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Abstract: Improving and reusing construction waste soils is now more relevant in

light of the need to decrease CO2 emissions. In this paper, four  contents of polymer

SH (i.e., 0.0%, 3.0%, 3.5%, and 4.0%) were used to strengthen the granite residual

soils, which is a kind of construction waste soils. Based on low-velocity impacts and

employing  scanning  electron  microscope  (SEM)  tests,  this  paper  investigated the

impact  resistance  of  reinforced granite  residual  soils combined with  polymer  SH.

Recycling waste  granite  residual  soils can reduce the emissions of CO2 generated

during the transportation and disposal. The low-velocity impact tests were performed

on specimens at three initial kinetic energy levels (i.e., 124.18J, 243.40J, and 402.36J)

achieved by varying the drop height of the weights. The experimental results showed

that the impact resistances of granite residual soils were enhanced significantly with a

mixture of polymer SH, for which the increment reached the maximum with a 3.5%

content of  polymer  SH. In  addition,  the  microstructures of  granite  residual  soils

combined with four contents of polymer SH (i.e., 0.0%, 3.0%, 3.5%, and 4.0%) were

1

1

1

2

3

4

5
6
7
8
9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

2

3



investigated  using  a  Scanning  Electron  Microscope  (SEM). The  SEM  images

demonstrated that the interfaces  of the  granite  residual soils particles became less

distinct due to cementation with the increasing of the polymer SH content. With the

optimal  polymer  SH  content  of  3.5%,  the  pore  of  granite  residual  soil  was the

smallest, resulting in a best enhancement of  the impact resistance of  the  reinforced

granite residual soil. 

Keywords:  granite residual soil;  polymer SH;  low-velocity impacts;  SEM; impact

resistance; initial kinetic energy

1. Introduction

With  the  acceleration  of  urbanization,  dealing  with  construction  waste  has

become  a  worrying  problem.  The  construction  waste  soils have poor  mechanical

properties,  which  are  not suitable  for  engineering  construction.  Therefore,

transportation and disposal  has become the preferred treatment  method of  dealing

with such waste(Magnusson, Lundberg, Svedberg, & Knutsson, 2015). Construction

waste soils are usually carried by heavy trucks and buried in a remote place. However,

this solution could increase the building costs ($10-35/m3) and might lead to negative

influences  on  local  and  global environments. In  the  process  of  transportation,

construction  waste  soils could  generate a  large  amount  of  dust  and lead  to  more

serious smog pollution(Dong, Zhang, Long, Zhang, & Sun, 2019).  Moreover, large

and  heavy  vehicles  carrying the  construction  waste  soils  could  produce  CO2 and

increase  the greenhouse effect(Dong, Yu, & Pan, 2019). The CO2 emissions  would
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also significantly  increase the concentration of  PM2.5 in the air;(Prah & Yun, 2018;

Zheng, Ying, Wang, & Chen, 2018). Therefore, recycling waste soils can effectively

decrease building costs and also reduce the air pollution. Improving the mechanical

properties of construction waste soils could provide a new prospect for that recycling. 

Whether  soils can  be  used  in  engineering  or  not  depends  on  its  mechanical

properties(Dai & Ng, 2014; C. Li,  Zou, & Si-ga,  2019). The complex mechanical

properties of soil depend on many factors, including particle size, permeability, soil

types and water content(Chen, Xu, et al., 2019; Lu, Jing, Wang, & Xie, 2017; Wu, El

Naggar, Abdlrahem, Mei, & Wang, 2017). Earlier studies  demonstrated that granite

residual  soils couldn’t be  used  in  engineering  because  of  high  porosity and

hydrophilicity, which were easy to disintegrate when subjected to water(W. Liu, Song,

Huang,  &  Hu,  2019;  W.  P.  Liu,  Song,  Luo,  &  Hu,  2020). Some  scholars  have

conducted  researches on  the  reinforcement  mechanism of  construction  waste  soil,

which  indicate  that  the  addition  of  fiber  and  other  substances  is  conducive  to

improving the strength of the soils(Nik Daud, Muhammed, & Kundiri, 2017; Y. X.

Wang  et  al.,  2018;  Y.  X.  Wang  et  al.,  2019;  Y.  X.  Wang  et  al.,  2017).  Various

enhancement methods have been developed to improve the mechanical properties of

construction  waste soils(Bilondi,  Toufigh,  &  Toufigh,  2018;  Sharaky,  Mohamed,

Elmashad, & Shredah, 2018; F. C. Wang, Ping, Zhou, & Kang, 2019). At present, it is

relatively common to add glass fiber to construction waste soils to prevent cracks

propagation(Saha & Bhowmik, 2018; Yeung et al., 2007). The reinforcement effect of
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adding glass  fiber  is  still  not  obvious  because  the  brittle  particles  of  construction

waste soil weaken the connection between the soil and glass fiber. Different from

glass fiber, the application of polymer SH can improve the mechanical properties of

construction waste soil by cementing soil particles together. Existing research shows

that the physicochemical interaction occurred between polymer SH and soil particles,

by hydrogen bond, ion exchange, absorption of macromolecular,  and flocculation(Y.

M. Wang, Yang, Chen, & Han, 2005). The collapse resistance of soils after curing of

polymer material SH was improved significantly(Wenwu, Qiyong, Hongwei, & Fei,

2017). As a new type of reinforcing material,  the  reinforcing effect of  SH are still

not well known,  so this  study selects  the  polymer  SH  developed  by  Lanzhou

University as the curing agent. 

The  mechanical  properties  of  soils also  depend  on  different  environmental

conditions, different loading paths and different distribution forms(Chen, Liu, Ng, &

Chen,  2019;  Yang  &  Yuan,  2019).  Existing  studies  demonstrate that when  fluid

infiltration, the  soil  looks  mechanically  stable  concerning  the  shear  strength

parameters,  for  this  is  a  soil  with  a  mechanical  behavior  purely  frictional(Pais,

Gomes, & Falorca, 2012). However, the unsaturated shear strength of granite residual

soil varies  significantly  with  suction  changes(P.  Lin,  Chen,  &  Wang,  2011). In

particular, study of the dynamic properties of granite residual soils is  still  limited.

Therefore,  low-velocity  impact was used  to  determine  the  impact  resistance  of

reinforced granite residual soils in this paper.
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Scholars  employed different  experimental methods to  analyze the mechanical

properties of soils(Gowthaman, Nakashima, & Kawasaki, 2018; Lu, Jing, Zhou, &

Xie, 2017; Meng, Cui, & Li, 2020; Wu, Jiang, Huang, Mei, & Leo, 2017; Yuan et al.,

2020).  New techniques  such  as  Particle  Image  Velocimetry (PIV) and  Scanning

Electron  Microscope  (SEM) were used to study the microstructure of soils(Sun &

Tang, 2019; Yuan, Sun, et al., 2019; Yuan, Xiong, et al., 2019; Yuan, Xu, Wang, Chen,

& Luo, 2017) .The main types of contact among the particles of granite residual soil

include face-face, face-angle,  face-edge,  edge-edge,  edge-angle  and  angle-angle

contacts for particle size less than 0.2 mm. For the particle larger than 0.2 mm, new

kind of  contacts  such as  sphere-sphere,  sphere-face,  sphere-edge and sphere-angle

would  occur. Polymer  SH  would change  the  main  types  of  contact  among  the

particles. Observations of micro-structures by SEM allows us to better understand the

reinforcing effect of SH used in the soil reinforcement(Bahmani, Farzadnia, Asadi, &

Huat,  2016;  Monatshebe,  Mulaba-Bafubiandi,  &  Nyembwe,  2019). Li  et  al.

interpreted the microstructural evolution of loess soils due to loading and wetting by

the micrographs and variations in distributions of the pore morphology properties(P.

Li, Xie, Pak, & Vanapalli, 2019). Lin et al. also found that microstructure plays an

important  role  in  controlling  the  deformational  response  to  external  stresses,

resistance to shearing forces and electrochemical interactions between the particles

and adjacent liquid or gas phase(B. T. Lin & Cerato, 2014).  

This paper presents an experimental study of the dynamic mechanical properties
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of  a  granite  residual  soil  and  explores  the  solidification  properties  and  possible

applications of the polymer material SH. Specifically, the influence of the content of

the polymer SH on the properties of reinforced granite residual soil are studied using a

low-velocity  impacts test. SEM  was  also  used  to  observe micro-structure and

investigate the reinforcing effect of polymer SH as well as the effect of polymer SH

on the micro-structure of granite residual soils.

2. Materials, apparatus and test procedures

2.1. Constituent Materials

The granite residual soils used in this study were yellowish brown or reddish

brown and sampled from Guangdong Province (Fig. 1A). For this soils, the water

content  is  27%, wet  density  is  1.92 g/mm3, oedometer  modulus  is  3MPa,  friction

angle is 20°and void ratio is  0.833.  There were two reinforcement materials  were

used, one of which was  Alkali  resistant glass fiber  (AR- glass fiber) produced by

Taishan Fiberglss INC (Fig. 1B). Through the unconfined compression test results, the

optimal dosage of glass fiber is 3% of the dry soil mass. The specification parameters

of the AR- glass fiber are shown in Table 1.

Another  reinforcement  material  was  the  new polymer  SH.  It  is a  non-toxic,

nonpolluting,  short  gel  and  low  viscosity  curing  material  developed  by  Lanzhou

University, P.R.C. (Fig. 1C). The concentration of polymer SH is 5%, and the polymer

SH density is 1.27-1.31g/cm3. Its main chain  is a macromolecular chain linked by

hydrophobic  C-C  bonds  with  hydrophilic  groups  (-OH)  and  carboxyl  groups  (-
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COOH) on the chain. Three contents  of polymer SH (i.e.,  3.0%, 3.5%, and 4.0%)

were  added in the  test  specimens. 3.0%, 3.5%, and 4.0% are the possible optimal

content obtained from unconfined compression test.

Table 1 Specification parameters of glass fiber 

Model Length
Fiber

diameter
Density

Elastic

Modulus

Tensile

Strength

Cem-FIL62 chopped

glass fiber
12-18mm 14µm 2.68g/cm3 72GPa 1700MPa

Fig. 1 Material diagram: A) granite residual soil, B) AR- glass fiber, C) polymer SH 

2.2. Preparation of Specimens

After crushing  and  sieving,  the  particle  size  of  granite  residual  soil  less

than1.18mm was selected for specimen preparation. Granite residual soils, purified

water, polymer SH, AR-glass fiber are mixed in proportion and stirred well. The mass

of dry soils md and water mw required for specimen preparation corresponding to the

required  water  content  could  be  obtained  from Equation  1  and  Equation  2.  The

material contents for each sample  are shown in Table 2.  The prepared soil samples

were poured into the mold and fixed in the compactor on the bottom plate. The soils

were compacted by using a digital display automatic compactor.
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where md is the mass of dry soils; m0 is the mass of the natural soils and w0 is the

natural water content.

where mw is the  water  mass required  for  a  specimen  preparation; w’ is the

required water content of the specimen.

The  low-velocity  impact  specimens  were  prepared according  to  the  Chinese

Standard GB/T 50123-2019 (Cai, Wang, et al., 2019), in which the specimens should

be dried in the natural environment for 14 days.  The geometrical dimensions of low-

velocity impact specimens were 93 mm in diameter and 125 mm in height.

Table 2 Material Content of Sample

Test Specimen

Number
Polymer SH Water Dry Soil Fiberglass 

LIT0025 0g 294g 2100g 0g

GF0045 0g 294g 2100g 63g

LIT3025

176.4g 117.6g 2100g 63gLIT3035

LIT3045

LIT3525

205.8g 88.2g 2100g 63gLIT3535

LIT3545

LIT4025

235.2g 58.8g 2100g 63gLIT4035

LIT4045

2.3. Test procedures

2.3.1.Low-Velocity Impact tests
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The low-velocity impact tests("Standard Test Method for Determination of the

Impact Value (IV) of a Soil,") on the granite residual soil specimens were performed

on an Instron Ceast 9350 drop-weight machine(Fig.2), in which a load cell and LVPT

was used to measure the impact force and deformation response history respectively.

The total mass of the drop weight was 39.739kg, and the initial kinetic energy was

changed by different dropping height to achieve different initial impact velocities. In

this study, three different initial impact velocities (i.e., 2.5m/s, 3.5m/s, and 4.5m/s)

were  pre-established,  corresponding to  three  different  initial  kinetic  energies  (i.e.,

124.18J, 243.40J, and 402.36J) respectively.  The content ratio of polymer SH and

loading conditions for the low velocity impact tests are shown in Table 3. It is noted

that the  abbreviation "LIT" in specimen number  indicates the low-velocity  impact

test, and the abbreviation "GF" in specimen number indicates the soil only with glass

fiber in low-velocity impact test. The first two digits represent the content of polymer

SH, and the second two digits represent the loading rate.

The initial kinetic energy was determined by the weight of the drop hammer and

the drop height.  Therefore, the initial kinetic energy was changed by changing the

drop  height  of  the  hammer  head to  achieve  different  initial  impact  velocities.

According to  kinetic energy theorem, the initial kinetic energy Ek was calculated by

Equation 3.
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where Ek is the initial kinetic energy, m is the total mass of the drop weight, v is

initial falling velocity.

Fig. 2 Instron Ceast 9350 drop-weight machine

Table 3 Test Cases of Low Velocity Impact 

Test Specimen number
Content of Polymer

SH
Loading Rate Initial kinetic energy

LIT0025 0.0% 2.5m/s 124.18J

LIT3025 3.0% 2.5m/s 124.18J

LIT3035 3.0% 3.5m/s 243.40J

LIT3045 3.0% 4.5m/s 402.36J

LIT3525 3.5% 2.5m/s 124.18J

LIT3535 3.5% 3.5m/s 243.40J

LIT3545 3.5% 4.5m/s 402.36J

LIT4025 4.0% 2.5m/s 124.18J

LIT4035 4.0% 3.5m/s 243.40J

LIT4045 4.0% 4.5m/s 402.36J

GF0045 0.0% 4.5m/s 402.36J

2.3.2.SEM Test
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To  capture the  micro-structure  of  the  reinforced  granite  residual  soils  and

investigate the interaction  reinforcing effect of the polymer SH and sand particles,

SEM tests were conducted on reinforced granite residual soils with four contents of

Polymer SH (i.e., 0.0%, 3.0%, 3.5%, and 4.0%). All test cases of SEM tests are shown

in Table 4. The digits in the serial number indicates the content of the polymer SH.

Table 4 Test Cases of SEM Test

Test Specimen Number Polymer SH Solution Content

SEM00 0.0%

SEM30 3.0%

SEM35 3.5%

SEM40 4.0%

3. Experimental Results

3.1. Experimental Results of Low-Velocity Impact Test

In the low-velocity impact tests, damage degree, the peak impact force and the

compression deformation of granite residual soil combined with three contents of the

polymer SH were investigated. Table 5 shows that the compressive deformation of

LIT0025,  LIT3025,  LIT3525,  and  LIT4025  were  40.92,  5.80,  5.39,  and  6.81mm,

respectively. The compressive deformation of LIT3035, LIT3535, and LIT4035 were

8.99,  8.49,  and  9.07mm,  respectively.  The  compressive  deformation  of  LIT3045,

LIT3545, and LIT4045 were 12.14, 11.05, and 10.10mm, respectively. Fig. 3 shows

that  the damage degree of specimens under different initial kinetic energies.  In  Fig.

3A, the granite residual soil without polymer SH under the initial kinetic energy of
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124.18J was completely broken. According to Figs. 3B and 4B, the reinforced granite

residual soil with 3.5% contents of polymer SH under the initial kinetic energy of

124.18J only deforms vertically without obvious local damage. Figs. 3C and 4C show

that  under  the initial kinetic energy of 243.40J, the compressive deformation of  the

reinforced granite residual soil combined with 3.5% contents of polymer SH is larger

comparing with the that under the initial kinetic energy of 124.17J. In this case, the

middle  part  of  the  specimen had a  slight  fracture  while  a  slight  radial  expansion

occurred at the bottom. When the initial kinetic energy increased to 402.36J, Figs. 3D

and 4D show that the reinforced granite residual soil combined with 3.5% contents of

polymer SH produced largest compressive deformation  compared with  the LIT3525

and the LIT3535. Compared with Figs. 3C and 4C, more significant  fracture and

radial  expansion occurred in the middle part  and bottom, respectively.  It could be

observed from  Figs. 3B, 3C, 3D and 4  that all  specimens could maintain  suitable

integrity although with different degrees of damage and fracture deformation. 
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Fig. 3 Picture of test specimens under different initial kinetic energy; A) LIT0025,B) LIT3525,C)

LIT3535,D) LIT3545

Table 5 shows that the peck impact force of the LIT0025, LIT3025, LIT3525,

and LIT4025 were 9.87, 31.21, 37.36, 32.53kN and the final compressive deformation

of the LIT0025, LIT3025, LIT3525, and LIT4025 were 40.92, 5.8, 5.39, 6.81mm,

respectively. The peak impact force of the LIT3045, LIT3545, LIT4045, and GF0045

were 51.95, 60.02, 56.36, and 32.16kN and the final compressive deformation of the

LIT3045, LIT3545, LIT4045, and GF0045 were 12.14, 11.05, 10.01, and 19.17mm,

respectively. The  peak impact force of LIT0025 was much smaller than that of the

modified granite residual soil and the final compressive deformation of LIT0025 was

much larger than that of the reinforced granite residual soils. The peak impact force of
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GF0045 was about  half  of that  of LIT3045, LIT3545,  and LIT4045 and the final

compressive  deformation  of  GF0045  was  roughly  double  of  that  of  LIT3045,

LIT3545, and LIT4045. Overall, the results demonstrated that the impact resistance of

granite  residual  soil  modified by  glass  fiber  and  polymer  SH  was  significantly

improved from its unmodified condition or only with glass fiber.

Table 5 Experimental results of different proportions of polymer SH under different initial kinetic

energies

Test Specimen Number
Peak Impact

Force(kN)

Final Compression

Deformation(mm)

Time(

ms)

LIT0025 9.87 40.92 22.97

LIT3025 31.21 5.80 7.22

LIT3035 42.91 8.99 7.16

LIT3045 51.95 12.14 7.60

LIT3525 37.36 5.39 6.31

LIT3535 42.51 8.49 7.19

LIT3545 60.02 11.05 6.55

LIT4025 32.53 6.81 7.39

LIT4035 43.08 9.07 7.09

LIT4045 56.36 10.10 7.11

GF0045 32.16 19.17 11.30

(A)3.0% concentration (B)3.5% concentration
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(C)4.0% concentration

Fig. 4 Relationship between compressive deformation and impact force of the same concentration

under different initial kinetic energies 

Fig.  4  showed the relationship  between compressive  deformation  and impact

force at different velocity, in which two phenomena were presented. On the one hand,

with the increase of initial kinetic energy, compressive deformation and impact force

of  the specimens with  the  same  concentration  increased. On  the  other  hand, the

maximum  point  of  the  curve  moved  to  the  right,  which  meant  compressive

deformation  corresponding with  maximum impact  force  increased. Particularly, in

Fig. 4(A) and 4(B), the horizontal distance between the maximum points of the three

curves is about 3mm, and it is about 2mm in Fig. 4(C). In other words, Comparing

with 3.0% and 3.5% concentration, as the initial kinetic energy of the specimen with

4.0% concentration increased, the compressive deformation increment corresponding

to the maximum load was smaller. It was speculated that the increase in the polymer

SH content reduced the pores. After the specimen was subjected to an impact load,

pore  compression  and  rearrangement  of  soil  particles  would  occur.  After  pore

compressive and rearrangement of soil particles, the pores would be further subjected

to the impact load. The reduction reduced the compressive deformation during the

pore extrusion and particle recombination stages.
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Fig. 5 Relationship between compressive deformation and impact force of 124.18J

Figs. 5-7 are  the  impact  force-compassion  deformation, compassion

deformation-time, and impact force-time curves of specimens with different polymer

SH  contents in low-velocity  impact  tests,  respectively.  In  each  impact  test,  the

compassion  deformation  increased  with  the  increase  of  the  impact  force  and

decreased with the decrease of the impact force.  Granite residual  soil  compressed

pores and rearranged particles after  impact loading.  Therefore, these impact force-

compassion deformation curves went through four phases, including rearrangement

phase, increase phase, peak phase and weakened phase.

The  peak  impact  force  of  LIT3025,  LIT3525,  and  LIT4025  were  31.21kN,

37.36kN, and 32.53kN and the compressive deformation of LIT3025, LIT3525, and

LIT4025  were  5.80mm,  5.39mm,  and  6.81mm,  respectively.  As shown in  Fig.  6,

under the condition of the initial kinetic energy of 124.18J, the content of polymer SH

in  the  reinforced  granite  residual  soils  would  affect  the  impact  resistance and

compressive deformation of the specimens. Under the same compressive deformation,

the  peak  impact  force  of  the  LIT3525  was  bigger  than  that  of  the  LIT3025  and
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LIT4025 in  increase phase, and the final compressive deformation of the LIT3525

was the smallest, which was 5.3mm. The slope of LIT3525 curve was larger than that

of LIT3025 and LIT025 in increase phase. The slope of the curve is the ratio of force

to  deformation,  the  magnitude  of  the  slope  can  reflect  the  change  of  its  impact

resistance. The test results demonstrated that LIT3525, that is, the reinforced granite

residual soils combined with 3.5% polymer SH, had the best impact resistance under

the initial kinetic energy of 124.18J.

Fig. 6 Relationship between compressive deformation and impact force of 243.40J

Fig. 6 shows that unlike the initial kinetic energy of 124J, when the initial kinetic

energy of 243.40J, the impact resistance curves of the reinforced granite residual soil

combined with different  content of polymer SH are similar,  and the curves of the

LIT3035 and LIT4035 almost coincide because when the initial kinetic energy was

124J, the initial kinetic energy is relatively small, resulting in the uneven surface of
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the test piece will produce a difference in test results. The peak impact force of the

three contents of polymer SH is similar, but the final compression deformation of the

LIT3535 is smaller than that of the LIT3035 and LIT4035 and the slope of LIT3535

curve was slightly larger than that of LIT3035 and LIT035 in increase phase.. The test

results demonstrate that, although the impact bearing capacities of all specimens are

similar, the final compressive deformation and the curve slope in increase phase of the

LIT3535 were better than the LIT3035 and LIT4035. What this means is that, under

low initial kinetic energy of  243.40J, the impact resistance of the  reinforced granite

residual soil with a 3.5% content of polymer SH is slightly better than that of the other

two contents.

Fig. 7 Relationship between compressive deformation and impact force of 402.36J

In  Fig.  7,  under  the  initial  kinetic  energy  of  402.36J,  the  impact  force-

compressive deformation curves of the reinforced granite residual soil combined with
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different content of polymer SH have obvious differences because the initial kinetic

energy was large enough to distinguish the impact resistance of different SH. The

peak impact force and the curve slope in increase phase of LIT3545 were larger than

that of the LIT3045 and LIT4045, but the final compressive deformation was smallest

of the LIT4045. Unlike the case where initial kinetic energy was 124.18 and 243.40J,

the possible reason why the final compressive deformation was smallest was that the

pores of LIT4045 were less than those of LIT3045 and LIT3545. The large initial

kinetic energy causes the pores of LIT3045 and LIT3545 to be compressed as much

as possible during the rearrangement phase and the compressive deformation is larger

than LIT4045. The test results demonstrate that the compressive deformation of the

reinforced  granite  residual  soil  combined with  4.0%  content of  polymer  SH was

smaller than the other two  contents. However, the peak impact force and the curve

slope of the reinforced granite residual soil combined with 3.5% content of polymer

SH is the largest. Therefore, the  impact resistance of the  reinforced granite residual

soil combined with 3.5% content of polymer SH is the best under the initial kinetic

energy of 402.36J.

The analysis of different initial kinetic energies in the impact tests demonstrate

that the damage degree of the test specimen become more and more obvious with the

increase of  initial  kinetic  energy.  Compared with the  granite  residual  soil  without

polymer SH, the impact resistance of the reinforced residual soil combined with each

content of the polymer SH is remarkably improved. According to the comparison of
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the compressive capacity, impact bearing capacity of the reinforced granite residual

soil  combined with  each  content of  the  polymer  SH,  the  reinforced  residual  soil

combined with the 3.5% content of polymer SH has the best impact resistance under

each initial kinetic energy. The 3.5% content of polymer SH is a relatively  optimal

proportion for the reinforced granite residual soil.

3.2. Experimental Results of SEM Test

In  this  part  of  the  study,  Glass  fibers  were  difficult  to  observe  because  the

polymer SH made the soil wrapped on the glass fiber. Therefore, SEM was mainly

used to observe the microstructure of reinforced granite residual soil with polymer SH

and  further study the reinforcing effect of polymer SH. The SEM experiments use the

range of 7.6-7.8 mm resolution and 100, 1,000, and 7,000 magnification. The white

highlight in the picture is the soil particles with higher moisture.

Fig. 8 Microstructure diagram at 100 magnification: A)SEM00, B)SEM30, C)SEM35, D)SEM40
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Fig. 9 Microstructure diagram at 1,000 magnification: A)SEM00, B)SEM30, C)SEM35, D)SEM40

Fig. 10 Microstructure diagram at 7,000 magnification: A)SEM00, B)SEM30, C)SEM35, D)SEM40

Table 6 Pore and soil area, and its ratio

Test Specimen Number Pore Area(mm2) Soil Area(mm2) Ratio of Pore to Soil Area

SEM00 577.5904 2351.093 25%

SEM30 1209.969 6566.356 18%

SEM35 654.0535 5002.97 13%

SEM40 704.0094 7580.767 9%
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Table 6 is the data obtained by analyzing the area of soil and pores and their

ratio in the scanning electron microscope image with 1,000 times magnification by

software. It can be seen from Table 6 that with the increase of polymer SH, because

the polymer SH cements the soil together, the soil particles increase and the porosity

decreases, which verifies that the porosity decreases in the drop weight test.

As shown in Fig. 8, under the same magnification, the particle sizes of SEM30,

SEM35, and SEM40 are larger than the particle sizes of SEM00 at the magnification

of 0.1 K, some particles in the picture are bright white due to high water content. In

order to observe the particle structure, the magnification increases from 0.1 K to 1 K.

Fig.  9 shows that at the magnification of 1 K, the particles of SEM00 are relatively

separate,  and  the  Variation  of  particle  size is  large.  By  contrast,  the  particles  of

SEM30,  SEM35,  and  SEM40  are mostly  aggregated.  With the  increasing  of

magnification from 1 K to 7 K, observation of bonding between the particles could be

helpful to further study the reinforcing effect of polymer SH. In the rectangular frame

in  Fig.  10B,  at  the  magnification  of  7K,  the  boundary  between  the  aggregated

particles of SEM30 is clear, while the boundary between the aggregated particles of

SEM35 are blurred, and the boundary between the aggregated particles of SEM40 is

difficult to distinguish. As can be seen from Figs.  8-10, with  the  increasing of the

content of the polymer SH, the degree of particle aggregation  become higher cause

the particle size to become larger, fewer pores, and the strength of the particles to

decreased. In  addition,  aggregated  particle  size  affects  the  main  types  of  contact
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between particles. The main contact types of SEM00 are face-angle, edge-angle, and

angle-angle contacts because the particles of SEM00 are small and irregular in shape.

In contrast, the main contact types of SEM30 are face-face, face-edge, and edge-edge.

The secondary contact types of SEM30 are ace-edge, edge-angle because fewer small

particles are interspersed among larger particles. The main contact types of SEM35

and SEM40 are face-face, face-angle, and face-edge contacts. Different from SEM35,

the degree of aggregation of SEM40 particles is higher, resulting in the presence of

bulges on the surface of large particles. The bulges on the surface of large particles

were more fragile, leading to the decrease in strength. The SEM results verify that as

the SH concentration increases, the particle size increases and the pores decrease, so

compressive deformation of LIT4045 was the smallest in the rearrangement phase,

and final compressive deformation of LIT4045 was the smallest. However, the larger

aggregated particles of LIT4045 resulted in lower particle strength, so the curve slope

of LIT4045 decreased in the increase phase, and the peak impact force of LIT4045

was less than B. Therefore, the impact resistance of reinforced granite residual soils

combined with 4.0%  content of polymer SH is slightly  less than that of the 3.5%

content. Combined with the low-velocity impact test, the SEM results further confirm

that reinforced granite residual soil combined with 3.5% content of polymer SH has

better impact resistance.

4. Conclusion

In this paper, the impact resistance of reinforced granite residual soils combined
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with the polymer SH and glass fiber was investigated using low-velocity impact tests

and SEM tests. Moreover, the reinforcement effect of polymer SH were discussed.

In the low-velocity impact tests, according to the comparison of peak impact

force, compressive deformation, and curve slope of the reinforced residual soils with

different contents of polymer SH, the impact resistance of reinforced granite residual

soil with 3.5%  content of polymer SH was better than that of the 3.0% and 4.0%

contents. 

The SEM results further confirm that  reinforced granite residual soil combined

with 3.5% content of polymer SH has better impact resistance. With the increasing of

the  content of  the polymer SH, the degree of  particle  aggregation  become higher

cause the particle size to become larger, fewer pores, and the strength of the particles

to decreased. In addition, the main contact types between particles changed with the

degree of particle aggregation. When the  content of SH exceeded 3.5%, the impact

resistance of reinforced granite residual soils with polymer SH will be reduced.

Compared to the granite residual soils without polymer SH or only with glass

fiber, the impact resistance of reinforced granite residual soils with polymer SH was

significantly  improved.  In  the  actual  foundation  pit  engineering  and  slope

reinforcement, reutilization of granite residual soil or Reinforced granite residual soil

combined with polymer SH can improve economic benefits and  decrease building

cost. Consequently, the recycling construction waste soil can replace the concrete to

reduce the pollution to the environment. 
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