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Abstract 84 

Forecasts of forest responses to climate variability are governed by climate exposure and 85 

ecosystem sensitivity, but ecosystem model projections and process representations are under-86 

constrained by data at multidecadal and longer timescales.  Here, we assess ecosystem 87 

sensitivity to centennial-scale hydroclimate variability, by comparing dendroclimatic and pollen-88 

inferred reconstructions of drought, forest composition and biomass for the last millennium with 89 

five ecosystem model simulations.  In both observations and models, spatial patterns in 90 

ecosystem responses to hydroclimate variability are strongly governed by ecosystem sensitivity 91 

rather than climate exposure.  Ecosystem sensitivity was highest in simpler models and higher 92 

than observations, suggesting that interactions among biodiversity, demography, and 93 

ecophysiology processes dampen the sensitivity of forest composition and biomass to climate 94 

variability and change.  By integrating ecosystem models with observations from timescales 95 

extending beyond the instrumental record, we can better understand and forecast the 96 

mechanisms regulating forest sensitivity to climate variability in a complex and changing world. 97 

  98 



Introduction 99 

Exposure to 21st-century climate change is expected to profoundly impact global forest 100 

composition, diversity, and structure (Dawson et al. 2011; Keeley et al. 2019), but the sensitivity 101 

of ecosystems to climate variability at multi-decadal to centennial time scales is poorly 102 

constrained by instrumental observations.  Multiple observational studies that employ 103 

subcontinental- to continental-scale data networks across a broad range of timescales have 104 

sought to empirically estimate the sensitivity of forest ecosystems to climate variability.  The 105 

sensitivity of tree growth rates, biomass accumulation, and ecophysiological processes to 106 

interannual climate variability is well-documented by dendroecological data, with compelling 107 

evidence that forest sensitivity to climate depends on forest age and is non-stationary across 108 

space and time (Charney et al. 2016; Klesse et al. 2018; Thom et al. 2019; Peltier & Ogle 109 

2020).  On glacial-interglacial timescales, networks of fossil pollen records show that 110 

temperature variations are the primary driver of forest composition and species distributions 111 

(Shuman et al. 2004; Nolan et al. 2018), while over the last several thousand years, 112 

hydroclimate variability has strongly affected forest composition and structure in temperate 113 

forests of the northeastern and upper midwestern United States (Booth et al. 2012; Shuman et 114 

al. 2019).   115 

Terrestrial ecosystem models used to forecast responses to climate change often have 116 

difficulty reproducing broad-scale and long-term responses to environmental variability, despite 117 

being well-grounded in empirical evidence and ecological theory (Friedlingstein et al. 2006, 118 

2014; Matthes et al. 2016). These models mechanistically connect ecophysiological processes 119 

and climate variability to past and present changes in forest composition and structure, but are 120 

subject to uncertainty in external forcings (e.g. drivers), process representation, and 121 

parametrization that complicates data-model comparisons (Figure 1) (LeBauer et al. 2013; 122 

Matthes et al. 2016; Dietze 2017; McLachlan & PalEON Project 2018).  Each model includes 123 

hypotheses about the primary processes and ecosystem characteristics governing forest 124 



change, various simplifying assumptions, and tradeoffs between computational tractability and 125 

process complexity (De Kauwe et al. 2013; Walker et al. 2014; Medlyn et al. 2015).   Previous 126 

data-model comparisons have returned mixed evidence about whether models underestimate or 127 

overestimate the sensitivity of forest processes such as net primary productivity (NPP) and 128 

mortality to climate change (Schimel et al. 2015; Walker et al. 2015; Rollinson et al. 2017).  As a 129 

result, projections of forest compositional and structural responses to climate change have high 130 

uncertainty, limiting their utility for ecological forecasting and science-based adaptation 131 

(Friedlingstein et al. 2014).  132 

Several challenges have traditionally hindered the joint analysis and integration of 133 

terrestrial ecosystem models and paleoecological data to better constrain modeled responses to 134 

climate variations at multi-decadal and longer timescales.  First, the raw observations collected 135 

from fossil pollen records (counts of individual pollen taxa) have no direct counterparts in 136 

ecosystem models.  Bayesian hierarchical models are providing new process-based 137 

approaches to infer emergent ecosystem properties from fossil pollen records, such as forest 138 

composition, diversity, percent cover, and biomass (Raiho et al. in prep; Blarquez & Aleman 139 

2016; Dawson et al. 2016), but the number of state variables that can be estimated from 140 

paleoecological data remains small relative to the number of latent (i.e. unobservable) variables 141 

simulated by ecosystem models (Fig. 1).  Second, pre-instrumental model-data comparisons 142 

are complicated by reliance on driver datasets derived from general circulation models (GCMs). 143 

GCMs generally capture macroscale spatial patterns and low-frequency trends in climate but 144 

are unable to fully capture the complexity and stochasticity of local to regional-scale weather 145 

phenomena at the subdaily resolution needed to drive ecosystem models, resulting in 146 

systematic spatial and temporal biases in model simulations (Anav et al. 2013; Matthes et al. 147 

2016; Dietze et al. 2018).  Third, the native temporal resolution varies between paleodata and 148 

models and requires a temporal standardization.  Due to these challenges, the predicted 149 

sensitivity of ecosystem model state variables such as forest composition and biomass to 150 



climate change is largely unvalidated by observations at multidecadal and longer timescales, 151 

resulting in wide divergence among terrestrial ecosystem models in their 21st-century 152 

projections (Friedlingstein et al. 2006, 2014). Fourth, terrestrial ecosystem models vary widely in 153 

represented processes, which can challenge intermodel comparisons but also provide insight 154 

into key governing ecological processes when data-model discrepancies emerge. 155 

Here, we seek to establish the patterns of forest ecosystem and climate variability in the 156 

north-central and northeastern US for the last millennium (850-1850 C.E.) and identify the 157 

mechanisms underpinning both forest ecosystem sensitivity and observed data-model 158 

discrepancies. In these analyses, we test hypotheses about the relative importance of 159 

hydroclimate exposure and climate sensitivity as determinants of ecosystem variability. We also 160 

hypothesize that ecosystem models will be overly sensitive to hydroclimate variability due to 161 

insufficient representation of ecophysiological and demographic processes that can dampen 162 

climate responses. To this end, we present a novel series of data-model and model-model 163 

comparisons that are designed to overcome traditional barriers to data-model intercomparison 164 

for pre-instrumental times. Our analyses combine dendroclimatic indices of drought, recently 165 

published Bayesian spatiotemporal estimates of forest composition and biomass derived from 166 

pollen that provide independent checks on last-millennium simulations from five terrestrial 167 

ecosystem models for the northeastern and upper midwestern United States.  The data-model 168 

comparisons discriminate among differing representations of forest processes, while the model-169 

model comparisons help diagnose causal relationships among ecological processes, changes in 170 

forest states, and climate variability (Fig. 1).  To test hypotheses while also overcoming known 171 

geographic biases in the model simulations of ecosystem state such as forest composition that 172 

source back to biases in the climate model drivers (Matthes et al. 2016), we develop a new 173 

variability metric that we apply to the data and model-derived products that focuses on  174 

comparisons among variability of hydroclimate, composition, and biomass (Fig. 1). Our results 175 

indicate that at centennial timescales, spatial patterns in the variability of forest composition and 176 



biomass are regulated by ecological factors such as ecotonal position and complexity rather 177 

than climate exposure as defined by the local magnitude of climate variability. 178 

 179 

Materials & Methods 180 

Overview 181 

We employ a combination of data-model and model-model comparisons (Fig. 1) in which 182 

we combine paleoclimatic and paleoecological datasets to draw inferences about past variations 183 

in hydroclimate and forest composition and biomass.   The temporal domain of this study is 850-184 

1850 AD and is bounded by the temporal extent of the climate drivers (850 AD) and time of 185 

settlement-era tree surveys (ca. 1850 AD).  In our study, ‘data’ refers to observation-based 186 

statistical models of past drought, forest composition, and biomass, reconstructed from tree 187 

rings, historical tree surveys, and networks of fossil pollen records.  These data-based 188 

inferences are fully independent of the ecosystem model simulations.  Model-based 189 

comparisons are from the PalEON Ecosystem Model Intercomparison Project (PEMIP) 190 

(Rollinson et al. 2017), which used spatially and temporally downscaled past climate simulations 191 

from the Fifth Coupled Model Intercomparison Project (CMIP5) as drivers.  Comparisons among 192 

ecosystem model simulations and empirical data rely on normalized values compared in 193 

environmental space, rather than geographic space, in order to reduce the effects of any bias in 194 

the climate drivers in our analyses and to focus on sensitivity of ecosystems to climate variability 195 

(Supplemental Figure 1).   196 

 197 

Observational Datasets 198 

The inferred datasets leverage recent advances in pollen-vegetation modeling (Dawson 199 

et al. 2016), a form of proxy system modeling (Evans et al. 2013) in which ecosystem state 200 

variables such as composition and biomass are estimated along with associated observational 201 

uncertainties.  Of the three inferred datasets used here, two were derived from networks of 202 



fossil pollen records provided by individual data contributors and the Neotoma Paleoecology 203 

Database and were calibrated against historical surveys of forest composition and structure 204 

from the early stages of EuroAmerican settlement (Liu et al. 2011; Dawson et al. 2016; Goring 205 

et al. 2016; Kujawa et al. 2016; Paciorek et al. 2016).  Pollen-based inferences are based on 206 

statistical pollen-vegetation models (PVMs) called STEPPS and ReFAB, and represent 207 

fractional vegetation composition and total woody biomass, respectively, for 12 tree genera that 208 

are common elements of upper Midwest forests. STEPPS is a Bayesian hierarchical spatio-209 

temporal model that infers fractional forest composition from networks of fossil pollen records 210 

(Paciorek & McLachlan 2009; Dawson et al. 2016, 2019b; Trachsel et al. 2020).  STEPPS 211 

employs a process-based representation of pollen dispersal and production, with taxon-specific 212 

parameterizations. STEPPS is calibrated using spatial datasets of pollen samples and forest 213 

composition data, here from the settlement era ((Paciorek & McLachlan 2009; Dawson et al. 214 

2016), then run for fossil pollen assemblages for other time intervals to produce posterior 215 

estimates of past forest composition. Using this framework, STEPPS: (i) explicitly characterizes 216 

uncertainty in data and processes, with posterior distributions of process parameters and state 217 

variables such as forest composition, and (ii) borrows information across space and time, 218 

allowing for spatially comprehensive estimates of composition. For both the upper Midwestern 219 

USA (UMW; Minnesota, Wisconsin, Michigan) (Dawson et al. 2019a) and the northeastern USA 220 

(NEUS) (Trachsel et al. 2020), STEPPS has been used to estimate centennially-resolved forest 221 

composition for the late Holocene (250 B.C. to 1750 A.D) at a 24 km grid; here we use the 222 

results from 850 to 1750 AD.  223 

  ReFAB also employs a similar approach to STEPPS, but focuses specifically on 224 

estimating total aboveground woody biomass (Raiho et al. in prep). ReFAB is calibrated using 225 

the relationship between settlement-era multivariate pollen counts and biomass from PLS 226 

surveys (Paciorek et al. 2019). Parameter estimates from calibration are then used to 227 

reconstruct centennially resolved biomass for 77 sites in the UMW for the last 10,000 years 228 



(Raiho et al. in prep). ReFAB can characterize the uncertainty in sediment pollen age estimates, 229 

calibration parameters, the relationship between species composition and total aboveground 230 

woody biomass, and species-level allometries. 231 

  The Living Blended Drought Atlas (LBDA) provides yearly estimates of summer (mean 232 

June, July, August) Palmer Severity Drought Index (PDSI) for North America, based on 233 

networks of tree-growth chronologies (Cook et al. 2010; Woodhouse et al. 2010). We used 234 

PDSI as our measure of climate variability, because PDSI is an important predictor of forest 235 

dynamics in this domain and can also be calculated directly from the meteorological forcings 236 

used for the ecosystem model simulations (Clifford & Booth 2015; Cook et al. 2015).  LBDA 237 

PDSIs are provided at 0.5-degree spatial grid resolution. Due to varying temporal extent of tree-238 

growth chronologies, the temporal extent of the LBDA varies.  The earliest years in this spatial 239 

domain ranged from 0 to 1671 AD, while the latest year was 2005 (Supplemental Figure 1).   240 

 241 

Modeling Datasets 242 

  PEMIP model simulations here comprised five ecosystem models (ED2; LINKAGES; 243 

LPG-WSL; LPJ-GUESS; and JULES-TRIFFID) with dynamic vegetation run at 254 locations 244 

across the eastern and midwestern US at 0.5-degree spatial resolution. These models vary in 245 

how they characterize forest composition and carbon dynamics and range from species-based 246 

with little ecophysiological process representation (e.g. LINKAGES) to detailed ecophysiology 247 

and cohort representation, but reliance on plant functional types (PFTs; e.g. ED2, Table 1). LPJ-248 

GUESS and LPJ-WSL both included stochastic fire disturbances in their simulations, while other 249 

models such as ED and LINKAGES include processes of tree mortality that assume landscape-250 

scale equilibrium (Rollinson et al. 2017). 251 

The PEMIP climate drivers were developed following a standard protocol (Rollinson et 252 

al. 2017, Supplemental Figure 1). CCSM4 output from the Paleoclimate Modeling 253 

Intercomparison Project, Phase III (PMIP3) past millennium simulations and the Coupled Model 254 



Intercomparison Project, Phase 5 (CMIP5) historical simulations were downscaled to 0.5-degree 255 

spatial resolution and 6-hourly temporal resolution using standard protocols (Kumar et al. 2012; 256 

Rollinson et al. 2017).  Soil texture is from the Harmonized World Soil Database (Wei et al. 257 

2014).  After the 6-hourly PEMIP climate driver datasets were created, they were then 258 

temporally averaged to meet the specific driver requirements of individual ecosystem models, 259 

which vary in temporal resolution.  ED2 and JULES-TRIFFID use the full suite of 6-hourly 260 

drivers for temperature, precipitation, shortwave radiation, longwave radiation, surface pressure, 261 

specific humidity, wind speed, and carbon dioxide concentration.  Meteorological drivers for the 262 

two LPJ variants include daily temperature, precipitation, and shortwave radiation plus longwave 263 

radiation for LPJ-WSL.  LINKAGES only requires monthly average temperature and 264 

precipitation.  Monthly temperature and precipitation were combined with soil water holding 265 

capacity computed from model driver soil texture and depth to calculate PDSI, following (Cook 266 

et al. 2015), but using the Thornthwaite equation for evapotranspiration (Thornthwaite & Mather 267 

1957; Pelton et al. 1960) due to evapotranspiration varying among ecosystem models given the 268 

same temperature and precipitation drivers as a results of differences in model structure and 269 

parameterization.  From the ecosystem models we extracted two variables that can be 270 

compared to paleoecological observations (fractional forest composition and biomass) and four 271 

latent variables (Fig. 1): gross primary productivity (GPP), net primary productivity (NPP), net 272 

ecosystem exchange (NEE), and leaf area index (LAI).  273 

 274 

Analyses 275 

Analyses focused on the comparison of empirical data and ecosystem model outputs of 276 

centennial-scale variability in forest composition and biomass driven by drought variability over 277 

the last 1,000 years. We first ensured temporal comparability by transforming or aggregating 278 

variables to a common centennial resolution. Second, we developed common metrics of 279 



ecosystem and drought variability to support data-model and model-model intercomparisons 280 

and to minimize the potential effects of climate model driver bias.  281 

  With respect to temporal compatibility, STEPPS and ReFAB datasets are natively at 282 

100-year resolution and variability was calculated as the mean of the absolute first differences 283 

between adjacent time points, using all posterior draws from these datasets and then calculating 284 

the mean variability value across posterior draws.  For the annually resolved datasets (all model 285 

output, drivers, and LBDA), a generalized additive model (GAM) was used to smooth these time 286 

series to a centennial-scale resolution.  For the GAM, we predicted the response variable (e.g. 287 

drought, biomass, GPP) as a function of time (year) as a thin-plate regression spline with one 288 

knot per 100 years using the gam function in the mgcv package in R (Wood 2017; Simpson 289 

2018).  From the GAM, we generated a 1000-member posterior distribution of each predicted 290 

variable through time using the error and covariance of the intercept and spline parameters.  We 291 

then extracted the predicted values at 100-year intervals and calculated variability as described 292 

for STEPPS and ReFAB.  293 

  For the second step, we developed two common metrics for our comparisons: mean 294 

relative variability and sensitivity to hydroclimate variability. Mean relative variability was 295 

calculated by normalizing all variability values by dividing by the mean for the variable across 296 

the dataset (i.e. across all spatiotemporal loci for a given combination of variable and model or 297 

observational dataset).   This normalization is intended to facilitate comparison among variables 298 

with different units and scales. Because each grid cell had multiple taxa, for the compositional 299 

response variable we used the variability of the taxon or plant functional type with the highest 300 

fractional composition at each location. Sensitivity to hydroclimate variability was quantified as 301 

the slope of a linear regression between variability as the independent variable and variability of 302 

the ecosystem response variable such as composition or biomass.  These analyses always 303 

used the appropriate observational or modeled PDSI variability (i.e. LBDA for the pollen-inferred 304 

compositional variability; calculated PEMIP driver PDSI variability for the model-simulated 305 



compositional variability) to ensure internal consistency between climatic forcing and ecosystem 306 

response. For all analyses and presented results, normalized variability is log-transformed to 307 

meet standard statistical assumptions of Gaussian distributions and homoscedasticity.   308 

 309 

Results 310 

In the observational data, variability in forest composition or biomass in the northeastern 311 

US (NEUS) and upper midwestern US (UMW), did not correlate to drought variability (Table 1, 312 

Figs. 2, 3) in contrast with the hypothesis that high exposure to climate variability should lead to 313 

increased compositional variability. Neither the full spatiotemporal domain (Table 1) nor the 314 

UMW (Fig. 3, sensitivity slope = 0.010 SE 0.018) showed a significant relationship between 315 

reconstructed drought and composition variability, although the NEUS showed weak sensitivity 316 

(Fig. 3, sensitivity slope = 0.065 SE 0.027).  Reconstructed biomass variability (Fig 2., biomass 317 

reconstructions not available for the NEUS, (Paciorek et al. 2019)) also was uncorrelated to 318 

drought variability (Table 1) and instead showed the highest variability at the historic prairie-319 

forest ecotone (Fig. 2) (Goring & Williams 2017).  In pollen-based reconstructions, composition 320 

and biomass variability were weakly but positively related (Fig. 3c, R2=0.09, slope=0.479 SE 321 

0.187) and locations with higher taxonomic richness tended to have higher variability 322 

(Supplemental Fig. 2). 323 

  Modeled ecosystem sensitivity to drought variability was generally similar to or higher 324 

than observations, with less-complex models tending to have a too-high predicted sensitivity 325 

relative to the empirical reconstructions (Fig. 3).  Composition variability was more sensitive to 326 

drought variability than in reconstructions for three of five ecosystem models (ED2, LPJ-WSL, 327 

and TRIFFID), with the data-model discrepancy most pronounced in models with fewer plant 328 

types or taxa (Fig. 3a, Table 1).  JULES-TRIFFID, which had only two tree PFTs (deciduous and 329 

evergreen), had the highest drought sensitivity (composition slope = -8.633 SE = 1.075, 330 

composition sensitivity slope 0.411 SE = 0.022).  LPJ-WSL and ED2, with respectively six and 331 



five PFTs, had similar mean compositional variability (LPJ-WSL slope = -7.829 SE = 0.943, ED2 332 

slope = -7.156 SE = 0.514), although LPJ-WSL was approximately twice as sensitive to 333 

hydroclimate variability as ED2 (Fig. 3a, Table 1, LPJ-WSL slope = 0.252 SE =0.018, ED2 slope 334 

= 0.118 SE = 0.018).  LINKAGES, which simulated 15 individual species, had among the lowest 335 

sensitivity to drought variability (Fig. 3a, Table 1, composition slope = -6.598 SE = 0.478, 336 

composition sensitivity slope 0.074 SE = 0.018).   337 

  Ecosystem models with simpler representation of vegetation ecophysiology (LINKAGES, 338 

JULES-TRIFFID) also had a too-high sensitivity of biomass to drought variability relative to 339 

empirical reconstructions (Table 1, Fig. 3b).  Both LINKAGES and JULES-TRIFFID showed a 340 

tight positive coupling of biomass sensitivity to drought variability, which corresponded to strong 341 

correlations between biomass and composition variability (Fig. 3c).  LINKAGES showed a one-342 

to-one relationship between composition and biomass variability, which is much stronger than 343 

reconstructions (Fig. 3c). Of all the models, only LPJ-WSL was consistent with the data in 344 

showing a weakly negative relationship between biomass and PDSI variability (Fig. 3b) while 345 

also showing a positive correlation between biomass and composition variability (Fig. 3c).  346 

  Further analysis of latent variables in the ecosystem models confirmed that variations in 347 

modeled ecosystem sensitivity to hydroclimate variability is linked to model complexity of 348 

ecosystem composition and processes (Fig. 4).   There is a cascading series of linkages in 349 

physiological variables within and among taxa (Figs. 1, 4), in which gross primary productivity 350 

(GPP) is directly influenced by temperature and moisture availability, while other state variables 351 

such as net primary productivity (NPP), leaf area index (LAI), and aboveground biomass (AGB) 352 

are regulated by additional downstream processes that may decouple their variability from 353 

climate variability (Fig. 1).  Hence, in most models, GPP variability is the most sensitive to 354 

drought variability (Fig. 4, Supplemental Table 1).  In all models, sensitivity of forest composition 355 

to drought variability seems to be most closely linked to sensitivity of NPP.   NPP sensitivity 356 

tended to be higher in low-diversity models such as JULES-TRIFFID (Figure 4, Supplemental 357 



Table 1).  Higher diversity through more tree types or taxa was associated with higher 358 

compositional variability and reduced sensitivity to drought (Figure 3, Table 1, Supplemental 359 

Figure 2).  360 

  Models with more detailed representation of plant ecophysiology and demography (e.g. 361 

ED2, the two LPJ variants) also tended to have lower biomass sensitivity to hydroclimate 362 

variability (Fig. 4) and agree more closely with observations (Fig. 3).  Biomass sensitivity to 363 

drought variability in our model ensemble was similar to NEE sensitivity in all models except 364 

LPJ-GUESS (Fig. 4, Supplemental Table 1).  LINKAGES and JULES-TRIFFID may be overly 365 

sensitive to hydroclimate variability for entirely different reasons. LINKAGES has a fairly simple 366 

representation of ecophysiological processes while being able to represent species-level 367 

demographic dynamics (Table 1).  In contrast, JULES-TRIFFID contains a sophisticated 368 

representation of ecophysiology but for only two tree PFTs and five PFTs total (Table 1).  The 369 

other models tend to be more intermediate cases, with intermediate to more sophisticated 370 

representations of both ecophysiology and vegetation dynamics.   371 

 372 

Discussion 373 

Over the last millennium (850-1850 A.D.), both paleodata networks and model 374 

simulations suggest that spatial patterns in forest composition and biomass variability in 375 

northeastern and upper midwestern United States are governed more by spatial variations in 376 

ecosystem sensitivity and less by spatial variations in exposure to climate variability.  Ecotonal 377 

regions such as the prairie-forest border have higher variability in composition and structure 378 

than areas of high PDSI variability (Fig. 2).  The intermodel comparisons suggest that added 379 

complexity allows slow-to-change variables such as composition and biomass to be insensitive 380 

to climate variability at centennial scales despite sensitivity of fast-changing ecophysiological 381 

processes such as gross and net primary productivity (Fig. 4).  Incorporation of ecological 382 



processes and characteristics such as diversity and demography all tend to reduce simulated 383 

climate sensitivity and better align simulations with observations (Figs. 3, 4). 384 

These analyses represent a milestone towards the goal of more comprehensive and 385 

rigorous data-model comparisons for timescales and time periods extending beyond the 386 

instrumental record.  Common challenges for multi-centennial data-model comparisons include 387 

1) a need for process-informed statistical models of inference for paleoecological data, 2) 388 

generally lower temporal resolution in paleoecological data than in model simulations and with 389 

more latent variables than for the instrumental period, 3) biases in paleoclimatic simulations 390 

leading to biases in ecosystem model simulations, and 4) differences among models in driver 391 

datasets and represented processes.  The pollen-vegetation models used in our study include 392 

processes for pollen productivity and dispersal that translates relative pollen abundances into 393 

metrics of forest composition and biomass that can be directly compared to those produced by 394 

ecosystem models (Paciorek & McLachlan 2009; Dawson et al. 2016).  We further increased 395 

the commensurability between centennially resolved pollen-based quantifications of forest 396 

change and higher-frequency information from tree rings and ecosystem models by using GAMs 397 

to achieve time series with similarly temporally smoothed properties (Simpson 2018).  By 398 

focusing on time series variability rather than directly comparing magnitude and timing of 399 

change in specific geographic locations or taxonomic groupings we were able to overcome 400 

document ecosystem model biases arising from driver, process, and parameter limitations 401 

(Matthes et al. 2016; Dietze 2017).  Finally, we leveraged differences in process representation 402 

among models as a means of evaluating the importance of specific ecosystem processes for 403 

producing emergent patterns of climate sensitivity that are consistent with paleoecological data 404 

(Medlyn et al. 2015; McLachlan & PalEON Project 2018). 405 

 Given widespread evidence that forest composition and growth is sensitive to climate 406 

variability (Shuman et al. 2004; Allen et al. 2010; Thom et al. 2019), the reporting here of 407 

generally low sensitivity of forest composition and biomass to hydroclimate in reconstructions 408 



may seem surprising (Fig. 2).  Several possible explanations exist.  First, this apparent 409 

insensitivity may be due to the temporal grain of this study: the centennially resolved temporal 410 

grain of our analyses limits detection of the effects of stochastic or short-lived extreme events 411 

such as sub-decadal to decadal drought, which can cause massive mortality events that affect 412 

centennial-scale forest composition (Breshears et al. 2005; Allen et al. 2010; Seidl et al. 2011).  413 

At centennial scales, the effects of extreme weather may be confounded by additional 414 

punctuated disturbances such as fire and pest outbreaks that are often unrepresented in 415 

ecosystem models or purely stochastic and with implicit assumptions of landscape-scale 416 

equilibria (Seidl et al. 2011; Fisher et al. 2018; McCabe & Dietze 2019). Second, apparent 417 

climate sensitivity might increase if the temporal extent was increased to include larger climate 418 

variations during the Holocene and last deglaciation.  During the Holocene, hydroclimatic 419 

variability around the North Atlantic appears to have been an important driver of forest 420 

compositional changes and the collapses of individual tree species (Shuman et al. 2019).  Large 421 

vegetation changes associated with the abrupt temperature variations of the Younger Dryas and 422 

last deglaciation are well documented (Williams et al. 2011), but the temporal extent of this 423 

study was constrained by the temporal extent of the last-millennium PMIP3/CMIP5 simulations 424 

used to drive ecosystem models (Braconnot et al. 2011; Taylor et al. 2012). As the next 425 

generation of transient Holocene simulations become available, the conclusions reached here 426 

about low apparent sensitivity can be revisited.  Third, this paper focuses on spatial patterns of 427 

climate and ecosystem variability, whereas most prior paleoecological studies have tended to 428 

focus on temporal variations (Shuman et al. 2004; Booth et al. 2012).  Dendroecological studies 429 

of climate-driven rates of tree growth are quickly shifting from assumptions of stationary tree-430 

climate relationships to demonstrations that climatic sensitivity varies across space and time  431 

(Rollinson et al. in press; Thom et al. 2019; Peltier & Ogle 2020; Wilmking et al. 2020).  By 432 

focusing on spatial variations in ecosystem variability over the last millennium, our analyses 433 

suggest spatial variation in ecosystem properties are a more important regulator than spatial 434 



variations in climate exposure.  Finally, uncertainties in the proxy-based reconstructions may 435 

lower correlations as detrending techniques used to remove non-climatic signals such as age 436 

effects may dampen estimates of centennial-scale variability (Allen et al. 2018; Esper et al. 437 

2018).  Despite lower PDSI variability in the LBDA than model drivers, we do not think that 438 

spatial variability in hydroclimate variability in the empirical dataset is too low to detect effects on 439 

ecosystem variability.  Hydroclimate data syntheses for the last 2000 years and accompanying 440 

EOF analyses suggest opposite loading patterns between MN/WI and New England, for both 441 

principal components 2 & 3, which together explain 30% of variance in the hydroclimate records 442 

(Shuman et al. 2019).  443 

Process-based ecosystem models are the main vehicle for forecasting climate-driven 444 

ecosystem dynamics across a range of timescales and in principle are better able to 445 

accommodate past and future no-analog climates (Williams & Jackson 2007; Veloz et al. 2012).  446 

However, all ecosystem models face tradeoffs in their ability to represent taxonomic or 447 

functional diversity versus detailed ecophysiological processes that drive ecosystem change 448 

(Fisher et al. 2018).  Process-based ecosystems models will never be able to capture the full 449 

complexity of ecosystems nor perfectly reproduce the patterns of climatological or ecological 450 

variability observed in the past due to observational uncertainties and incomplete constraints of 451 

many processes and parameterizations (Dietze 2017).  This paper has shown how multiple 452 

paleoecological data streams can be combined with harmonized paleoclimatic simulations and 453 

multiple terrestrial ecosystem models to gain new insight into a) the patterns and controls on 454 

past ecosystem variability and b) aspects of models such as diversity and demography where 455 

complex representations are needed to achieve better agreement with the data.  Nevertheless, 456 

these analyses followed a traditional approach in which past ecosystem reconstructions and 457 

simulations were run independently and compared at the final stage of analysis. The next major 458 

step forward is to move to a full data-assimilation framework, in which paleoecological 459 

observations and simulations are combined to provide joint estimates of state variables or better 460 



constrain ecosystem model parameterizations (McLachlan & PalEON Project 2018). Through 461 

this iterative process that draws upon an ever-growing and diversifying suite of observational 462 

data streams (Farley et al. 2018), we can better understand the mechanisms regulating forest 463 

sensitivity to climate variability across a broad range of timescales and thereby better forecast 464 

future forest dynamics in a complex and rapidly changing world. 465 

 466 
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Manuscript Tables 653 
Table 1: Comparison of 1) ecosystem model complexity, based on representation of diversity, 654 
demographic, and ecophysiological processes with 2) variability in forest composition and 655 
biomass and sensitivity to hydroclimate variability. Compositional and biomass variability (Log 656 
Comp. Var.; Log Biom. Var) are represented by log-transformed mean and standard deviation 657 
across space of temporal variability, represented in turn as the sum of centennially-resolved first 658 
differences of fractional composition of the dominant plant type or aboveground biomass.  659 
Composition and biomass sensitivity are represented as the mean slope and standard error of 660 
log-log regression between composition or biomass variability and hydroclimate variability.  PFT 661 
= plant functional types. For sensitivity columns, * indicates slopes significantly different from 662 
zero (p<0.05); † indicates model slope significantly different from pollen (p<0.05). 663 

Data 
Source 
& Model 
Name 

Tree Diversity 
Representation 

Demographic 
Representation 

Vegetation 
Processes 

Comp. 
Var. 
(log) 

Comp. 
Sens. 
(log-log) 

Biom. 
Var. 
(log) 

Biom. 
Sens. 
(log-log) 

Pollen: 
STEPPS, 
ReFAB 

Genera: 12 
trees 

relative 
abundance 

[implicit] -2.032 
(0.617) 

0.026 
(0.019) 

-7.798 
(0.770) 

-0.156 
(0.119) 

ED2 PFTs: 5 tree cohort photosynthesis, 
allocation, cross-
PFT competition, 
cross-cohort 
competition 

-7.156 
(0.514) 

0.118 
(0.018)*† 

-7.505 
(0.446) 

-0.079 
(0.027)* 

LINK- 
AGES 

Species: 15 tree individual cross-PFT 
competition, 
cross-cohort 
competition 

-6.598 
(0.478) 

0.074 
(0.018)* 

-6.741 
(0.999) 

0.230 
(0.028)*† 

LPJ- 
GUESS 

PFTs: 6 tree, 1 
grass 

cohort photosynthesis, 
allocation, cross-
PFT competition, 
cross-cohort 
competition 

-7.290 
(0.452) 

0.056 
(0.018)* 

-7.379 
(0.597) 

-0.069 
(0.027)* 

LPJ- 
WSL 

PFTs: 5 tree, 1 
grass 

cohort photosynthesis, 
allocation, cross-
PFT competition, 
cross-cohort 
competition 

-7.829 
(0.943) 

0.252 
(0.018)*† 

-7.106 
(0.964) 

-0.020 
(0.027) 

JULES- 
TRIFFID 

PFTs: 2 Tree, 2 
grass, 1 shrub 

PFT Photosynthesis, 
allocation,  cross-
PFT competition 

-8.633 
(1.075) 

0.411 
(0.022)*† 

-8.639 
(0.952) 

0.203 
(0.033)*† 

664 
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 666 
Figure 1: Overview of the unified conceptual framework (gray boxes) for parallel analysis of 667 
empirical data (blue boxes) and model output (red boxes).  For ecosystem models, we describe 668 
the latent climatic and ecosystem processes that are unobservable in paleoecological data and 669 
differences among models in complexity. Complexity here is organized into three categories:  1) 670 
diversity, ranging from a few plant functional types (PFTs) to many species; 2) demography, 671 
ranging from ‘big leaf’ models with no explicit treatment of forest demography to models with 672 
individual trees; and 3) ecophysiological processes. Changes in forest biomass emerge from 673 
latent ecophysiological processes including gross primary productivity (GPP), net primary 674 
productivity (NPP), net ecosystem exchange (NEE), and leaf area index (LAI).  Ecophysiological 675 
processes are controlled by model representation of higher-level vegetation processes (Table 676 
1).   Latent model drivers, processes, and states (red boxes) result in estimates of forest 677 
composition and biomass that can be compared to paleoecological data products (blue boxes).  678 
Models vary in complexity due to design philosophy and tradeoffs between model complexity 679 
and computational speed. 680 
 681 

  682 



 683 
Figure 2: Spatial distribution of inferred temporal variability for 850 to 1850 AD for a) drought 684 
(PDSI) from the Living Blended Drought Atlas (44), b) forest composition from the STEPPS 685 
pollen-vegetation model (8, 24), and c) forest aboveground biomass from the ReFab pollen-686 
biomass model (7).  All variability estimates were divided by mean to facilitate inter-variable 687 
comparison (Methods).  Spatial extent of compositional and biomass reconstructions are 688 
uneven across the study domain, as is the temporal extent of reconstructed drought variability 689 
(Supplemental Figure 1). Empirical comparisons of composition or biomass variability with 690 
drought variability are restricted to the common temporal extents for each location.  691 
  692 

  693 



 694 

695 
Figure 3: Inferred (black, gray) and simulated (colors) sensitivity of variability of forest 696 
composition and biomass to ecohydrological variability (PDSI) (a,b) and of biomass variability to 697 
compositional variability (c).  Inferred variables suggest weak to no correlation (low sensitivity) 698 
between climate variability and ecosystem variability (composition and biomass).  In contrast, 699 
ecosystem models generally simulate higher sensitivity of ecosystems to climate variability.  700 
Inferred compositional (STEPPS) and biomass (ReFAB) variability are positively correlated, 701 
while this relationship varied among models.   702 
 703 

  704 



 705 
Figure 4: Diagnosing the observed and latent relationships among ecohydrological variability 706 
and variability in forest composition, structure, and function in five terrestrial ecosystem models 707 
(ED2, LPJ-WSL, LPJ-GUESS, LINKAGES, and JULES-TRIFFID).  All models showed positive 708 
correlations between composition and drought variability, but some models showed positive 709 
biomass sensitivities (LINKAGES, JULES-TRIFFID) while others were negative (ED2, LPJ-710 
WSL, LPJ-GUESS).  In all models, composition sensitivity to hydroclimate variability was most 711 
similar to NPP whereas biomass sensitivity tended to mirror NEE. 712 
 713 



 

Supplemental Tables 714 
Supplemental Table 1: Sensitivity of latent state variability to hydroclimate (PDSI) variability in 715 
ecosystem models and pollen data products.  Sensitivity is presented as the mean and standard 716 
error slope from log-log regression; * indicates slopes significantly different from zero (p<0.05).  717 
LINKAGES does not simulate GPP. LAI output was not available for LPJ-WSL. 718 
Model GPP NPP NEE LAI Biomass Composition 

Pollen         -0.156 
(0.119) 

0.026 (0.019) 

ED2 0.201 
(0.028)* 

0.190 
(0.025)* 

0.008 
(0.024) 

0.203 
(0.024)* 

-0.079 
(0.015)* 

0.118 (0.017)* 

LPJ-WSL 0.320 
(0.033)* 

0.301 
(0.033)* 

0.010 
(0.034) 

  -0.020 
(0.034) 

0.252 (0.029)* 

LPJ-GUESS -0.022 
(0.031) 

0.038 
(0.034) 

-0.152 
(0.031)* 

-0.034 
(0.022) 

-0.069 
(0.020)* 

0.056 (0.015)* 

LINKAGES   0.186 
(0.027)* 

0.232 
(0.030)* 

0.222 
(0.031)* 

0.230 
(0.033)* 

0.074 (0.016)* 

JULES-
TRIFFID 

0.294 
(0.051)* 

0.365 
(0.051)* 

0.110 
(0.028)* 

0.295 
(0.035)* 

0.203 
(0.038)* 

0.411 (0.033)* 
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Supplemental Figures 720 

 721 
Supplemental Figure 1: Comparison of log normalized PDSI variability in empirically-inferred 722 
reconstructions from the Living Blended Drought Atlas (LBDA, 41, a, b) and model drivers (c).  723 
Due to the regional differences in the length of tree-ring chronologies available for PDSI 724 
reconstruction, the temporal extent of analyses involving LBDA drought is uneven across space.  725 
Overall, model drivers had greater PDSI variability than seen in the LBDA, but both datasets 726 
show greater variability in the western region of the study domain. 727 
 728 
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 730 
Supplemental Figure 2: Relationship between taxonomic richness and log normalized biomass 731 
(ReFAB) and composition (STEPPS) variability in pollen-inferred datasets. 732 
  733 


