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Abstract

This paper is concerned a novel spreading dynamical model for Echinococ-

cosis with stochastic parameter perturbation. we show that there exist a

unique positive solution of the stochastic model. Sufficient conditions for

the stationary distribution which is ergodic is established by appropriate

Lyapunov functions. Furthermore, we obtain the conditions on which the

system will extinct. Finally, we illustrate our results by numerical simula-

tion.
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1 Introduction

Echinococcosis, which is often referred to as a hydatid disease, is a parasitic disease that affects both

humans and other mammals, such as sheep, dogs rodents and horses[1]. There are three different

forms of Echinococcosis found in humans, where the most common form found in humans is cystic

Echinococcosis. Thus, we focus on cystic Echinococcosis model in this paper.

China is one of the countries in the world which have the most serious Echinococcosis. A national

survey on the prevalence of Echinococcosis in 2012 showed that China’s 350 counties had Echinococ-

cosis case reports that mainly distributed in Northwestern pastoral regions. At least 50,000,000 people

in China are threatened by Echinococcosis [2].

Mathematical models can be used to how an infectious disease spreads in the real world, and

how various complexities affect the dynamics. There have been some modeling studies on different

aspects of Echinococcosis, and most of them are statistical models, for example, [3]-[5]. Recently,

dynamic models of Echinococcosis have been discussed in [6]-[8]. The work [6] proposed a deterministic

model to study the transmission dynamics of Echinococcosis in Xinjiang, China. The authors showed

that Echinococcosis was endemic in Xinjiang, China with the current control measures. In [7] two

mathematical models, the baseline model and the intervention model, were proposed to study the

transmission dynamics of Echinococcosis, the authors showed that the infection of Echinococcosis was

in an endemic state.

Of particular interest to us is a model in[8], which is given by the following dynamical model of

Echinococcosis with distributed time delays. The variables in the model are defined in Table 1, and
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the parameters are defined in Table 2.

dSD = [A1 − β1SD

∫ h1

0 f1(τ)IL(t− τ)dτ − d1SD + σID]dt,

dID = [β1SD

∫ h1

0 f1(τ)IL(t− τ)dτ − (d1 + σ)ID]dt,

dSL = [A2 − β2SL

∫ h2

0 f2(τ)ID(t− τ)dτ − d2SL]dt,

dIL = [β2SL

∫ h2

0 f2(τ)ID(t− τ)dτ − d2IL]dt,

dSH = [A3 − β3SH

∫ h3

0 f3(τ)ID(t− τ)dτ − d3SH + γIH ]dt,

dEH = [β3SH

∫ h3

0 f3(τ)ID(t− τ)dτ − (d3 + ω)EH ]dt,

dIH = [ωEH − (d3 + µ+ γ)IH ]dt.

(1.1)

Where τ be the random variable that describes the time between infection offal thrown in the environ-

ment and eaten by dogs with a probability f1(τ). h1 denotes the average survival time of larval cysts

into the infection offal thrown in the environment. the number of infected dogs at time t is given by

β1SD

∫ h1

0
f1(τ)IL(t− τ)dτ.

Analogously, the numbers of infected livestock and infected human at time t are given by β2SL

∫ h2

0 f2(τ)ID(t−

τ)dτ and β3SH

∫ h3

0 f3(τ)ID(t− τ)dτ , respectively.

The results showed that the dynamical properties of the model is completely determined by the

basic reproduction number R0(R
2
0 = β1β2A1A2

d1d22(d1+σ)
). That is, if R0 < 1, the disease-free equilibrium is

globally asymptotically, and if R0 > 1, the model is permanent and the endemic equilibrium is globally

asymptotically stable.

However, in the natural world, epidemic models are inevitably subject to the environmental noise,

which is an important component in an ecosystem, see [9]-[12]. In this paper, we will consider a type

of environmental noise, namely white noise. Then the stochastic version corresponding to system (1.1)

can be described by the following equations:

dSD = [A1 − β1SDIL − d1SD + σID]dt+ σ1SDdB1(t),

dID = [β1SDIL − (d1 + σ)ID]dt+ σ2IDdB2(t),

dSL = [A2 − β2SLID − d2SL]dt+ σ3SLdB3(t),

dIL = [β2SLID − d2IL]dt+ σ4ILdB4(t),

dSH = [A3 − β3SHID − d3SH + γIH ]dt+ σ5SHdB5(t),

dEH = [β3SHID − (d3 + ω)EH ]dt+ σ6EHdB6(t),

dIH = [ωEH − (d3 + µ+ γ)IH ]dt+ σ7IHdB7(t).

(1.2)

where Bi(t) are mutually independent Brownian motions with Bi(0) = 0, σ2
i > 0 are the intensities of

the white noise, i = 1, 2, 3, 4, 5.
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Table 1: Variables in the model(adapted from [8])

Population Definition

SD(t) susceptible dogs at time t

ID(t) infectious dogs at time t

SL(t) susceptible livestock at time t

IL(t) infectious livestock at time t

SH(t) susceptible human at time t

EH(t) exposed human at time t

IH(t) infectious human at time t

The objective of this paper is to investigate dynamics behavior of system (1.2). The remaining part

of this paper is as follows. In the next section we show the existence and uniqueness of a global positive

solution of model (1.2) by using Lyapunov function method as mentioned in [13]-[15]. We prove that

the system has ergodic property on certain conditions in Section 3. In Section 4, we present sufficient

conditions for the extinction of the disease. We illustrate Some numerical simulations in Section 5.

2 Existence and uniqueness of the positive solution

Throughout this paper, unless otherwise specified, let (Ω, f, {ft}t≥0, P ) be a complete probability space

with a filtration {ft}t≥0 satisfying the usual conditions(i.e. it is right continuous and f0 contains all

P -null sets). Denote

Rn
+ = {x ∈ Rn : xi > 0 for all 1 ≤ i ≤ n}, R̄n

+ = {x ∈ Rn : xi ≥ 0 for all 1 ≤ i ≤ n}.

We consider the general d-dimensional stochastic differential equation

dx(t) = f(x(t), t)dt+ g(x(t), t)dB(t), for t ≥ t0 (2.1)

with initial value x(t0) = x0 ∈ Rn, where B(t) denotes d-dimensional standard Brownian motions

defined on the above probability space.

Define the differential operator L associated with Eq.(2.1) by

L =
∂

∂t
+Σfi(x, t)

∂

∂xi
+

1

2
Σ[gT (x, t)g(x, t)]ij

∂2

∂xi∂xj
.

If L acts on a function V ∈ C2,1(Rn × R̄+; R̄+), then

LV (x, t) = Vt(x, t) + Vx(x, t) +
1

2
trac[gT (x, t)Vxx(x, t)g(x, t)]

3



Table 2: Parameters in the model(adapted from [8])

Parameter Definition

A1 annual recruitment rate of the dog population

d1 natural death rate of the dog population

σ recovery rate of transition from infected to non-infected dogs

A2 annual recruitment rate of the livestock population

d2 natural death rate of the livestock population

A3 annual recruitment rate of the human population

d3 natural death rate of the human population

µ disease-related death rate of the human population

1
ω incubation period of infected individuals of the human population

γ recovery rate of the human population

β1 infection rate of susceptible dogs by infectious livestock

β2 infection rate of susceptible livestock by infectious dogs

β3 infection rate of susceptible human by infectious infectious dogs

where Vt =
∂V
∂t , Vx = ( ∂V

∂x1
, · · · , ∂V

∂xd
) and Vxx = ( ∂2V

∂xi∂xj
)d×d.

In this section we first show that the solution of system (1.2) is positive and global. To get a

unique global(i.e. no explosion in a finite time) solution for any initial value, the coefficients of the

equation are required to satisfy the local lipschitz condition and the linear growth condition. However,

the coefficients of system (1.2) do not satisfy the linear growth condition, so the solution of system

(1.2) may explore in finite time. In this section, we use the Lyapunov analysis method, to show that

the solution of system (1.2) is positive and global.

Theorem 2.1 There is a unique solution (SD(t), ID(t), SL(t), IL(t), SH(t), EH(t), IH(t)) of system

(1.2) on t ≥ 0 for any initial value (SD(0), ID(0), SL(0), IL(0), SH(0), EH(0), IH(0)) ∈ R7
+, and the

solution will remain in R7
+ with probability 1, namely, (SD(t), ID(t), SL(t), IL(t), SH(t), EH(t), IH(t)) ∈

R7
+ for all t ≥ 0 almost surely.

Proof. Since the coefficients of the equation are locally Lipschitz continuous for given initial value

(SD(0), ID(0), SL(0), IL(0), SH(0), EH(0), IH(0)) ∈ R7
+, there is a unique local solution

(SD(t), ID(t), SL(t), IL(t), SH(t), EH(t), IH(t)) on t ∈ [0, τe), where τe is the explosion time. To show

this solution is global, we need to proof that τe = ∞ a.s. Let n0 ≥ 0 be sufficiently large so that SD(0),

ID(0), SL(0), IL(0), SH(0), EH(0) and W (0) all lie within the interval [1/n0, n0]. For each n ≥ n0,
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define the stopping time

τn = inf{t ∈ [0, τe) : min{(SD(t), ID(t), SL(t), IL(t), SH(t), EH(t), IH(t))} ≤ 1
n

ormax{(SD(t), ID(t), SL(t), IL(t), SH(t), EH(t), IH(t))} ≥ n},
(2.2)

where and in what follows, we set inf ϕ = ∞(as usual ϕ denotes the empty set). According to the

definition, τn is increasing as n → ∞. Set τ∞ = lim
n→∞

τn, where τ∞ ≤ τe a.s. If we can prove that

τ∞ = ∞ a.s., then τe = ∞ and (SD(t), ID(t), SL(t), IL(t), SH(t), EH(t), IH(t)) ∈ R7
+ a.s. for all t ≥ 0.

In other words, to complete the proof we need to show is that τ∞ = ∞ a.s.. If not, there exists a pair

of constants S > 0 and ε ∈ (0, 1) such that

P{τ∞ ≤ S} > ε.

Hence there is an integer n1 ≥ n0 such that

P{τ∞ ≤ S} ≥ ε, for all n ≥ n1.

Define a C2-function V : R7
+ → R̄+ by

V = (SD − a− a ln SD
a ) + (ID − b− b ln ID

b ) + (SL − 1− lnSL) + (IL − 1− ln IL)

+(SH − 1− lnSH) + (EH − 1− lnEH) + (IH − 1− ln IH)
(2.3)

where a, b are positive constants to be determined later. The non-negativity of this function can be

seen from u − 1 − log u ≥ 0, ∀u > 0. Let n ≥ n0 and S > 0 be arbitrary. Using Itô′s formula, we

obtain

dV = LV dt+ σ1(SD − a)dB1(t) + σ2(ID − b)dB2(t) + σ3(SL − 1)dB3(t)

+σ4(IL − 1)dB4(t) + σ5(SH − 1)dB5(t) + σ6(EH − 1)dB6(t) + σ7(IH − 1)dB7(t),
(2.4)

LV = A1 − d1SD − aA1
SD

+ aβ1IL + ad1 − aσ ID
SD

+ 1
2aσ

2
1

−bd1ID − bβ1SD
IL
ID

+ b(d1 + σ + 1
2σ

2
2)

+A2 − d2SL − A2
SL

+ β2ID + d2 +
1
2σ

2
3

−d2IL − β2SL
ID
IL

+ d2 +
1
2σ

2
4

+A3 − d3SH − A3
SH

+ β3ID + d3 − γ IH
SH

+ 1
2σ

2
5

−d3EH − β3SH
ID
EH

+ d3 + ω + 1
2σ

2
6

−(d3 + µ)IH − ωEH
IH

+ d3 + µ+ γ + 1
2σ

2
7

≤ (aβ1 − d2)IL + (β2 + β3 − bd1)ID +A1 +A2 +A3 + [(a+ b)d1 + 2d2 + 3d3]

+1
2(aσ

2
1 + bσ2

2 + σ2
3 + σ2

4 + σ2
5 + σ2

6 + σ2
7) + bσ + ω + µ+ γ.

(2.5)

Choose

a =
d2
β1

, b =
β2 + β3

d1
,
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then we get

LV ≤ A1 +A2 +A3 + [(a+ b)d1 + 2d2 + 3d3]

+1
2(aσ

2
1 + bσ2

2 + σ2
3 + σ2

4 + σ2
5 + σ2

6 + σ2
7) + bσ + ω + µ+ γ :=K.

(2.6)

The remained proof follows that in Mao, Marion and Renshaw [16].

3 Existence of unique and ergodic stationary distribution

Here we present some theory about the stationary distribution.

Lemma 3.1 [17]. the Markov process X(t) has a stationary distribution µ(·) if there exists a bounded

domain U ⊂ El with regular boundary Γ and

(B.1) there is a positive number M such that
∑l

i,j=1 aij(x)ξiξj ≥ M |ξ|2, x ∈ U, ξ ∈ Rl.

(B.2) there exists a nonnegative C2 function V such that LV is negative for any El\U . Then

Px

{
lim
T→∞

1

T

∫ T

0
f(X(t))dt =

∫
El

f(x)µ(dx)
}
= 1,

for all x ∈ El, where f(·) is a function integrable with respect to the measure µ.

Define a parameter

Rs
0 =

β1β2A1A2

(d1 +
1
2σ

2
1)(d1 + σ + 1

2σ
2
2)(d2 +

1
2σ

2
3)(d2 +

1
2σ

2
4)

Theorem 3.1 Assume that Rs
0 > 1, then there is a unique stationary distribution µ(·) for system

(1.2) and it has ergodic property.

Proof. Step1: Verify that (B.1) holds. Apparently, the diffusion matrix of system (1.2) is

Λ(SD, ID, SL, IL, SH , EH , IH) =



σ2
1S

2
D 0 0 0 0 0 0

0 σ2
2I

2
D 0 0 0 0 0

0 0 σ2
3S

2
L 0 0 0 0

0 0 0 σ2
4I

2
L 0 0 0

0 0 0 0 σ2
5S

2
H 0 0

0 0 0 0 0 σ2
6E

2
H 0

0 0 0 0 0 0 σ2
7I

2
H


.

Besides there isR = min
(SD,ID,SL,IL,SH ,EH ,IH)∈R7

+

{σ2
1S

2
D, σ

2
2I

2
D, σ

2
3S

2
L, σ

2
4I

2
L, σ

2
5S

2
H , σ2

6E
2
H , σ2

7I
2
H} > 0 such

that

7∑
i,j=1

λij(SD, ID, SL, IL, SH , EH , IH)ξiξj = σ2
1S

2
D+σ2

2I
2
D+σ2

3S
2
L+σ2

4I
2
L+σ2

5S
2
H+σ2

6E
2
H+σ2

7I
2
H ≥ R | ξ |2,
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for all (SD, ID, SL, IL, SH , EH , IH) ∈ U, ξ ∈ R7, which implies condition (B.1) is satisfied.

Step2: Verify that (B.2) holds. Now we will construct a nonnegative C2-function V and a closed

set U ∈ Σ (which lies in R5
+ entirely) such that

sup
(SD,ID,SL,IL,SH ,EH ,IH)∈R7

+\U
LV (SD, ID, SL, IL, SH , EH , IH) < 0,

which can assure that (B.2) is satisfied. For the convenience of calculation, let

SD =
A1

d1 +
1
2σ

2
1

, SL =
A2

d2 +
1
2σ

2
3

.

ID and IL satisfy the following equations:

β3SLID = (d2 +
1
2σ

2
4)IL (3.1)

Beyond that,

ŜD =
SD

SD

, ÎD =
ID

ID
, ŜL =

SL

SL

, ÎL =
IL

IL
.

Consider C2-function R7
+ → R

Φ(SD, ID, SL, IL, SH , EH , IH) = MV1 + V2 + V3,

we assume that Φ̃ is the minimum value of Φ. Then we define a nonnegative C2-function V ,

V = Φ− Φ̃,

where

V1 = −ID ln ID − c1SD lnSD − c2SL lnSL − c3IL ln IL + cIL,

V2 = − lnSD − lnSL − ln IL − lnSH − lnEH − ln IH ,

V3 =
1

m+ 2
(SD + ID + SL + IL + SH + EH + IH)m+2,

and c, c1, c2, c3 are positive constants to be determined later, m > 0 is a sufficiently small number such

that

m <
2(d1 ∧ d2 ∧ d3)

σ2
1 ∨ σ2

2 ∨ σ2
3 ∨ σ2

4 ∨ σ2
5 ∨ σ2

6 ∨ σ2
7

− 1,

M is a sufficiently large number such that

AMID + E ≤ −2, (3.2)

where

E = sup
(SD,ID,SL,IL,SH ,EH ,IH)∈R7

+

{
β1IL + (β2 + β3)ID +Mcβ2ε(S

m+2
L + 1)

−1
2ρ(SD + ID + SL + IL + SH + EH + IH)m+2 +B + C

}
,

(3.3)
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where ε is a sufficiently small number such that

Mcβ2ε−
1

2
ρ ≤ 0.

B and C are defined in (3.12) and (3.14) respectively. then

L(− lnSD) = −A1

SD
+ β1IL − σ

ID
SD

+ d1 +
1

2
σ2
1,

by applying the inequality x− 1 ≥ lnx(x > 0), we obtain

L(−SD lnSD) = −A1

ŜD
+ β1SDIL − σSD

ID
SD

+ SD(d1 +
1
2σ

2
1)

≤ −A1(
1

ŜD
− 1) + β1SD ≤ A1 ln ŜD + β1SDIL.

(3.4)

from (3.2) we can obtain
IL

ID
=

β2SL

d2 +
1
2σ

2
4

,

Then

L(− ln ID) = −β1SD
IL
ID

+ (d1 + σ + 1
2σ

2
2)

= −β1
SDIL
ID

ŜD ÎL
ÎD

+ (d1 + σ + 1
2σ

2
2)

= −β1
SDIL
ID

( ŜD ÎL
ÎD

− 1)− β1
SDIL
ID

+ (d1 + σ + 1
2σ

2
2)

≤ −β1SD
β2SL

d2+
1
2
σ2
4

+ (d1 + σ + 1
2σ

2
2)− β1

SDIL
ID

ln ŜD ÎL
ÎD

= −(d1 + σ + 1
2σ

2
2)(

β1SDβ2SL

(d1+σ+ 1
2
σ2
2)(d2+

1
2
σ2
4)

− 1)− β1
SDIL
ID

ln ŜD ÎL
ÎD

= −(Rs
0 − 1)(d1 + σ + 1

2σ
2
2)− β1

SDIL
ID

ln ŜD ÎL
ÎD

:= −A− β1
SDIL
ID

ln ŜD ÎL
ÎD

.

L(−ID ln ID) ≤ −AID − β1SDIL ln ŜD ÎL
ÎD

.

(3.5)

L(−SL lnSL) = −A2

ŜL
+ β2SLID + SL(d2 +

1
2σ

2
3)

≤ A2 ln ŜL + β2SLID.
(3.6)

L(−IL ln IL) = −β2SLID
ŜLÎD
ÎL

+ IL(d2 +
1
2σ

2
4)

= −β2SLID(
ŜLÎD
ÎL

− 1)

≤ −β2SLID ln ŜLÎD
ÎL

.

(3.7)

Then

LV1 ≤ −AID + (c1β1SD − cd2)IL + c2β2SLID + cβ2SLID

+(c1A1 − β1SDIL) ln ŜD + (β1SDIL − c3β2SLID) ln ÎD

+(c2A2 − c3β2SLID) ln ŜL + (−β1SDIL + c3β2SLID) ln ÎL.

(3.8)

Let 

c1A1 − β1SDIL = 0

β1SDIL − c3β2SLID = 0

c2A2 − c3β2SLID = 0

−β1SDIL + c3β2SLID = 0.

(3.9)
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The unique solution of above equations is given as follows:

c1 =
β1SDIL

A1
, c2 =

β1SDIL
A2

, c3 =
β1SDIL

β2SLID
.

Choose c = c1β1SD
d2

, then

L(MV1) ≤ −AMID +Mc2β2SLID +Mcβ2SLID, (3.10)

LV2 = L(− lnSD − lnSL − ln IL − lnSH − lnEH − ln IH)

= −A1
SD

+ β1IL − σ ID
SD

+ d1 +
1
2σ

2
1 − A2

SL
+ β2ID + d2 +

1
2σ

2
3 − β2SL

ID
IL

+ (d2 +
1
2σ

2
4)

− A3
SH

+ β3ID − γ IH
SH

+ d3 +
1
2σ

2
5 − β3SH

ID
EH

+ (d3 + ω + 1
2σ

2
6)

−ωEH
IH

+ (d3 + µ+ γ + 1
2σ

2
7)

≤ −A1
SD

− A2
SL

− β2SL
ID
IL

− A3
SH

− β3SH
ID
EH

− ωEH
IH

+β1IL + (β2 + β3)ID +B,

(3.11)

where

B = d1 + 2
∑3

i=2 di +
1
2(σ

2
1 +

∑7
i=3 σ

2
i ) + ω + µ+ γ. (3.12)

LV3 = L( 1
m+2(SD + ID + SL + IL + SH + EH + IH)m+2)

= (SD + ID + SL + IL + SH + EH + IH)m+1[A1 +A2 +A3

−d1(SD + ID)− d2(SL + IL)− d3(SH + EH)− (d3 + µ)IH ]

+m+1
2 (SD + ID + SL + IL + SH + EH + IH)m(σ2

1S
2
D + σ2

2I
2
D + σ2

3S
2
L + σ2

4I
2
L + σ2

5S
2
H + σ2

6E
2
H + σ2

7I
2
H)

≤ (A1 +A2 +A3)(SD + ID + SL + IL + SH +EH + IH)m+1

−(d1 ∧ d2 ∧ d3)(SD + ID + SL + IL + SH + EH + IH)m+2

+m+1
2 (σ2

1 ∨ σ2
2 ∨ σ2

3 ∨ σ2
4 ∨ σ2

5 ∨ σ2
6 ∨ σ2

7)(SD + ID + SL + IL + SH + EH + IH)m+2

≤ C − 1
2ρ(SD + ID + SL + IL + SH + EH + IH)m+2,

(3.13)

where

C = sup
(SD,ID,SL,IL,SH ,EH ,IH)∈R7

+

{
(A1 +A2 +A3)(SD + ID + SL + IL + SH + EH + IH)m+1

−1
2ρ(SD + ID + SL + IL + SH + EH + IH)m+2

}
,

(3.14)

ρ = (d1 ∧ d2 ∧ d3)−
m+ 1

2
(σ2

1 ∨ σ2
2 ∨ σ2

3 ∨ σ2
4 ∨ σ2

5 ∨ σ2
6 ∨ σ2

7) > 0

Then combined with (3.9), (3.10) and (3.11), we get the value of LV finally:

LV ≤ −AMID + c2Mβ2SLID +Mcβ2SLID − A1
SD

− A2
SL

− β2SL
ID
IL

− A3
SH

− β3SH
ID
EH

− ωEH
IH

− 1
2ρ(SD + ID + SL + IL + SH + EH + IH)m+2

+β1IL + (β2 + β3)ID +B + C.

(3.15)
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Then define a closed set

Uε = {(SD, ID, SL, IL, SH , EH , IH) ∈ R7
+ : ε ≤ SD ≤ 1

ε , ε ≤ ID ≤ 1
ε , ε ≤ SL ≤ 1

ε ,

ε3 ≤ IL ≤ 1
ε3
, ε ≤ SH ≤ 1

ε , ε
3 ≤ EH ≤ 1

ε3
, ε4 ≤ IH ≤ 1

ε4
},

(3.16)

where ε is a sufficiently small positive number such that

− θ
ε +D ≤ −1, (3.17)

−AMID +Mc2β2SLε+ E ≤ −1, (3.18)

− θ
ε + F ≤ −1, (3.19)

−1
4ρ

1
εm+2 +G ≤ −1, (3.20)

−1
4ρ

1
ε3(m+2) +G ≤ −1, (3.21)

−1
4ρ

1
ε4(m+2) +G ≤ −1, (3.22)

where θ = A1 ∧ A2 ∧ A3 ∧ β2 ∧ β3 ∧ ω, D, E, F, are positive constants which can be found from

inequations . For the sake of convenience, we can divide R7
+\Uε into the following fourteen domains,

U c
1 = {(SD, ID, SL, IL, SH , EH , IH) ∈ R7

+ : 0 < SD < ε},

U c
2 = {(SD, ID, SL, IL, SH , EH , IH) ∈ R7

+ : 0 < ID < ε},

U c
3 = {(SD, ID, SL, IL, SH , EH , IH) ∈ R7

+ : 0 < SL < ε},

U c
4 = {(SD, ID, SL, IL, SH , EH , IH) ∈ R7

+ : 0 < IL < ε3, SL > ε, ID > ε},

U c
5 = {(SD, ID, SL, IL, SH , EH , IH) ∈ R7

+ : 0 < SH < ε},

U c
6 = {(SD, ID, SL, IL, SH , EH , IH) ∈ R7

+ : 0 < EH < ε3, SH > ε, ID > ε},

U c
7 = {(SD, ID, SL, IL, SH , EH , IH) ∈ R7

+ : 0 < IH < ε4, EH > ε3},

U c
8 = {(SD, ID, SL, IL, SH , EH , IH) ∈ R7

+ : SD > 1
ε},

U c
9 = {(SD, ID, SL, IL, SH , EH , IH) ∈ R7

+ : ID > 1
ε},

U c
10 = {(SD, ID, SL, IL, SH , EH , IH) ∈ R7

+ : SL > 1
ε},

U c
11 = {(SD, ID, SL, IL, SH , EH , IH) ∈ R7

+ : IL > 1
ε3
},

U c
12 = {(SD, ID, SL, IL, SH , EH , IH) ∈ R7

+ : SH > 1
ε},

U c
13 = {(SD, ID, SL, IL, SH , EH , IH) ∈ R7

+ : EH > 1
ε3
},

U c
14 = {(SD, ID, SL, IL, SH , EH , IH) ∈ R7

+ : IH > 1
ε4
},

(3.23)

Obviously, R7
+\Uε = ∪

1≤i≤14
U c
i . Next we will show that LV ≤ −1 on R7

+\Uε, which is equivalent to

verifying it on the above fourteen domains.
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Case 1. For any (SD, ID, SL, IL, SH , EH , IH) ∈ U c
1 , in view of (3.15) and (3.17),thus

LV ≤ −A1
SD

− 1
2ρ(SD + ID + SL + IL + SH + EH + IH)m+2

+β1IL + (Mc2β2SL + β2 + β3)ID +Mcβ2SLID +B + C

≤ −A1
ε +D ≤ − θ

ε +D ≤ −1.

(3.24)

Where

D = sup
(SD,ID,SL,IL,SH ,EH ,IH)∈R7

+

{
− 1

2ρ(SD + ID + SL + IL + SH + EH + IH)m+2

+β1IL + (Mc2β2SL + β2 + β3)ID +Mcβ2SLID +B + C}.
(3.25)

Case 2. For any (SD, ID, SL, IL, SH , EH , IH) ∈ U c
2 , in view of (3.2, (3.15) and (3.18),thus

LV ≤ −AMID +Mc2β2SLID + β1IL + (β2 + β3)ID +Mcβ2SLID

−1
2ρ(SD + ID + SL + IL + SH + EH + IH)m+2 +B + C

≤ −AMID +Mc2β2SLε+ E ≤ −1.

(3.26)

Case 3. For any (SD, ID, SL, IL, SH , EH , IH) ∈ U c
3 , in view of (3.15) and (3.17),thus

LV ≤ −A2
SL

− 1
2ρ(SD + ID + SL + IL + SH + EH + IH)m+2

+β1IL + (Mc2β2SL + β2 + β3)ID +Mcβ2SLID +B + C

≤ −A2
ε +D ≤ − θ

ε + F ≤ −1,

(3.27)

where

F = sup
(SD,ID,SL,IL,SH ,EH ,IH)∈R7

+

{
β1IL + (Mc2β2SL + β2 + β3)ID +Mcβ2ε(I

m+2
D + 1)

−1
2ρ(SD + ID + SL + IL + SH + EH + IH)m+2 +B + C

}
,

(3.28)

Case 4. For any (SD, ID, SL, IL, SH , EH , IH) ∈ U c
4 , in view of (3.15) and (3.17),thus

LV ≤ −β2SL
ID
IL

− 1
2ρ(SD + ID + SL + IL + SH + EH + IH)m+2

+β1IL + (Mc2β2SL + β2 + β3)ID +Mcβ2SLID +B + C

≤ −β2

ε +D ≤ − θ
ε +D ≤ −1.

(3.29)

Case 5. For any (SD, ID, SL, IL, SH , EH , IH) ∈ U c
5 , in view of (3.15) and (3.17),thus

LV ≤ − A3
SH

− 1
2ρ(SD + ID + SL + IL + SH + EH + IH)m+2

+β1IL + (Mc2β2SL + β2 + β3)ID +Mcβ2SLID +B + C

≤ −A3
ε +D ≤ − θ

ε +D ≤ −1.

(3.30)

Case 6. For any (SD, ID, SL, IL, SH , EH , IH) ∈ U c
6 , in view of (3.15) and (3.17),thus

LV ≤ −β3SH
ID
EH

− 1
2ρ(SD + ID + SL + IL + SH + EH + IH)m+2

+β1IL + (Mc2β2SL + β2 + β3)ID +Mcβ2SLID +B + C

≤ −β3

ε +D ≤ − θ
ε +D ≤ −1.

(3.31)
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Case 7. For any (SD, ID, SL, IL, SH , EH , IH) ∈ U c
7 , in view of (3.15) and (3.17),thus

LV ≤ −ωEH
IH

−1
2ρ(SD + ID + SL + IL + SH +EH + IH)m+2

+β1IL + (Mc2β2SL + β2 + β3)ID +Mcβ2SLID +B + C

≤ −ω
ε +D ≤ − θ

ε +D ≤ −1.

(3.32)

Case 8. For any (SD, ID, SL, IL, SH , EH , IH) ∈ U c
8 , in view of (3.15) and (3.19),thus

LV ≤ −1
4ρ(SD + ID + SL + IL + SH + EH + IH)m+2

−1
4ρ(SD + ID + SL + IL + SH +EH + IH)m+2

+β1IL + (Mc2β2SL + β2 + β3)ID +Mcβ2SLID +B + C

≤ −1
4ρ(SD)

m+2 +G ≤ −1
4ρ

1
εm+2 +G ≤ −1.

(3.33)

Where

G = sup
(SD,ID,SL,IL,SH ,EH ,IH)∈R7

+

{
− 1

4ρ(SD + ID + SL + IL + SH + EH + IH)m+2

+β1IL + (Mc2β2SL + β2 + β3)ID +Mcβ2SLID +B + C}.
(3.34)

Case 9. For any (SD, ID, SL, IL, SH , EH , IH) ∈ U c
9 , in view of (3.15) and (3.19),thus

LV ≤ −1
4ρ(SD + ID + SL + IL + SH + EH + IH)m+2

−1
4ρ(SD + ID + SL + IL + SH +EH + IH)m+2

+β1IL + (Mc2β2SL + β2 + β3)ID +Mcβ2SLID +B + C

≤ −1
4ρ(ID)

m+2 +G ≤ −1
4ρ

1
εm+2 +G ≤ −1.

(3.35)

Case 10. For any (SD, ID, SL, IL, SH , EH , IH) ∈ U c
10, in view of (3.15) and (3.19),thus

LV ≤ −1
4ρ(SD + ID + SL + IL + SH + EH + IH)m+2

−1
4ρ(SD + ID + SL + IL + SH +EH + IH)m+2

+β1IL + (Mc2β2SL + β2 + β3)ID +Mcβ2SLID +B + C

≤ −1
4ρ(SL)

m+2 +G ≤ −1
4ρ

1
εm+2 +G ≤ −1.

(3.36)

Case 11. For any (SD, ID, SL, IL, SH , EH , IH) ∈ U c
11, in view of (3.15) and (3.20),thus

LV ≤ −1
4ρ(SD + ID + SL + IL + SH + EH + IH)m+2

−1
4ρ(SD + ID + SL + IL + SH +EH + IH)m+2

+β1IL + (Mc2β2SL + β2 + β3)ID +Mcβ2SLID +B + C

≤ −1
4ρ(IL)

m+2 +G ≤ −1
4ρ

1
ε3(m+2) +G ≤ −1.

(3.37)
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Case 12. For any (SD, ID, SL, IL, SH , EH , IH) ∈ U c
12, in view of (3.15) and (3.19),thus

LV ≤ −1
4ρ(SD + ID + SL + IL + SH + EH + IH)m+2

−1
4ρ(SD + ID + SL + IL + SH +EH + IH)m+2

+β1IL + (Mc2β2SL + β2 + β3)ID +Mcβ2SLID +B + C

≤ −1
4ρ(SH)m+2 +G ≤ −1

4ρ
1

εm+2 +G ≤ −1.

(3.38)

Case 13. For any (SD, ID, SL, IL, SH , EH , IH) ∈ U c
13, in view of (3.15) and (3.20),thus

LV ≤ −1
4ρ(SD + ID + SL + IL + SH + EH + IH)m+2

−1
4ρ(SD + ID + SL + IL + SH +EH + IH)m+2

+β1IL + (Mc2β2SL + β2 + β3)ID +Mcβ2SLID +B + C

≤ −1
4ρ(EH)m+2 +G ≤ −1

4ρ
1

ε3(m+2) +G ≤ −1.

(3.39)

Case 14. For any (SD, ID, SL, IL, SH , EH , IH) ∈ U c
14, in view of (3.15) and (3.21),thus

LV ≤ −1
4ρ(SD + ID + SL + IL + SH + EH + IH)m+2

−1
4ρ(SD + ID + SL + IL + SH +EH + IH)m+2

+β1IL + (Mc2β2SL + β2 + β3)ID +Mcβ2SLID +B + C

≤ −1
4ρ(IH)m+2 +G ≤ −1

4ρ
1

ε4(m+2) +G ≤ −1.

(3.40)

Based on the discuss of the above ten kinds of cases, the condition (B.2) in Lemma 3.1 is also satisfied.

The proof of Theorem 3.1 is completed.

4 Extinction

In this section, we shall consider the extinction of the infection.

Define a parameter-

R̂0 =
β1S

0
D + β2

∫∞
0 xπ(x)dx+ β3S

0
H + ω

1
8(σ

2
2 ∧ σ2

4 ∧ σ2
6 ∧ σ2

7)
,

where

π(x) = Qx
−2− 2d2

σ2
3 e

− 2

σ2
3

A2
x
, x ∈ (0,∞).

⟨x⟩t =
1

t

∫ t

0
x(r)dr

Theorem 4.1 Let (SD, ID, SL, IL, SH , EH , IH) be the solution of system (1.2) with any initial value

(SD(0), ID(0), SL(0), IL(0), SH(0), EH(0), IH(0)) ∈ R7
+. If R̂0 < 1, then the solution (SD, ID, SL, IL, SH , EH , IH)

of system (1.2) satisfies

lim sup
t→∞

ln(ID + IL + EH + IH)

t
≤ β1S

0
D+β2

∫ ∞

0
xπ(x)dx+β3S

0
H +ω− 1

8
(σ2

2 ∧σ2
4 ∧σ2

6 ∧σ2
7) < 0 a.s.
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Namely,

lim sup
t→∞

ID = lim sup
t→∞

IL = lim sup
t→∞

EH = lim sup
t→∞

IH = 0.

And the distribution of SL(t) converges weakly to the measure which has the density

π(x) = Qx
−2− 2d2

σ2
3 e

− 2

σ2
3

A2
x
, x ∈ (0,∞),

where Q is a constant such that
∫∞
0 π(x)dx = 1.

Proof. Consider the following auxiliary logistic equation with random perturbation

dX(t) = (A2 − d2X)dt+ σ3XdB3(t), (4.1)

with the initial value X(0) = SL(0) > 0. Setting

b(x) = A2 − d2x, σ(x) = σ3x, x ∈ (0,∞),

we compute that ∫
b(u)

σ2(u)
du =

1

σ2
3

∫
(
A2

u2
− d2

u
)du =

1

σ2
3

(−A2

x
− d2 lnx) +Q.

Therefore

e
∫ b(u)

σ2(u)du = eQx
− d2

σ2
3 e

− 1

σ2
3

A2
x
.

Clearly, we have ∫ ∞

0

1

σ2(x)
e
∫ x
1

2b(τ)

σ2(τ)dτ = C

∫ ∞

0
x
−2− 2d2

σ2
3 e

− 2

σ2
3

A2
x
dx < ∞.

Consequently, the condition of Theorem 1.16 in [18] follows clearly from above. Thus system (4.1) has

the ergodic property, and the invariant density is given by

π(x) = Qx
−2− 2d2

σ2
3 e

− 2

σ2
3

A2
x
, x ∈ (0,∞),

where Q is a constant such that
∫∞
0 π(x)dx = 1. From the ergodic theorem it follows that

lim
t→∞

1

t

∫ t

0
x(s)ds =

∫ ∞

0
xπ(x)dx a.s.

Let X(t) be the solution of SDE (4.1) with the initial value X(0) = SL(0) > 0, then we can see that

SL(t) ≤ X(t) a.s.

On the other hand, Integrating from 0 to t and then dividing by t on both sides of (1.2) lead to

SD(t)−SD(0)
t = A1 − β1⟨SDIL⟩ − d1⟨SD⟩+ σ⟨ID⟩+ σ1

t

∫ t
0 SrdB1(r),

ID(t)−ID(0)
t = β1⟨SDIL⟩ − (d1 + σ)⟨ID⟩+ σ2

t

∫ t
0 ID(r)dB2(r),

SH(t)−SH(0)
t = A3 − β3⟨SHID⟩ − d3⟨SH⟩+ γ⟨IH⟩+ σ5

t

∫ t
0 SH(r)dB5(r),

EH(t)−EH(0)
t = β3⟨SHID⟩ − (d3 + ω)⟨EH⟩+ σ6

t

∫ t
0 EH(r)dB6(r),

IH(t)−IH(0)
t = ω⟨EH⟩ − (d3 + µ+ γ)⟨IH⟩+ σ7

t

∫ t
0 IH(r)dB7(r).

(4.2)
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We can obtain that

SD(t)− SD(0)

t
+

ID(t)− ID(0)

t
= A1 − d1⟨SD⟩t − d1⟨ID⟩t,

then

⟨SD⟩t = A1−d1⟨ID⟩t
d1

+ φ1(t) =
A1
d1

− ⟨ID⟩t + φ1(t) = S0
D − ⟨ID⟩t + φ1(t) (4.3)

where

φ1(t) = − 1

d1

(SD(t)− SD(0)

t
+

ID(t)− ID(0)

t

)
,

and
SH(t)−SH(0)

t + EH(t)−EH(0)
t + IH(t)−IH(0)

t

= A3 − d3⟨SH⟩t − d3⟨EH⟩t − (d3 + µ)⟨IH⟩t
(4.4)

then

⟨SH⟩t = S0
H − ⟨EH⟩t − d3+µ

d3
+ φ2(t) (4.5)

where

φ2(t) = − 1

d3

(SH(t)− SH(0)

t
+

EH(t)− EH(0)

t
+

IH(t)− IH(0)

t

)
.

From [19], we can obtain that

lim
t→∞

φi(t) = 0 a.s. i = 1, 2.

let P (t) = ID + IL + EH + IH . Applying Itô′s formula, we can obtain that

d lnP (t) =
{

1
P [β1SDIL − (d1 + σ)ID + β2SLID − d2IL

+β3SHID − (d3 + ω)EH + ωEH − (d3 + µ+ γ)IH ]

− 1
2P 2 (σ

2
2I

2
D + σ2

4I
2
L + σ2

6E
2
H + σ2

7I
2
H)

}
dt

+ 1
P [σ2IDdB2(t) + σ4ILdB4(t) + σ6EHdB6(t) + σ7IHdB7(t)]

≤
{
β1SD + β2SL + β3SH + ω − 1

8(σ
2
2 ∧ σ2

4 ∧ σ2
6 ∧ σ2

7)
}
dt

+σ2dB2(t) + σ4dB4(t) + σ6dB6(t) + σ7dB7(t).

(4.6)

Integrating (4.6) from 0 to t and then dividing by t on both sides, one can see that

lnP (t)
t − lnP (0)

t ≤ β1⟨SD⟩t + β2

t

∫ t
0 SL(s)ds+ β3⟨SH⟩t

+ω − 1
8(σ

2
2 ∧ σ2

4 ∧ σ2
6 ∧ σ2

7) +
σ2
t B2(t) +

σ4
t B4(t) +

σ6
t B6(t) +

σ7
t B7(t).

(4.7)

As application of strong law of large numbers [20], one has

lim
t→∞

Bi(t)

t
= 0 a.s. i = 2, 4, 6, 7.

Taking the superior limit on both sides of (4.7), and note that R̂0 < 1 leads to

lim sup
t→∞

lnP (t)

t
≤ β1S

0
D + β2

∫ ∞

0
xπ(x)dx+ β3S

0
H + ω − 1

8
(σ2

2 ∧ σ2
4 ∧ σ2

6 ∧ σ2
7) < 0 a.s.
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which implies that

lim sup
t→∞

ID = lim sup
t→∞

IL = lim sup
t→∞

EH = lim sup
t→∞

IH = 0 a.s.

Thus for any small ε > 0 there exist t0 and a set Ωε ⊂ Ω such that P(Ωε) > 1−ε and β2SLID ≤ εSL

for t ≥ t0 and ω ∈ Ωε. Now from

[A2 − β2SLID − d2SL]dt+ σ3SLdB3(t)

≤ dSL(t) ≤ [A2 − d2SL]dt+ σ3SLdB3(t),
(4.8)

it follows that the distribution of the process SL(t) converges to the measure with the density π. This

finishes the proof.

5 Numerical simulation

We consider numerical simulations to illustrate our results by using the Milstein’s Higher Order Method

in [21]. We choose the initial values

(SD(0), ID(0), SL(0), IL(0), SH(0), EH(0), IH(0)) = (0.9, 0.5, 1.2, 0.6, 1.2, 0.3, 0.3)

The corresponding discretizing equations of model (1.2) are as follows:

SD(k + 1) = [A1 − β1SD(k)IL(k)− d1SD(k) + σID(k)]△t+ σ1SD(k)
√
△tξ1k +

σ2
1SD(k)

2 △t(ξ21k − 1),

ID(k + 1) = [β1SD(k)IL(k)− (d1 + σ)ID(k)]△t+ σ2ID(k)
√
△tξ2k +

σ2
2ID(k)

2 △t(ξ22k − 1),

SL(k + 1) = [A2 − β2SL(k)ID(k)− d2SL(k)]△t+ σ3SL(k)
√
△tξ3k +

σ2
3SL(k)

2 △t(ξ23k − 1),

IL(k + 1) = [β2SL(k)ID(k)− d2IL(k)]△t+ σ4IL(k)
√
△tξ4k +

σ2
4IL(k)
2 △t(ξ24k − 1),

SH(k + 1) = [A3 − β3SH(k)ID(k)− d3SH(k) + γIH(k)]△t+ σ5SH(k)
√
△tξ5k +

σ2
5SH(k)

2 △t(ξ25k − 1),

EH(k + 1) = [β3SH(k)ID(k)− (d3 + ω)EH(k)]△t+ σ6EH(k)
√
△tξ6k +

σ2
6EH(k)

2 △t(ξ26k − 1),

IH(k + 1) = [ωEH(k)− (d3 + µ+ γ)IH(k)]△t+ σ7IH(k)
√
△tξ7k +

σ2
7IH(k)

2 △t(ξ27k − 1).

(5.1)

where the time increment △tis positive and ξik are the Gaussian random variables which follow the

distribution N(0, 1), i = 1, 2, 3, 4, 5, 6, 7.

Example 5.1 In order to check the existence of an ergodic stationary distribution,we choose the values

of the system parameters as follows: σ2
1 = 10−4, σ2

2 = 3.6 × 10−3, σ2
3 = 10−2, σ2

4 = 4 × 10−4, σ2
5 =

10−4, σ2
6 = 4 × 10−4;σ2

7 = 2.5 × 10−3. Other values of the system parameters see Table3. Direct

calculation leads to Rs
0 = 754.928752 > 1, where Rs

0 is defined before Theorem 3.1. In other words, the

conditions of Theorem 3.1 hold. In view of Theorem 3.1, there is an ergodic stationary distribution

µ(·) of system (1.2). Fig.1,Fig.2 and Fig.3 illustrate this.
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Table 3: List of parameters

Parameter Values Parameter Values

A1 0.9 A2 1.0

A3 0.7 d1 0.02

d2 0.01 d3 0.05

β1 0.08 β2 0.02

β3 0.08 σ 0.6

µ 0.03 ω 0.3

γ 0.8
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Figure 1: The solution of the stochastic system (1.2) and its histogram. The red lines represent the solution

of system (1.2), and the green lines represent the solution of the corresponding undisturbed system (1.1). The

pictures on the right are the histogram of the probability density function for SD, ID and SL populations (Color

figure online).
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Figure 2: The solution of the stochastic system (1.2) and its histogram. The red lines represent the solution

of system (1.2), and the green lines represent the solution of the corresponding undisturbed system (1.1). The

pictures on the right are the histogram of the probability density function for IL, SH populations (Color figure

online).
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Figure 3: The solution of the stochastic system (1.2) and its histogram. The red lines represent the solution

of system (1.2), and the green lines represent the solution of the corresponding undisturbed system (1.1). The

pictures on the right are the histogram of the probability density function for EH , IH populations (Color figure

online).
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Table 4: List of parameters

Parameter Values Parameter Values

A1 0.5 A2 0.6

A3 0.5 d1 0.1

d2 0.08 d3 0.05

β1 0.02 β2 0.02

β3 0.02 σ 0.8

µ 0.03 ω 0.1

γ 0.8

Example 5.2 In order to obtain the extinction of the infection,in (1.2),we choose the values of the

system parameters as follows: σ2
1 = 10−2, σ2

2 = 9×10−2, σ2
3 = 10−2, σ2

4 = 1.6×10−1, σ2
5 = 4×10−4, σ2

6 =

9 × 10−2;σ2
7 = 1.6 × 10−1. Other values of the system parameters see Table 4. By Theorem 4.1,

ID, IL, EH , IH) will tends to zero exponentially with probability one. We give the simulations to support

our results in Fig.4.

0 50 100 150 200 250 300 350 400

t

0

1

2

3

4

5

6

7
 Stochastic model

Figure 4: The solution of the stochastic system (1.2) and its histogram. The red line,blue line and magenta

line represent SD, SL and SH respectively. And the green line,cyan line,yellow line and black line represent

ID, IL, EH and IH respectively.
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