt(t)|2dΓ

+ 2
∫

Γ1

w(t)ζt(t)dΓ +
ξ

2

∫ t

t−τ(t)

∫

Ω
eσ(s−t)w2

t (x, s)dxds. (4.30)

From Hölder’s and Young’s inequality, we deduce∣∣∣∣−µ1

∫

Ω
wt(t)w(t)dx

∣∣∣∣ ≤
1
8
‖∇w(t)‖2 + 2µ2

1c∗‖wt(t)‖2, (4.31)

∣∣∣∣−µ2

∫

Ω
wt(t− τ(t))w(t)dx

∣∣∣∣ ≤
1
8
‖∇w(t)‖2 + 2|µ2|2c∗

∫

Ω
w2

t (t− τ(t))dx,

(4.32)
∣∣∣∣
∫

Γ1

w(t)ζt(t)dΓ
∣∣∣∣ ≤

1
4
‖∇w(t)‖2dx + c̃∗

∫

Γ1

|ζt(t)|2dΓ, (4.33)
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and
∣∣∣∣−k

∫

Γ1

ζ(t)ζt(t)dΓ
∣∣∣∣ ≤

k2

4

∫

Γ1

|ζt(t)|2dΓ +
∫

Γ1

|ζ(t)|2dΓ. (4.34)

Thus, from (4.30)-(4.34), we arrive at

ψ′(t) ≤ −G(t) +
(

3
2

+ 2µ2
1c∗

)
‖wt(t)‖2 + 2|µ2|2c∗

∫

Ω
w2

t (t− τ(t))dx

+
∫

Ω

(
f(u1(t))− f(u2(t))

)
w(t)dx +

(
3
2

+ 2c̃∗ +
k2

4

)
‖ζt(t)‖2

L2(Γ1)

+
ξ

2

∫ t

t−τ(t)

∫

Ω
eσ(s−t)w2

t (x, s)dxds. (4.35)

Consequently, from (4.25), (4.26) and (4.35), we get

G′
ε(t) ≤ −εG(t)−

{
µ1 − |µ2|

2
√

1− d
− ξ

2
− ε

(
3
2

+ 2µ2
1c∗

)}
‖wt(t)‖2

−
(

ξ(1− d)
2eστ1

− |µ2|
√

1− d

2
− 2ε|µ2|2c∗

) ∫

Ω
w2

t (t− τ(t))dx

−
{

k − ε

(
3
2

+ 2c̃∗ +
k2

4

)}
‖ζt(t)‖2

L2(Γ1)

− ξ

2
(σ − ε)

∫ t

t−τ(t)

∫

Ω
e−σ(t−s)w2

t (x, s)dxds

+
∫

Ω

(
f(u1(t))− f(u2(t))

)
wt(t)dx

+ ε

∫

Ω

(
f(u1(t))− f(u2(t))

)
w(t)dx. (4.36)

Furthermore, since p
2(p+1) + 1

2(p+1) + 1
2 = 1, from the Hölder’s and Young’s

inequality, (2.4) and (2.5), there exists a constant CB (it may be different
from line to line) such that

∣∣∣∣
∫

Ω

(
f(u1(t))− f(u2(t))

)
wt(t)dx

∣∣∣∣

≤ cf

∫

Ω
(1 + |u1(t)|p + |u2(t)|p)|w(t)||wt(t)|dx

≤ cf

(
|Ω|

p
2(p+1) + ‖u1(t)‖p

2(p+1) + ‖u2(t)‖p
2(p+1)

)
‖w(t)‖2(p+1)‖wt(t)‖

≤ CB‖w(t)‖2(p+1)‖wt(t)‖
≤ ε

2
‖wt(t)‖2 + CB‖w(t)‖2

2(p+1). (4.37)
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Since L2(p+1)(Ω) ↪→ L2(Ω), similar to (4.37), we deduce∫

Ω

(
f(u1(t))− f(u2(t))

)
w(t)dx ≤ CB‖w(t)‖2

2(p+1). (4.38)

Combining with (4.36)-(4.38), we obtain

G
′
ε(t) ≤ −εG(t)−

{
µ1 − |µ2|

2
√

1− d
− ξ

2
− ε(2 + 2µ2

1c∗)
}
‖wt(t)‖2

−
(

ξ(1− d)
2eστ1

− |µ2|
√

1− d

2
− 2ε|µ2|2c∗

)∫

Ω
w2

t (t− τ(t))dx

−
{

k − ε

(
3
2

+ 2c̃∗ +
k

4

)}
‖ζt(t)‖2

L2(Γ1)

− ξ

2
(σ − ε)

∫ t

t−τ(t)

∫

Ω
e−σ(t−s)w2

t (x, s)dxds + CB‖w(t)‖2
2(p+1).

At this point, using (4.6), (4.7) and choosing ε sufficiently small such that

µ1 − |µ2|
2
√

1− d
− ξ

2
− ε(2 + 2µ2

1c∗) > 0,

ξ(1− d)
2eστ1

− |µ2|
√

1− d

2
− 2ε|µ2|2c∗ > 0,

k − ε

(
3
2

+ 2c̃∗ +
k

4

)
> 0,

and

σ − ε > 0,

then we have

G′
ε(t) ≤ −εG(t) + CB‖w(t)‖2

2(p+1), ∀t ≥ 0, ∀ε > 0. (4.39)

Using (4.28) and (4.39), we have

G′
ε(t) ≤ −2ε

3
Gε(t) + CB‖w(t)‖2

2(p+1), ∀t ≥ 0, ∀ε > 0.

By using of Gronwall’s inequality, we deduce

Gε(t) ≤ Gε(0)e−
2ε
3

t + CB

∫ t

0
e−

2ε
3

(t−s)‖w(s)‖2
2(p+1)ds.

Then, taking γ = 2ε
3 and using again (4.28) to replace Gε(t) by G(t), we get

G(t) ≤ 3G(0)e−γt + 2CB

∫ t

0
e−γ(t−s)‖w(s)‖2

2(p+1)ds.

By the definition (4.24), we obtain (4.18).

Lemma 4.3. Under the hypotheses of Theorem 3.3, the dynamical system
(H, S(t)) corresponding to problem (1.1) is asymptotically smooth.
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Proof. We apply Theorem 3.2. Let B be a bounded positively invariant
subset of H with respect to S(t). For initial data z1

0 , z2
0 in set B, we write

S(t)zi
0 = (ui(t), ui

t(t), δ
i(t), δi

t(t)), i = 1, 2.

Given ε > 0, we choose T sufficiently large such that CBe−γT < ε, where CB

is given in Lemma 4.2. We claim that there exists a constant CBT > 0 such
that

‖S(T )z1
0 − S(T )z2

0‖H ≤ ε + φT (z1
0 , z

2
0), ∀z1

0 , z
2
0 ∈ B, (4.40)

where

φT (z1
0 , z

2
0) ≤ CBT

(∫ T

0
‖u1(s)− u2(s)‖ϑds

) 1
4

(4.41)

for some constant ϑ > 0.
Indeed, applying Gagliardo-Nirenberg inequality we get

‖u1(t)− u2(t)‖2(p+1) ≤ Cθ‖∇u1(t)−∇u2(t)‖θ‖u1(t)− u2(t)‖1−θ

with θ = n
2 (1− 1

p+1). Then we cam rewrite (4.18) as

‖z1(t)− z2(t)‖2
H ≤ CBe−γt + CB

(∫ T

0
(‖∇u1(s)‖+ ‖∇u2(s)‖)4θds

) 1
2

×
(∫ T

0
‖u1(s)− u2(s)‖4(1−θ)ds

) 1
2

for t < T . Since u1, u2 ∈ L∞loc(0,∞), we get that there exists CBT > 0 such
that

‖z1(T )− z2(T )‖H ≤ CBe−
γ
2
T + CBT

(∫ T

0
‖u1(t)− u2(t)‖4(1−θ)ds

) 1
4

,

which implies that (4.40) and (4.41) hold.
It remains to show that φT satisfies (3.1).
Indeed, given a sequence of initial data (zn

0 ) in B, we denote S(t)(zn
0 ) =

(un(t), un
t (t), δn(t), δn

t (t)) ∈ H1(Ω)×L2(Ω)×L2(Γ1)×L2(Γ1), T > 0, then from
the compact embedding of H1

0 (Ω) ↪→ L2(Ω), the Aubin’s lemma implies that
there exists a subsequence (unk) that converges strongly in C([0, T ], L2(Ω)).
Therefore we see that

lim
k→∞

lim
l→∞

∫ T

0
‖unk(s)− unl(s)‖ϑds = 0,

which shows (3.1) holds. The asymptotically smoothness property of (H, S(t))
follows Theorem 3.2.

Proof of Theorem 3.3.

Lemma 4.3 imply that (H, S(t)) is an asymptotically smooth dissipative dy-
namical system. Then the existence of a compact global attractor to problem
(1.1) follows from Theorem 3.1.
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