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Uniqueness for multidimensional kernel determination
problems from a parabolic integro-di�erential equation

D.Q. Durdiev, Zh.Z. Nuriddinov

Abstract. We study two problems of determining the kernel of the integral terms
in a parabolic integro-di�erential equation. In the �rst problem the kernel depends on
time t and x = (x1, ..., xn) spatial variables in the multidimensional integro-di�erential
equation of heat conduction. In the second problem the kernel it is determined from
one dimensional integro-di�erential heat equation with a time-variable coe�cient of
thermal conductivity. In both cases it is supposed that the initial condition for this
equation depends on a parameter y = (y1, ..., yn) and the additional condition is given
with respect to a solution of direct problem on the hyperplanes x = y. It is shown that
if the unknown kernel has the form k(x, t) =

∑N
i=o ai(x)bi(t), then it can be uniquely

determined.

Keywords: parabolic equation, Cauchy problem, integral equation, linearly
independence, uniqueness.

1.Introduction. Formulation of problem

Integro�di�erential equations play an important role in the mathematical modeling
of many �elds: physical, biological phenomena, engineering sciences and others �elds of
the natural sciences where it is necessary to take into account the e�ect of a prehistory
(or memory) of process. Constitutive relations in the linear non-homogeneous di�u-
sion and wave propagation processes with memory contain time - and space-dependent
memory kernel with convolution type integrals. Usually, they are obtained from expe-
riences. For many cases, in the practise these kernels are unknown functions and thus
the inverse problems are arose on determining of these functions from the observable
information about the solutions of the corresponding equations. Problems of identi�-
cation of memory kernels in parabolic and hyperbolic equations have been intensively
studied starting at the end of the last century [1]-[4].

Often, in cases of equations describing the propagation of electrodynamic and elas-
tic waves with integral convolution terms are reduced to one second-order hyperbolic
integro�di�erential equation. One- and multidimensional problems of recovering the
kernel of convolution integral in these equations were investigated in [5]-[24] (see, also
references therein). The numerical solutions for kernel determination problems from
integro�di�erential equations were considered in the works [25]-[27]. Inverse problems
to determine time- and space-dependent kernels in parabolic integro-di�erential equa-
tions with several additional conditions have been studied by many authors [28]-[33].
In these papers there were proved existence, uniqueness and stability theorems. In the
works [34]-[39] the authors discussed the linear inverse source and nonlinear inverse
coe�cient problems for parabolic integro-di�erential equations. Here also has been
applied a numerical approach for solving such problems. It should be noted that nowa-
days there are few publications where the problems of determining multidimensional
memory would be studied.
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In the present paper we study inverse problems to determine a time and spatially
varying kernel k(x, t), x ∈ Rn, t > 0 in a parabolic integro�di�erential equations
governing the heat �ow in materials with memory.

Consider Cauchy problem for the n-dimensional parabolic integro�di�erential equa-
tion with a time-variable coe�cient of thermal conductivity

∂u

∂t
− c(t)4xu =

∫ t

0

k(x, t− τ)u(x, y, τ)dτ,

x = (x1, ..., xn) ∈ Rn, t ∈ (0, T ], (1.1)

u(x, y, 0) = ϕ(x, y), (1.2)

where c(t) is an enough smooth positive function, 4x is Laplacian on the variables
x = (x1, ..., xn), y = (y1, ..., yn) ∈ Rn is a parameter of problem, T is a �xed positive
number.

In this paper we investigate the following problems:
Inverse problem 1: when c(t) = 1, �nd a kernel k(x, t) of the integral term in

(1.1) if a solution to the Cauchy problem (1.1) and (1.2) is known on x = y for all
y ∈ Rn and t ∈ [0, T ] :

u(y, y, t) = ψ(y, t), ψ(y, 0) = ϕ(y, y). (1.3)

Inverse problem 2: when n = 1, �nd a kernel k(x, t) of the integral term in
(1.1) if a solution to the Cauchy problem (1.1) and (1.2) is known and it is given by
(1.3).

Among the works which are close to the inverse problems 1 and 2 we note [31]-[33].
In [31] there was proven the uniqueness theorem for solution of kernel determination
problem for one-dimensional heat conduction equation. The papers [32], [33] deal with
the inverse problems of determining the kernel depending on a time variable t and
(n − 1)-dimensional spatial variable x′ = (x1, ..., xn−1) . While the main part of the
considered integro-di�erential equation is n-dimensional heat conduction operator and
the integral term has a convolution type form with respect to unknown functions: the
solutions of direct and inverse problems. It should be here noted that the kernel k(t, x)
in (1.1) depends on all variables like, and the solution u(x, t) of the direct problem
(1.1) and (1.2).

Let Bm (Q) be the class of m times continuously di�erentiable with respect to all
variables and bounded together with all derivatives up to the order of m in the domain
Q functions. When m = 0, B0 (Q) =: B (Q) and this is usual space of continuous and
bounded functions.

In this paper we assume that the function k(x, t) with derivatives kxixj
, i, j =

1, 2, ..., n, kt belongs to B (DT ), DT := {(x, t) : x ∈ Rn, 0 ≤ t ≤ T} for any �xed
T > 0, and the function ϕ(x, y) is in B4 (Rn × Rn) .

Besides, let the function k(x, t) have the separable form, i.e. it can be expressed as
the sum of a �nite number N of terms, each of which is the product of a function of x
only and a function of t only:
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k(x, t) =
N∑

i=0

ai(x)bi(t), ai(x) ∈ B2(Rn), bi(t) ∈ C1(R), (1.4)

where C1 (R) is the class of continuously di�erentiable in R functions. The functions
ai(x) can be assumed to be linearly independent, otherwise the number of terms in
relation (1.4) can be reduced.

2. Inverse problem 1

The main result of this section is the following uniqueness theorem for the inverse
problem 1:

Theorem 2.1. Suppose that the all assumptions about function ϕ(x, y) in Section 1
are ful�lled. Besides, the function ψ(y, t) together with derivatives ψt, ψtt and ψtyiyi

, i =
1, ..., n belong to the class B (DT ) for any �xed T > 0 and

inf
y∈Rn

| ψ(y, t) |= µ(t) ≥ µ0 > 0, (2.1)

where µ0 is a known numbers, then any function k(x, t) having the form (1.4) is
uniquely determined by the information (1.3) in domain DT ,

2.1. Auxiliary problem

In this paper we are not dwell on issues related to the existence theorem of the
inverse problem 1. We note only natural necessary conditions which must satisfy the
function ψ(y, t). They are the second equalities of (1.3), (2.3) and

∆yψt(y, 0)− ψtt(y, 0) = ∆x∆yϕ(y, y) + 2
n∑

i=1

∆xϕxiyi
− k(y, 0)ϕ(y, y),

which follows from the equalities (2.8) and (2.9).
First of all we write the problem (1.1)-(1.3) with respect to the functions ut, k. It

follows from (1.1)-(1.3) the problem for these functions:

(ut)t −∆xut = k(x, t)ϕ(x, y) +

∫ t

0

k(x, τ)ut(x, y, t− τ)dτ, (2.2)

ut(x, y, 0) = ∆xϕ(x, y), (2.3)

ut(y, y, t) = ψt(y, t), ψt(y, 0) = ∆xϕ(y, y), y ∈ Rn. (2.4)

Here, the initial condition (2.3) was obtained from equality (1.1) by setting t = 0.
Further introduce the notations

ωi := utyi
, i = 1, 2, ..., n, v = 2divxω + divyω.

Here and below, a variable in index of operators div, grad indicates that they apply in
this variable.
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Di�erentiating (2.2) and (2.3) with respect to yi, we get the Cauchy problem for
the determining of functions ωi(x, y, t)

(ωi)t −∆x(ωi) =

= k(x, t)ϕyi
(x, y) +

∫ t

0

k(x, τ)ωi(x, y, t− τ)dτ, x ∈ Rn, t ∈ (0, T ], (2.5)

ωi(x, y, 0) = ∆xϕyi
(x, y), i = 1, 2, ..., n. (2.6)

Applying by di�erential operators 2 ∂
∂xi

and ∂
∂yi

to equation (2.5) alternately and
summing the results with respect to i from i = 1 to i = n, taking into account the
above introduced notation, we obtain the equation for function v(x, y, t)

vt −∆xv =

= k(x, t)

[
2

n∑
i=1

ϕxiyi
+ ∆yϕ

]
(x, y) +

∫ t

0

v(x, τ)v(x, y, t− τ)dτ+

+2gradxk(x, t) · gradyϕ(x, y) + 2

∫ t

0

gradxk(x, τ) · ω(x, y, t− τ)dτ, (2.7)

where a · b means the scalar product of vectors a and b. From (2.6) in this way, we get
the initial condition

v(x, y, 0) = 2
n∑

i=1

∆xϕxiyi
(x, y) + ∆x∆yϕ(x, y). (2.8)

It follows from (2.4) the relations

ωi(y, y, t) =
∂

∂yi

ut(y, y, t) = (utxi
+ utyi

) (y, y, t) = ψtyi
(y, t),

ωiyi
(y, y, t) =

∂2

∂y2
i

ut(y, y, t) =

= (utxixi
+ 2utxiyi

+ utyiyi
) (y, y, t) = ψtyiyi

(y, t), i = 1, 2, ..., n.

divyω(y, y, t) =

(
∆xut + 2

n∑
i=1

utxiyi
+ ∆yut

)
(y, y, t) = ∆yψt(y, t).

In view of the last equalities and (2.2), we note that the condition (1.3) in the term of
function v can be written in the form

v(y, y, t) = ∆yψt(y, t)− ψtt(y, t) + k(y, t)ϕ(y, y) +

∫ t

0

k(y, τ)ψt(y, t− τ)dτ. (2.9)

Note that at the found from (2.5) and (2.6) ωi, i = 1, 2, ..., n, the function v can be
determined from the problem (2.7) and (2.8).

We present two lemmata, which will be needed in future use.
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Lemma 2.1. For a solution p(x, t) of problem

pt −4xp =

∫ t

0

h(x, τ)p(x, t− τ)dτ + f(x, t), p|t=0 = λ(x), x ∈ Rn, t > 0 (2.10)

in the domain DT takes place the estimate

|p(x, t)| ≤ ΦeT‖h‖T t +

∫ t

0

F (τ)eT‖h‖T (t−τ)dτ, (2.11)

where

‖h‖T := max
0≤t≤T

sup
x∈Rn

|h(x, t)|, Φ := sup
x∈Rn

|λ(x)|, F (t) := sup
x∈Rn

|f(x, t)|.

For proof of this lemma, we note that the solution of Cauchy problem (2.10)
satis�es the integral equation

p(x, t) =
1(

2
√
πt
)n ∫

x∈Rn

e
−|x−ξ|2

4t λ(ξ)dξ+

+
1

(2
√
π)

n

∫ t

0

∫
x∈Rn

e
−|x−ξ|2
4(t−τ)(√
t− τ

)nf(ξ, τ)dξdτ +
1

(2
√
π)

n

∫ t

0

∫
x∈Rn

e
−|x−ξ|2
4(t−τ)(√
t− τ

)n×
×
∫ τ

0

h(ξ, τ − α)p(ξ, α)dαdξdτ.

Using the standard method for estimating integrals, we have

U(t) ≤ Φ +

∫ t

0

F (τ)dτ + ‖h‖TT

∫ t

0

U(τ)dτ,

where U(t) := supx∈Rn |p(x, t)|. From here, based on Gronwall's inequality follows
(2.10).

Lemma 2.2. [40]. Let k(x, t) has the form (1.4) and K(t) := sup
x∈Rn

|k(x, t)| . Then

there exists a constant K0 (generally speaking, di�erent for each function k) so that
the inequality

|kxi
(x, t)| ≤ K0K(t), i = 1, ..., n (2.12)

is true.
The proof of this lemma is based on the assumption that the system of functions

ai, i = 1, 2, ..., N can be considered linearly independent in Rn (otherwise, one can
rearrange the terms in (1.4), leaving only a linearly independent system of functions
ai). In fact, then there is β > 0 so that

sup
x∈Rn

∣∣∣∑N
j=1 cjaj(x)

∣∣∣ ≥ β, if
∑N

j=1 |cj| = 1. In view of this, we have

sup
x∈Rn

|k(x, t)| = sup
x∈Rn

∣∣∣∣∣
N∑

j=1

aj(x)
bj(t)∑N

l=1 |bl(t)|

∣∣∣∣∣
N∑

l=1

|bl(t)| ≥ β
N∑

l=1

|bl(t)| .
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At the same time, it follows from (1.4)

|kxi
(x, t)| ≤ max

1≤j≤N
sup
x∈Rn

|ajxi
(x)|

N∑
j=1

|bj(t)| .

Matching the last two inequalities, we �nd

|kxi
(x, t)| ≤ K0 sup

x∈Rn

|k(x, t)| ≤ K0K(t),

where

K0 :=
1

β
max

1≤j≤N
sup
x∈Rn

|ajxi
(x)| .

2.2. Proof of main result

For proof of the main result, we suppose that there are two solutions k1 and k2

of problem (1.1)-(1.3) and denote the corresponding to these functions solutions of
Cauchy problem (1.1), (1.2) by u1 and u2, respectively. Introduce functions ω(1) =(
ω

(1)
1 , ..., ω

(1)
n

)
, ω(2) =

(
ω

(2)
1 , ...ω

(2)
n

)
, v1, v2, similarly to functions ω = (ω1, ..., ωn) , v.

We also denote

k̃ = k1 − k2, ω̃ = ω(1) − ω(2), ω̃i = ω
(1)
i − ω

(2)
i , i = 1, ..., n, ṽ = v1 − v2.

Then for ω̃i, ṽ, from the equations (2.5)-(2.8) we �nd

ω̃it −∆ω̃i =

∫ t

0

k1(x, τ)ω̃i(x, y, t− τ)dτ+

+k̃(x, t)ϕyi
(x, y) +

∫ t

0

k̃(x, τ)ω
(2)
i (x, y, t− τ)dτ, (3.1)

ω̃i|t=0 = 0, i = 1, ..., n, (3.2)

ṽt −4xṽ =

∫ t

0

k1(x, τ)ṽ(x, y, t− τ)dτ+

+k̃(x, t)

[
2

n∑
i=1

ϕxiyi
+ ∆yϕ(x, y)

]
+ 2gradxk̃(x, t) · gradyϕ(x, y)+

+

∫ t

0

k̃(x, τ)v2(x, y, t− τ)dτ + 2

∫ t

0

gradxk̃(x, τ) · ω(2)(x, y, t− τ)dτ+

+2

∫ t

0

gradxk1(x, τ) · ω̃(x, y, t− τ)dτ, (3.3)

ṽ|t=0 = 0. (3.4)
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It follows from (2.9) the equality

ṽ|x=y = k̃(y, t)ϕ(y, y) +

∫ t

0

k̃(y, τ)ψt(y, t− τ)dτ. (3.5)

The equations (3.1)-(3.5) present the homogenous system of equations with respect

to unknown functions ω̃i, i = 1, ..., n, ṽ and k̃. It is required to proof that this system
has only trivial solution in the domain DT . To show this fact we need the estimates of
functions ω̃, i = 1, ..., n, ṽ through k̃.

In what follows we use the following notations for norms of the known functions
depending on di�erent variables:

‖z1‖ := sup
(x,y)∈R2n

|z1(x, y)|-for functions depending on (x, y);

‖z2‖T := sup
(x,t)∈DT

|z2(x, t)|-for functions depending on (x, t);

‖z3‖T := sup
(x,y)∈R2n,t∈(0,T ]

|z3(x, y, t)|-for functions depending on (x, y, t) and notations

for norms of the unknown functions

‖ω̃‖T := max
1≤i≤n

max
0≤t≤T

sup
(x,y)∈R2n

|ω̃i(x, y, t)| , ‖ṽ‖T := max
0≤t≤T

sup
(x,y)∈R2n

|ṽ(x, y, t)| .

Using lemma 2.2 for ω̃i from (3.1) and (3.2), we obtain the estimate

|ω̃i(x, y, t)| ≤
∫ t

0

[
‖ϕyi

‖K̃(τ) + ‖ω2
i ‖T

∫ τ

0

K̃(α)dα

]
eT‖k1‖T (t−τ)dτ ≤

≤
(
‖ϕyi

‖+ T‖ω2
i ‖T

) ∫ t

0

K̃(τ)eT‖k1‖T (t−τ)dτ, i = 1, ..., n. (3.6)

Similarly, from (3.3) and (3.4) we have the estimate for ṽ:

|ṽ(x, y, t)| ≤
[
2n max

1≤i≤n
‖ϕxiyi

‖+ ‖∆yϕ‖
] ∫ t

0

K̃(τ)eT‖k1‖T (t−τ)dτ+

+2

∫ t

0

sup
x∈Rn

∣∣∣gradxk̃(x, t) |gradyϕ(x, y)|
∣∣∣ eT‖k1‖T (t−τ)dτ+

+

∫ t

0

∫ τ

0

sup
(x,y)∈R2n

∣∣∣k̃(x, α)v2(x, y, τ − α)dα+ 2gradxk̃(x, α) · ω(2)(x, y, τ − α)dα+

+2gradxk(x, α) · ω̃(x, y, τ − α)dα
∣∣∣eT‖k1‖T (t−τ)dτ, (3.7)

In accordance with the assumption of theorem, since functions k1, k2, are repre-
sentable in the form (1.4), then k̃ is also representable in this form. In view of lemma

2.2, for function k(x, t) the inequality (2.12) holds. Therefore for the function k̃ is valid
the inequality with constant K00 :

k̃xi
≤ K00K̃(t).
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Taking into account this inequality for k̃ and (3.6) for function ω̃ we rewrite the estimate
(3.7) as follows

|ṽ(x, y, t)| ≤ N (T, n,K0, K00)

∫ t

0

k̃(τ)dτ, (3.8)

where

N(T, n,K0, K00) :=
[
‖∆ϕ‖+ 2n max

1≤i≤n
‖ϕxiyi

‖+ T‖v2‖T + 2T‖ω2‖T +

+2nK0 max
1≤i≤n

‖ϕyi
‖+ 2nK0

(
max
1≤i≤n

‖ϕyi
‖+ T‖ω2‖T )T 2

)
e‖k1‖T T 2

]
e‖k1‖T T 2

.

From the equality (3,5), in view of (2.1) and (3.8), we have

K̃(t) ≤ 1

µ0

∣∣∣∣ṽ|x=y −
∫ t

0

k̃(y, τ)ψt(y, t− τ)dτ

∣∣∣∣ ≤
≤ 1

µ0

[N(T, n,K0, K00) + ψ0]

∫ t

0

K̃(τ)dτ, ψ0 = max
t∈[0,T ]

sup
y∈Rn

|ψt(y, t)|.

It follows from this inequality that k̃ ≡ 0, i.e. k1(x, t) = k2(x, t) for (x, t) ∈ DT ,
and the theorem is proven.

3. Inverse problem 2

The main result of this section is the following theorem of uniqueness for inverse
problem 2.

Theorem 3.1. Assume that c(t) ∈ C [0, T ] 0 < c0 ≤ c(t) ≤ c1 ≤ 1 and ϕ(x, y) ∈
B4(R2). Moreover, let the function ψ(y, t), together with the derivatives ψt, ψtt, ψtyy

belongs to the class B(DT ) for any �nite T > 0, c(0)(ϕxxyy(y, y) + 2ϕxxxy(y, y)) −
1

c(0)
k(y, 0)ϕ(y, y) = ψtyy(y, 0)− 1

c(0)
ψtt(y, 0) + c′(0)

c2(0)
ψt(y, 0) and

inf
(x,y)∈R2

|ϕ(x, y)| ≥ β0 > 0,

where ci, i = 1, 2, β0 are known number. Then, the function k(x, t) representable in
the form (1.4) is uniquely determined in the domain D(T ).

Proof. In order to prove the theorem by di�erentiating the original equation (1.1)
and condition (1.2), we obtain additional relations for auxiliary functions uy := ϑ:

ϑt − c(t)ϑxx =

t∫
0

k(x, t− τ)ϑ(x, y, τ)dτ, (4.1)

ϑ|t=0 = ϕy(x, y). (4.2)

From (4.1)-(4.2), we get new problem by entering ϑt := ϑ(1):

ϑ
(1)
t − c(t)ϑ(1)

xx = c′(t)ϑxx +

t∫
0

k(x, τ)ϑ(1)(x, y, t− τ)dτ + k(x, t)ϕy(x, y) (4.3)
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ϑ(1)
∣∣
t=0

= c(0)ϕxxy(x, y), (4.4)

where

ϑxx =
1

c(t)
ϑ(1) − 1

c(t)

t∫
0

k(x, t− τ)ϑ(x, y, τ)dτ.

Besides, entering with (4.3), (4.4) the new function ω := 2ϑ
(1)
x + ϑ

(1)
y we obtain the

following problem:

ωt − c(t)ωxx = (ln c(t))′ω + k(x, t)(2ϕxy(x, y) + ϕyy(x, y)) + 2kx(x, t)ϕy(x, y)+

+

t∫
0

k(x, τ)ω(x, y, t− τ)dτ − (ln c(t))′
t∫

0

k(x, t− τ)ω(x, y, τ)dτ−

−(ln c(t))′
t∫

0

kx(x, t− τ)ϑ(x, y, τ)dτ +

t∫
0

kx(x, t− τ)ϑ(1)(x, y, τ)dτ

ω
∣∣
t=0

= c(0) [ϕxxyy(x, y) + 2ϕxxxy(x, y)] .

For the function ω, di�erentiating (1.3) �rst with respect to t and then twice with
respect to y, we obtain the following conditions

(uxxt + 2uxyt + uyyt)
∣∣
x=y

= ψtyy(y, t),

ω
∣∣
x=y

= ψtyy(y, t)−
1

c(t)
ψtt(y, t) +

c′(t)

c2(t)
ψt(y, t) +

c′(t)

c2(t)

t∫
0

k(y, t− τ)ψ(y, τ)dτ−

+
1

c(t)
k(y, t)ϕ(y, y) +

1

c(t)

t∫
0

k(y, t− τ)ψt(y, τ)dτ.

The further proof of Theorem 3.1 is completely analogous to the proof of Theorem
2.1. In this case, it is necessary to use the formula

p(x, t) =

∫
R

ϕ(ξ)G(x− ξ; θ(t))dξ +

θ(t)∫
0

dτ

c(θ−1(τ))
×

×
∫
R

F (ξ, θ−1(τ))G(x− ξ; θ(t)− τ)dξ,

which provides the solution of the following Cauchy problem for the heat equation with
time-variable coe�cient of thermal conductivity:

pt − c(t)pxx = F (x, t), x ∈ R, t > 0,
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p(x, 0) = ϕ(x), x ∈ R.

In (4.8) θ(t) =
t∫

0

c(τ)dτ and θ−1(t) is the inverse function to θ(t); G(x− ξ; θ(t)− τ) =

1

(2
√

π(θ(t)−τ))n
e

−|x−ξ|2
4(θ(t)−τ) , ξ = (ξ1, ..., ξn), ξ′ = (ξ1, ..., ξn−1), dξ = dξ1...dξn, |x|2 = x2

1 +

...+ x2
n.

For unknown functions ϑ and ϑ′ in (4.5) the integral equations are derived from
Cauchy problems (4.1), (4.2) and (4.3), (4.4), respectively. Carrying out similar esti-
mates as in Section 2.2 completes the proof of Theorem 3.1.

1 Conclusion

In this article, we proved the uniqueness theorems for the de�nition of the convolution
kernel in a parabolic integro-di�erential equation describing thermal processes with
memory. In contrast to the results obtained in [30], [32], [33], here the kernel depends
on all variables x and t. The study of the existence of solutions to inverse problems 1
and 2 is di�cult and remains an open question.
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