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This paper is concerned a novel spreading dynamical model for Echinococ-
cosis with stochastic parameter perturbation. we show that there exist a
unique positive solution of the stochastic model. Sufficient conditions for
Abstract the stationary distribution which is ergodic is established by appropriate
Lyapunov functions. Furthermore, we obtain the conditions on which the
system will extinct. Finally, we illustrate our results by numerical simula-

tion.

Key words Stochastic Echinococcosis model; Lyapunov function; Ergodicity; Extinction.

1 Introduction

Echinococcosis, which is often referred to as a hydatid disease, is a parasitic disease that affects both
humans and other mammals, such as sheep, dogs rodents and horses[1]. There are three different
forms of Echinococcosis found in humans, where the most common form found in humans is cystic
Echinococcosis. Thus, we focus on cystic Echinococcosis model in this paper.

China is one of the countries in the world which have the most serious Echinococcosis. A national
survey on the prevalence of Echinococcosis in 2012 showed that China’s 350 counties had Echinococ-
cosis case reports that mainly distributed in Northwestern pastoral regions. At least 50,000,000 people
in China are threatened by Echinococcosis [2].

Mathematical models can be used to how an infectious disease spreads in the real world, and
how various complexities affect the dynamics. There have been some modeling studies on different
aspects of Echinococcosis, and most of them are statistical models, for example, [3]-[5]. Recently,
dynamic models of Echinococcosis have been discussed in [6]-[8]. The work [6] proposed a deterministic
model to study the transmission dynamics of Echinococcosis in Xinjiang, China. The authors showed
that Echinococcosis was endemic in Xinjiang, China with the current control measures. In [7] two
mathematical models, the baseline model and the intervention model, were proposed to study the
transmission dynamics of Echinococcosis, the authors showed that the infection of Echinococcosis was
in an endemic state.

Of particular interest to us is a model in[8], which is given by the following dynamical model of

Echinococcosis with distributed time delays. The variables in the model are defined in Table 1, and



the parameters are defined in Table 2.

;

dSp =[A] — ﬂlst T IL(t—T)dT—dpSD—i-UID]dt,

[ Sl
dIp =1[Sp fo fi(n)Ip(t — 1)dr — (dy + 0)Ipldt,
dSy, =[Ay — B25L fo fo(T)Ip(t — 7)dT — d2Sy]dt,

dl, = [B2Sp [ fo(r)Ip(t — 7)dr — doIy)dt, (1.1)
dSy =[As — B3Sy fO fa(r)Ip(t — 7)dT — d3SH + vIg]dt,

dEy = [B3Su fo f3(T)Ip(t — 7)dr — (d3 + w)Eyldt,

dlg = [wEy — (ds + p+v)Ig]dt.

Where 7 be the random variable that describes the time between infection offal thrown in the environ-
ment and eaten by dogs with a probability fi(7). h; denotes the average survival time of larval cysts
into the infection offal thrown in the environment. the number of infected dogs at time t is given by

h1
51Sp ; fi(n)Ip(t — 1)drt.

Analogously, the numbers of infected livestock and infected human at time t are given by 8257, th2 fo(T)Ip(t—
7)dT and B3Sy fo f3(m)Ip(t — T)dT, respectively.

The results showed that the dynamical properties of the model is completely determined by the
basic reproduction number RO(R(% = %). That is, if Ry < 1, the disease-free equilibrium is
globally asymptotically, and if Ry > 1, the model is permanent and the endemic equilibrium is globally
asymptotically stable.

However, in the natural world, epidemic models are inevitably subject to the environmental noise,
which is an important component in an ecosystem, see [9]-[12]. In this paper, we will consider a type

of environmental noise, namely white noise. Then the stochastic version corresponding to system (1.1)

can be described by the following equations:

dSp = [A1 — 1SpIL — d1Sp + olIpldt + o1Spd B (t),
dIp =[B1SplL — (di + 0)Ipldt + o2IpdBs(t),

dSy, = [As — B2SLIp — doS)dt + 03S1dBs(t),

dI, = [B2SpIp — dolp)dt + oalLdBy(t), (1.2)
dSy = [A3 — B3SyIp — d3Sy + vIx|dt + 05SgdBs(t),

dEy = [83SuIp — (d3 +w)Ey)dt + o6 EgdBs(t),

dly =

wEg — (ds + p+ ) Igldt + o71gdB7(t).

where B;(t) are mutually independent Brownian motions with B;(0) = 0, o2 > 0 are the intensities of

the white noise, : = 1,2, 3,4, 5.



Table 1: Variables in the model(adapted from [8])

Population Definition

Sp(t) susceptible dogs at time ¢
Ip(t) infectious dogs at time ¢

St (¢) susceptible livestock at time ¢
Ip.(t) infectious livestock at time ¢
Su(t) susceptible human at time ¢
Egx(t) exposed human at time ¢
Iy(t) infectious human at time ¢

The objective of this paper is to investigate dynamics behavior of system (1.2). The remaining part
of this paper is as follows. In the next section we show the existence and uniqueness of a global positive
solution of model (1.2) by using Lyapunov function method as mentioned in [13]-[15]. We prove that
the system has ergodic property on certain conditions in Section 3. In Section 4, we present sufficient

conditions for the extinction of the disease. We illustrate Some numerical simulations in Section 5.

2 Existence and uniqueness of the positive solution

Throughout this paper, unless otherwise specified, let (€2, f, { ft }+>0, P) be a complete probability space
with a filtration {f;}+>0 satisfying the usual conditions(i.e. it is right continuous and f; contains all

P -null sets). Denote
" ={recR":x;>0foralll <i<n}, R ={r € R":2; >0 foralll <i<n}.
We consider the general d-dimensional stochastic differential equation
dz(t) = f(x(t), t)dt + g(x(t),t)dB(t), fort >ty (2.1)

with initial value z(tg) = z¢p € R™, where B(t) denotes d-dimensional standard Brownian motions
defined on the above probability space.

Define the differential operator L associated with Eq.(2.1) by
92

" axlax] '

0 0
= Sl + 33l (2 g, 1)

L
81‘1'

If L acts on a function V € C?*(R™ x Ry; Ry), then
1
LV(IL’, t) = V}(.’E, t) + VI('T) t) + QtTCLC[gT(l‘, t)Vl“l“('x’ t)g(.’E, t)]
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Table 2: Parameters in the model(adapted from [8])

Parameter Definition

Aq annual recruitment rate of the dog population

dy natural death rate of the dog population

o recovery rate of transition from infected to non-infected dogs

Ay annual recruitment rate of the livestock population

ds natural death rate of the livestock population

As annual recruitment rate of the human population

ds natural death rate of the human population

I disease-related death rate of the human population

% incubation period of infected individuals of the human population

ol recovery rate of the human population

51 infection rate of susceptible dogs by infectious livestock

Ba infection rate of susceptible livestock by infectious dogs

53 infection rate of susceptible human by infectious infectious dogs
where V; = %—‘{,Vx = (%’17 - dx V') and Vi, = (%)dxd.

In this section we first show that the solution of system (1.2) is positive and global. To get a
unique global(i.e. no explosion in a finite time) solution for any initial value, the coefficients of the
equation are required to satisfy the local lipschitz condition and the linear growth condition. However,
the coefficients of system (1.2) do not satisfy the linear growth condition, so the solution of system
(1.2) may explore in finite time. In this section, we use the Lyapunov analysis method, to show that

the solution of system (1.2) is positive and global.

Theorem 2.1 There is a unique solution (Sp(t),Ip(t),SL(t),IL(t),Su(t), Ex(t),Ix(t)) of system
(1.2) on't > 0 for any initial value (Sp(0),Ip(0),SL(0),1.(0), Su(0), E(0), In(0)) € RY, and the
solution will remain in RY. with probability 1, namely, (Sp(t),Ip(t), SL(t), IL(t), Su(t), Ex(t), Iu(t)) €

RZF for all t > 0 almost surely.

Proof. Since the coefficients of the equation are locally Lipschitz continuous for given initial value
(Sp(0),1Ip(0),S(0), I(0),Sk(0), Ex(0), I (0)) € RY, there is a unique local solution

(Sp(t),Ip(t),Sr(t), IL(t),Su(t), Ex(t), Ix(t)) on t € [0, 7), where 7. is the explosion time. To show
this solution is global, we need to proof that 7. = 0o a.s. Let ng > 0 be sufficiently large so that Sp(0),
Ip(0), Sr(0), I(0), Sg(0), Ex(0) and W(0) all lie within the interval [1/ng, ng]. For each n > ny,



define the stopping time

T = inf{t € [0,7.) : min{(Sp(t), Ip(t), SL(t), IL(t), S (t), Eu(t), I (£))} < L

(2.2)
or max{(Sp(t), Ip(t), Sp.(t), I1.(t), Sz (t), Exr(£), I ()} > n},

where and in what follows, we set inf ¢ = oo(as usual ¢ denotes the empty set). According to the
definition, 7, is increasing as n — 0o. Set Ty, = T}Ln;o Tn, Where 7o, < 7. a.s. If we can prove that
Too = 00 a.8., then 7. = oo and (Sp(t), Ip(t), Sp(t), IL(t), Su(t), Eu(t), In(t)) € R as. for all t > 0.
In other words, to complete the proof we need to show is that 7, = co a.s.. If not, there exists a pair

of constants S > 0 and € € (0, 1) such that
P{r < S} >e.
Hence there is an integer ny > ng such that
P{15o < S} > ¢, for all n > ny.
Define a C*-function V : R — Ry by

V:(SD—a—alnSTD)—i—(ID—b—blnITD)—i—(SL—1—1nSL)+(IL—1—lnIL)

(2.3)
+(SH —1 *1115]1) + (EH —1 *hlEH) + (IH —1 *111[}1)

where a, b are positive constants to be determined later. The non-negativity of this function can be

seen from u — 1 —logu > 0, Vu > 0. Let n > ng and S > 0 be arbitrary. Using Itd’s formula, we

obtain

dV = LVdt + Ul(SD — a)dBl(t) + O'Q(ID — b)dBQ(t) + O'3(SL — 1)ng(t)

+ou(I, — 1)dBy(t) + 05(Sy — 1)dBs(t) + 06(Ey — 1)dBe(t) + or(Ir — 1)dBr(t), 24
LV = Ay — diSp — a$: + api I + ady — ao {2 + Sao?
—bdyIp — bB1Sp 1 + b(dy + 0 + $03)
+Ay — daS, — % + Balp + dy + 503
—doly, — 62SL% +dy + 3073
+As — dsSp — 4% + BsIp + ds — L + Jo? (2.5)

—d3sEp — B3Su 42 + ds + w + 03
—(ds + p) I — WP +d3 + 4y + 303
< (aB1 — do)Ir + (B2 + B3 — bdi)Ip + A1 + Az + Az + [(a + b)di + 2d> + 3d3]
+3(ao} +bo3 + 03 + 0+ 02+ 08 +0%)+bo+w+pu+7.
Choose

_dp b:52+53

a= -, )
b1 d1




then we get

LV < Ay + Ag + Az + [(a + b)dy + 2ds + 3d3) 2.
+3(aoc} +bo3 + 03 + 0 +o02+ 03 +02)+bo+w+pu+vy:=K.

The remained proof follows that in Mao, Marion and Renshaw [16].

3 Existence of unique and ergodic stationary distribution

Here we present some theory about the stationary distribution.

Lemma 3.1 U7 the Markov process X (t) has a stationary distribution p(-) if there exists a bounded

domain U C E; with reqular boundary T' and

(B.1) there is a positive number M such that Zé,j:1 aij(z)&& > M|E)?, 2 € U, € € R

(B.2) there exists a nonnegative C? function V such that LV is negative for any E;\U. Then
T

P aim = [ pxydr = [ jau(an} =1,
Ey

T—oo 1 0

for all x € E;, where f(-) is a function integrable with respect to the measure .

Define a parameter

pe P12 A1 As
" (At 5o+ o+ §03)(dz + 503)(d2 + o3)

Theorem 3.1 Assume that R > 1, then there is a unique stationary distribution u(-) for system

(1.2) and it has ergodic property.

Proof. Stepl: Verify that (B.1) holds. Apparently, the diffusion matrix of system (1.2) is

oi5%4 0 0 0 0 0 0
0 o313 0 0 0 0 0
0 0 0352 0 0 0 0
A(Sp,Ip,SL, 11, Su, En,Iu) = | 0 0 0 o3 0 0 0
0 0 0 0 o025% 0 0
0 0 0 0 0 o02E% O
0 0 0 0 0 0 o3

Besides there is R = min ] {0252, 031%,025%,031%,025%,02E%,021%} > 0such
(Sp.Ip,SrIL,SH,Er,In)ER]
that

7
Z )\z‘j(SD,ID, SL7IL7SH7EH7IH)§i§j = U%SQD+U§I%+U§S%+Ui]%+0’52)812{+0'gE12q+U$I]2{ Z R ‘ f |2,
i,7=1



for all (Sp,Ip,Sr,Ir,Su, Ex,Ig) € U,& € R7, which implies condition (B.1) is satisfied.
Step2: Verify that (B.2) holds. Now we will construct a nonnegative C2-function V' and a closed
set U € ¥ (which lies in R, entirely) such that

sup LV (Sp,Ip,St. 11, Su, Erg,In) <0,
(8p:ID,SL,11,SH,Er, In)eRIA\U

which can assure that (B.2) is satisfied. For the convenience of calculation, let

— A — A
Sp = 11 9L = 21 2
Ip and Iy, satisfy the following equations:
BsSrIp = (do + 50311 (3.1)
Beyond that,
~ ~ Ip -~ S ~ I
SD:§7D7[D:77D? L:jLajsziL'
SD ID SL IL

Consider C?-function RZ_ - R
®(Sp,Ip,Sr, I, Su, Ex, Ig) = MVy + Vo + Vs,
we assume that @ is the minimum value of ®. Then we define a nonnegative C2-function V,
V=0-9,

where
Vi= —TDIHID —ClgplnSD —CQELIHSL —CgTLlnIL—}—CIL,
VQ = —lnSD—IHSL—IHIL—IHSH—IHEH—IHIH,
1
Vo= ——(Sp+Ip+ S+ 1+ Su+En+Ig)™",
m+ 2

and ¢, ¢1, ¢o, c3 are positive constants to be determined later, m > 0 is a sufficiently small number such

that
2(d1 Ada A d'g,)
s o2V oiVaiVoiVvoiVaoiVo? -b
1 V02 VO3V 04V 05V 0gV 0y
M is a sufficiently large number such that
AMIp + E < -2, (3.2)
where
E= sup {BiIL + (B2 + B3)Ip + McBoe (ST + 1)
(Sp,Ip,SL,IL,SH,En,In)ERY (3.3)

—3p(Sp+1Ip+SL+ 1+ Sy + Ex + Ig)™ ™ + B+ C},



where € is a sufficiently small number such that
1
McBoe — 3 p <0.

B and C are defined in (3.12) and (3.14) respectively. then

A I 1
L(-InSp) = —S—; + Bl — ai +di + 5ot

by applying the inequality z — 1 > Inz(x > 0), we obtain
L(—§D In SD) = —% + BlgDIL — G§D§% +§D(d1 + %0’%)

P R - (3.4)
< _Al(é - 1)+ 51Sp <A InSp+ BiSplr.

from (3.2) we can obtain B B
In _ pBSL
Ip ds + %0‘2’
Then
L(~InIp) = —B1SpE + (d + 0 + $o3)
Sply Spl,
= =B PR ERL + (dy + 0 + 503)
SplL (Spl; Spl
= —51%(% -1)- 51?7]3” + (d1+ 0+ 303)
< S SpI Spl,
< _'BISDdzﬁ-T-%I;Z + (di + 0+ 303) — 517?]; In —?DL 5
_ 1.2 B1SpB2S 1\ _ a.Splr 1, Spl; '
- (d]_ + g + 20-2)((d1+0'+%0'D§)(d2L+%UZ) 1) /6]. ?DL 111 IQDL
= ~(R§ — 1)(d1 + 0 + 303) — 1 "1k In 221k

= —A— 220 In 221L.
D Ip

L(—TD In ID) S —ATD - /BlgDTL In SIQTL .
D

L(—gL In SL) = —%2 + BQ?LID +§L(d2 + %0’%)

o (3.6)
< AsInSp + B251Ip.

L(—TL In IL) = —ﬁggLTDS%% + TL(dz + %O’i)
= —ﬁQELTD(S%ﬁ -1) (3.7)
L
< —ﬁggLTD In Spip .
Iy,
Then
LV < —AIp + (e141Sp — ed2)If, + 2825 LIp + ¢f2SLIp
(1 Ay — B1SpIr)InSp + (B1SpIr — c382511p) In Iy (3.8)
+(caAs — 3825 Tp) In Sy + (—B1SpIL + ¢3B2SrTp) In ;.
Let )
141 — f1SplL =0
B1SplL —c3B25LIp =0
coAs — c32SLIp =0
—B1SplL + c3B2Srip = 0.

(3.9)




The unique solution of above equations is given as follows:

_ B1SpIyL oy — B1SpIL o = B1SpIL
Al ’ AQ ’ ﬁggLTD )

C1
Choose ¢ = %, then
L(MVI) < _AMTD + MC2B2§LID + MC,BQSLID, (310)

LVo=L(—InSp—InSp, —Inl;, —InSy —InEy —Inlg)
= —%4-51[[,—0'%4-6114-%0%— %—l—ﬁg[p—l—dz—l—%dg—,BQSL%—F((ZQ—F%O'E)
— 45+ BsIp — yEE + ds + 302 — BsSuE + (ds + w + §03)

E (3.11)
—wW T+ (ds + p v+ 307)
<S—FL -2 PSP — 5 — B —wiE
+B1IL + (B2 + B3)Ip + B,
where
B=di+2Y% ydi+ 403+ X0 00 +w+p+1. (3.12)

LVs = L(m%rQ(SD +1Ip+Sp+1Ip+ Sy + Ey+ Ig)™t?)
=Sp+Ip+SL+I+Su+En+1Ig)" A+ As + A3

—di(Sp + Ip) — do(Sp, + I1) — d3(Su + En) — (d3 + p) 1]

+25(Sp + Ip + St + It + Sy + By + In)™(015% + 0313 + 0357 + 0317 + 025} + 03B}, + 021%)
< (A1 +As+ A3)(Sp+Ip+ Sy + 1+ Sy + Eg + Iy)™H

—(dy ANda ANd3)(Sp+Ip+ Sy + I+ Sy + Ey + Iy)m+?

+25 (02 V o3V a3 VvoiVoeiVvoiVvod)(Sp+Ip+SL+ 1L+ Sy+ Eg+ Iy)™t?
<C—3ip(Sp+Ip+Sp+Ir+Sy+Eg+Ig)"t2,

(3.13)
where
C= sup {(A1 + Ao+ A3)(Sp + Ip + St + I + Sy + Ep + Ig)™ !
(8p:Ip,SL,IL,SH,Er, Im)ERY, (3_14)
—3p(Sp+Ip+ Sp+ I, + Sy + Ex + Ig)™ 2},
1
p=(dy Nday Ad3)— %(a%vﬁvﬁv(;iv(f%v(;gvﬁ) >0
Then combined with (3.9), (3.10) and (3.11), we get the value of LV finally:
LV < —AMIp + CQMBQ?LID + McBoSrIp — % — g% — 5QSL%
_é’% - 5351{% — w% —3p(Sp+1Ip+ S+ 1+ Sy + Ex + Ig)™ (3.15)

+B1Ip + (B2 + B3)Ip + B+ C.



Then define a closed set

U. ={(Sp.Ip,S1, 11, Su, B, Iy) € R} e < Sp<le<Ip<le<s <1

1 1 1 1
<< %,e<Sy<i,e<Ep< e <Ip<il

where ¢ is a sufficiently small positive number such that
-4+ D< -1,

—AMIp+ McofeSre + E < —1,

[

_%PsmlJrz +G < -1,

1 1
—1P @iy TG < -1

1 1
— 1Py TG < 1,

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)
(3.21)

(3.22)

where 0 = A1 AN Ay AN A3 A Ba A\ B3 Aw, D, E, F, are positive constants which can be found from

inequations . For the sake of convenience, we can divide RZF\U6 into the following fourteen domains,

={(Sp,Ip,Sc. 11, S, En,In) € R} : 0 < Sp < ¢},

={(Sp,Ip, S, I, Sy, En,In) € R : 0 < Ip < e},
U3 ={(Sp.Ip,SL. 11,51, B, In) € R : 0 < S <e},
U4 ={(Sp.Ip,Sr. I, S, B, Ig) € RY : 0 < I, <35, >¢e,Ip > e},
={(Sp.Ip,Sr. I, S, B, Ig) € R} : 0 < Sy < €},
( )
( )
( )
( )

6 —{ Sp ID,SL,IL,SH,EH,IH € RZ_ :0< Ey <€3,SH >e,Ip >€},

U7 —{ Sp,Ip, S, I, Sy, Ey,Ig) € RZ_ 0< Iy <€4,EH >53},

(3.23)
U§ ={(Sp,Ip,Sr, 11,51, En,Iy) € RY : Sp > 1},
U§ ={(Sp,Ip,SL, 11, Su, By, Ig) € Ry : Ip > 1},
Uiy ={(Sp,Ip,SL. 1L, St En, In) € R : S, > 1},
Uiy ={(Sp,Ip, S, Ir, Su, En, 1) € R : I, > %},
Ufy ={(Sp,Ip, S, I, Sir, B, Iu) € RY. : Sy > 1},
Ui ={(Sp,Ip,SL. 1L, S0, En, In) € R : Eg > %},
Uy ={(Sp,Ip,Sp, Ir, Su, B, 1) € R : Iy > %},
Obviously, Rl\U6 = U Uf. Next we will show that LV < —1 on RZ_\UE, which is equivalent to

1<i<14
verifying it on the above fourteen domains.
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Case 1. For any (Sp, Ip,Sr, I, S, Eu,Ig) € Uf, in view of (3.15) and (3.17),thus

LV < ——D —3p(Sp+1Ip+Sp+ 1L+ Sy + Ep + Iy)™+?
+B811L 4 (McaB2SL + B2+ B3)Ip + McB2SrIp + B+ C
<-d4p<-fip<-1.

Where

D = sup {—2p(Sp+1Ip+SL+ I+ Sy+ Ey+Iy)m+?
(SpsIpsSL,IL, S, En,Im)ERT,

+6117, + (MCQB2§L + B +/83)ID + McBoSrip + B + C}

Case 2. For any (Sp,Ip,Sr,IL,Su, Eu,Ix) € US, in view of (3.2, (3.15) and (3.18),thus

LV < —AMIp + McaB2SiIp + Bl + (B2 + Bs)Ip + McB2SiIp
—3p(Sp+Ip+ S+ 1+ Sy + Ex+Ig)™? + B+ C
< —AMIp + McyfoSre + E < —1.

Case 3. For any (Sp, Ip,St, I, Su, En,Ix) € US, in view of (3.15) and (3.17),thus

LV <=4 = 1p(Sp + Ip + Si.+ I + Su + B + In)™ 2
+61IL + (MBSt + B2+ B3)Ip + McfaSpIp + B+ C
—2ip<-fy+F<1,

where

F= sup {BiIL + (Mc2BaSp + B2 + B3)Ip + McBae(I 2 + 1)

(S Ip,SLy IS Er Ti)eRT,

—30(Sp +Ip + Sy + I+ Sp + Ex + In)™*? + B+ C},

Case 4. For any (Sp, Ip,Sr, I, Su, Eu,In) € Uf, in view of (3.15) and (3.17),thus

LV < 525’ - — §p(SD +Ip+Sp+1r+Syg+ Egy —I—IH)m+2
+611 + (M62525L + B2+ B3)Ip + McpaSpIp + B+ C
<-Z4p<-f4D<-1

Case 5. For any (Sp, Ip,St, I, Su, En,Ix) € UE, in view of (3.15) and (3.17),thus

LV < =% — 3p(Sp + Ip + St + I + Su + Ep + Ii)™ ">
+6111 + (McaB2S1 + B2+ B3)Ip + McfBaSpIp + B+ C
-4 4p<-f+pD<-1

Case 6. For any (Sp,Ip,Sr, I, Su, En,In) € U§, in view of (3.15) and (3.17),thus

LV < —-338 f—5,0(SD—|-ID—i—SL—l-IL—i-SH—i-EH—i-IH)mJFQ
+B81IL 4+ (McaB2Sr + B2 + B3)Ip + McB2SrIp + B+ C
<-Bip<-?4+D<-1.
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(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)



Case 7. For any (Sp, Ip,Sr, I, Su, B, Iy) € U, in view of (3.15) and (3.17),thus

LV < —whn

~1p(Sp +1Ip + Sy +Ip + Sp + Eg + Iy)™+?

+6111 + (McaB2S1 + B2+ B3)Ip + McBaSpIp + B+ C
<-¢4+D<-24+D< -1

Case 8. For any (Sp, Ip, S, I, Su, En,Ix) € U§, in view of (3.15) and (3.19),thus

LV < —%p(SD +Ip+ Sy +1Ip+ Sy + Ey + Iy)mt?
~1p(Sp +1Ip+ S+ I+ Sy + By + Iy)™+

+B111 + (Mc2BaSt + B2 + B3)Ip + McBaSpIp + B+ C
< —1p(Sp)" PP+ G < —tptm + G < -1

Where

G = sup {—%p(SD+ID+SL+IL—|—SH—|—EH+IH)m+2
(Sp,Ip,SL,IL,SH,Er,Ir)ERE,

+p11r + (MCQ,BQ?L + B2+ B3)Ip + McB2SrIp + B+ C}.

Case 9. For any (Sp, Ip,Sr, I, Su, En,In) € U§, in view of (3.15) and (3.19),thus

LV < —3p(Sp+1Ip+ S+ 1L+ Sy + Eg + Iy)™+?
—20(Sp+1Ip+Sp+ I+ Sy + Ex + Ig)™

+B81IL + (MeaBaSp + Bo + B3)Ip + McBaSrIp + B+ C
< —1o(Ip)" 2+ G < —jpotm + G < -1

Case 10. For any (Sp, Ip, S, I, Su, En,In) € Ufy, in view of (3.15) and (3.19),thus

LV < —3p(Sp+1Ip+Sp+ 1L+ Sy + Eg + Iy)™+?
~1p(Sp + Ip + Sy + I, + Sy + Ep + Iy

+B111, + (Mc2fB2St, + fBa + B3)Ip + McpaSLIp + B+ C
< —3p(S1)"™ + G < —pim G < L

Case 11. For any (Sp, Ip,Sr, I, Su, EFm,Ig) € Uf;, in view of (3.15) and (3.20),thus
LV < —3p(Sp+1Ip+ Sy + 1L+ Sy + Eg + Iy)™+?
—1p(Sp +1Ip+Sp+1Ip+ Sy + Ey + Iy)™+?

+811L + (McofoSt + B2+ B3)Ip + McBoSpIp + B4+ C

< —3p(IL)™ P + G < —fpmmm + G < —1

12

(3.32)

(3.33)

(3.34)

(3.35)

(3.36)

(3.37)



Case 12. For any (Sp, Ip,Sr, I, Su, EFm,Ig) € Uf,, in view of (3.15) and (3.19),thus

LV < —1p(Sp+1Ip+Sp+1I,+ Sy + Ey + Iy)™+?
—1p(Sp +1Ip+Sp+1Ip+ Sy + Ey + Iy)™+?

+6111 + (McaB2S1 + B2+ B3)Ip + McBaSpIp + B+ C
< —30(SH)" P + G < —jpmam + G < —L

(3.38)

Case 13. For any (Sp, Ip,Sr, I, Su, En,In) € Ufs, in view of (3.15) and (3.20),thus

LV < —%p(SD +Ip+ Sy +1Ip+ Sy + Ey + Iy)mt?
~1p(Sp +1Ip+ S+ I+ Sy + By + Iy)™+

+B111 + (Mc2BaSt + B2 + B3)Ip + McBaSpIp + B+ C
< —3p(En)" P + G < —jpamm + G < -1

(3.39)

Case 14. For any (Sp, Ip,St, I, Su, B, Ix) € U{,, in view of (3.15) and (3.21),thus

LV < —3p(Sp+Ip+Sp+ 1+ Sy + Ex + Iy)™+?
—%p(SD +ID + SL +IL + SH +EH —|—IH)m+2
+B1IL + (McaB2St + B2 + B3)Ip + McB2SpIp + B+ C

< —3p(Im)" P+ G < —4pomy + G < -1

(3.40)

Based on the discuss of the above ten kinds of cases, the condition (B.2) in Lemma 3.1 is also satisfied.

The proof of Theorem 3.1 is completed.

4 Extinction

In this section, we shall consider the extinction of the infection.

Define a parameter-
[ B1SY + Bo fooo zr(x)dz + B3SY + w
(03 NoF Ao No2)

Y

where

Theorem 4.1 Let (Sp,Ip,Sr,In, S, Ex, L) be the solution of system (1.2) with any initial value
(Sp(0),Ip(0),SL(0),1.(0),SH(0), Ex(0),I5(0)) € R_ﬁ_. If ﬁo < 1, then the solution (Sp, Ip,Sr, I, S, Eg, Ix)
of system (1.2) satisfies

. IH(ID+IL—|-EH+IH)
lim sup

t—o00 t

o
1
< 515%+B2/ xw(x)d:v—i—ﬂgs%—kw—g(a%/\az/\ag/\ag) <0 a.s.
0
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Namely,

lim sup I'p = lim sup Iy = lim sup Eyg = lim sup Iy = 0.
t—o0 t—o0 t—o0o t—o0

And the distribution of Sp(t) converges weakly to the measure which has the density

2do 2 Ao

m(x)=Qx ~ e °5 " xe(0,00),
where Q is a constant such that [;° w(x)dx = 1.
Proof. Consider the following auxiliary logistic equation with random perturbation
dX(t) = (A2 — do X)dt + 03X dBs(t), (4.1)
with the initial value X (0) = S7(0) > 0. Setting
b(z) = Ay —dox,  o(z) =03z, z € (0,00),

we compute that

b(u 1 A d 1 A

2
o U U o3 T
Therefore
f _dy ,%ﬂ
2(10 du =9z e 8 °
Clearly, we have
o0 1 I 2b(7) 72 %ﬂ
/ BTN 1"2(7)617—0/ Fe 93" dr < 0.
0o 0 (55)

Consequently, the condition of Theorem 1.16 in [18] follows clearly from above. Thus system (4.1) has

the ergodic property, and the invariant density is given by
2
m(x) = Qx e 73 ,x € (0,00),

where @) is a constant such that f0°° m(x)dx = 1. From the ergodic theorem it follows that

1 t 00
lim — x(s)ds:/ xr(x)dr  a.s.
0

Let X (t) be the solution of SDE (4.1) with the initial value X (0) = S£(0) > 0, then we can see that
S(t) < X(5)  aus.

On the other hand, Integrating from 0 to ¢ and then dividing by ¢ on both sides of (1.2) lead to

5002500 = Ay — B1(Sply) — di(Sp) + o(Ip) + Z [ S,dBi(r),

[oOLO) = By (Sply) = (d +0)(Ip) + F g Ip(r)dBa(r),

SO258O0) — Ay — By(SpIp) — da(S) + (T} + % f3 Su(r)dBs(r), (4.2)

EnWBnO) — y(Sylp) — (ds + w)(En) + % [y By(r)dBs(r),

L1 O) = o(By) — (ds + p+ L) + % fy Ln(r)dBr(r).

14



We can obtain that

Sp(t) —Sp(0) | Ip(t) —Ip(0)

; + ; = A; —di(Sp)t — di{Ip)+,
then
(Spe = 2=Ulnle 4oy (1) = 4 (Ip), + @1(t) = 8% — (Ip) + 1(1)
where
1 ,5p(t) — Sp(0 Ip(t) — Ip(0
ort) =~ p(t) t p(0) | In(t) t D ))7
1
and
Sg(t)—SH(0 FEg(t)—Eg(0 ITg(t)—Ig(0
H()t H()Jr H()t H()+ H()tH()
= A3 — d3(Su)t — d3(Em)s — (d3 + p){(Im)¢
then
(Su)t = SY — (En) — B + os(1)
where

1 Su(t) — Su(0)  Ex(t) — Ex(0)  Ig(t) — Ix(0)
_ch( t + t + t )

From [19], we can obtain that

pa(t) =

lim p;(t) =0 a.s. i=1,2.

t—o00

let P(t)=1Ip+ I + Eg + Iy. Applying Itd's formula, we can obtain that

dIn P(t) = {$[818pIL, — (d + 0)Ip + B2SIp — daly,
+B3Sulp — (d3 + w)Eg + wEg — (ds + p+ 7)1

— 555 (0212 + 0317 + 02E% + o21%) }dt

+5[021pdBs(t) + 04l dBy(t) + 06 EydBg(t) + o7lpdBy(t)]
<{Bi1Sp + B2SL + B3 +w — $(03 NoF Nog A o)}t
+09dBsy(t) + 04dBy(t) + 06dBg(t) + o7dBr(t).

Integrating (4.6) from 0 to ¢t and then dividing by ¢ on both sides, one can see that
@ - w < Bi(Sp)e + 22 [1 Sp(s)ds + B3(Su )
+w — (03 Aod Aog Ao?) + B By(t) + % By(t) + % Bs(t) + % Br(t).
As application of strong law of large numbers [20], one has

lim 7Bi(t)

t—oo t

=0 as 1=2/4,6,T7.

Taking the superior limit on both sides of (4.7), and note that Ry < 1 leads to

lim sup
t—o00

In P(t o0 1
1 t( ) §513%+52/ zr(x)dr + f3S% —I—w—g(a%/\ai/\angg) <0 a.s.
0
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which implies that

lim sup Ip = lim sup Iy =lim sup Eg =lim sup Iz =0 a.s.
t—o0 t—o0 t—o0 t—o0

Thus for any small € > 0 there exist ¢y and a set 2. C  such that P(£2.) > 1—¢ and S2SIp < eSp,
for t > tg and w € .. Now from

[AQ - 6QSLID - dZSL]dt + UgSLng(t>
< dSL(t) < [A2 — d2SL]dt + 03S1,dBs(t),

(4.8)

it follows that the distribution of the process S7.(t) converges to the measure with the density m. This

finishes the proof.

5 Numerical simulation

We consider numerical simulations to illustrate our results by using the Milstein’s Higher Order Method

n [21]. We choose the initial values
(Sp(0),1Ip(0),SL(0),1(0), Sy (0), Ex(0), I5(0)) = (0.9,0.5,1.2,0.6,1.2,0.3,0.3)

The corresponding discretizing equations of model (1.2) are as follows:

;

Sp(k+1) =[A1 — B1Sp(k)IL(k) — di1Sp(k) + oIp(k)| At + 015D( kW& @ AH(EG, — 1),
Ip(k+1) = [B1Sp(k)IL(k) — (di + o) Ip(k)|At + o2 Ip (kN Aty + JZID LA, — 1),
Sr(k+1) )

[
[
= [A2 = B2SL(k)Ip (k) — d2SL(k)| At + 0351 (kN Dles + ”SSL“f A3, — 1),
In(k+1) =[B280(k)Ip(k) — doI (k)| At + ol (kN Dty + 04IL LAt(ed, 1),
[
[
[

Sk +1) = [As — BsSu (k) Ip(k) — dsSir(k) + VI (k)] At + 058y (kN Bits, + T2 B A2, — 1),
Ey(k+1) = [83Su(k)Ip(k) — (d3 + w)Eg (k)| At + o Eg (kN DNtégr, + "BEH LAt(Ed, - 1),
Ig(k+1) = [wEy(k) — (ds + p+ ) I (k)]| At + oLy (kN Atéq, + "7“’ LAt(EZ, - 1).

(5.1)
where the time increment Atis positive and & are the Gaussian random variables which follow the

distribution N(0,1),7=1,2,3,4,5,6,7.

Example 5.1 In order to check the existence of an ergodic stationary distribution,we choose the values
of the system parameters as follows: o2 = 107403 = 3.6 x 1073,03 = 1072,07 = 4 x 1074, 02 =
1074 0(25 =4 x 1074 = 2.5 x 1073, Other values of the system parameters see Table3. Direct
calculation leads to RS = 754.928752 > 1, where Rf is defined before Theorem 3.1. In other words, the
conditions of Theorem 3.1 hold. In view of Theorem 3.1, there is an ergodic stationary distribution

wu(-) of system (1.2). Fig.1,Fig.2 and Fig.3 illustrate this.
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Table 3: List of parameters

Parameter Values Parameter Values

Ay 0.9 Ay 1.0
As 0.7 dy 0.02
ds 0.01 ds 0.05
581 0.08 Ba 0.02
B3 0.08 o 0.6
0.03 w 0.3
0.8
20 1
U)D 10 o 1 0.5t .
(0] 0
0] 5000 10000 15000 2 4 6 8 10
The density functions of SD(t)
100 0.04
) < 0.02
0 0
0 5000 10000 15000 0 20 40 60
The density functions of ID(t)
20 2
;:):' 10 ﬂ 1 1
0 0
0 5000 10000 15000 2 4 6 8 10 12

The density functions of SL(t)

Figure 1: The solution of the stochastic system (1.2) and its histogram. The red lines represent the solution
of system (1.2), and the green lines represent the solution of the corresponding undisturbed system (1.1). The
pictures on the right are the histogram of the probability density function for Sp, Ip and Sy, populations (Color

figure online).
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20 0.6
15
. 0.4}
= 10
0.2¢
5
0 Q ‘o
0 5000 10000 15000 0 5 10 15
The density functions of IL(t)
5 1.5
4
—~ 1 [
w3
0.5t
2
1 0
0 5000 10000 15000 2 3 4

The density functions of SH(t)

Figure 2: The solution of the stochastic system (1.2) and its histogram. The red lines represent the solution
of system (1.2), and the green lines represent the solution of the corresponding undisturbed system (1.1). The
pictures on the right are the histogram of the probability density function for I, Sy populations (Color figure

online).
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10 1.5
—_ 1 [
ut °
057
0 0 N — ol
0 5000 10000 15000 0 2 4 6 8
The density functions of EH(t)
4 1.5
3
—~ 1 [
=2
0.5t
1
0 0 | il
0 5000 10000 15000 0 2 4 6 8

The density functions of IH(t)

Figure 3: The solution of the stochastic system (1.2) and its histogram. The red lines represent the solution
of system (1.2), and the green lines represent the solution of the corresponding undisturbed system (1.1). The
pictures on the right are the histogram of the probability density function for Fy, Iy populations (Color figure

online).
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Table 4: List of parameters

Parameter Values Parameter Values

A, 0.5 A, 0.6

A; 0.5 d 0.1

ds 008  ds 0.05

By 002 B 0.02

Bs 002 o 0.8
003 w 0.1
0.8

Example 5.2 In order to obtain the extinction of the infection,in (1.2),we choose the values of the
system parameters as follows: o3 = 1072, 02 = 9x 1072, O’% =1072,02 =1.6x 10_1,0§ =4x 10_4,0'% =
9 x 10_2;03 = 1.6 x 107, Other values of the system parameters see Table 4. By Theorem 4.1,
Ip, I, Eg, Iy) will tends to zero exponentially with probability one. We give the simulations to support

our results in Fig.4.

Stochastic model
7 T T T T T T T

0 50 100 150 200 250 300 350 400

Figure 4: The solution of the stochastic system (1.2) and its histogram. The red line,blue line and magenta
line represent Sp, Sy, and Sy respectively. And the green line,cyan line,yellow line and black line represent

Ip, I, Ey and Iy respectively.
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