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Abstract

Ensemble feature selection and multiple classifier systems have recently gained

importance in machine learning. Ensemble learning improves learning ability

by combining several models, an improvement which leads to better predictive

performance than a single model. In recent years, ensemble based feature selec-

tion approaches have been proposed in which, multiple diverse feature selection

methods are combined. These approaches are superior to traditional feature se-

lection techniques in various aspects. In this paper, we propose a novel ensemble

based feature selection algorithm using Convex Concave Programming, which

is based on ensemble pruning. The optimization model in the pruning step se-

lects the best subset of the ensemble, simultaneously considering the models’

accuracy and diversity. The proposed algorithm was tested on multiple data

sets and learning performances are compared with various feature selection al-

gorithms. The empirical results shows that the proposed algorithm performs at

higher classification accuracy.

Keywords: Feature selection, Ensemble Learning, Ensemble Pruning,

Dynamic Ensemble Selection(DES), Convex Concave Programming



1. Introduction

Feature Selection is the process of choosing the most relevant and impor-

tant features which contribute to learning with the highest prediction accuracy.

Feature selection methods have various applications [1, 2], the determination of

which constitutes the data pre-processing step of machine learning problems. It5

is important to eliminate irrelevant features which do not have any dependency

on the target value since those features reduce the prediction accuracy of the

learning model. There exist many feature selection methods in the literature,

including filters based on distinct metrics like probability, entropy, informa-

tion theory, embedded, and wrapper methods, all using different algorithms10

[3]. Most feature selection methods are wrapper methods, which evaluate the

features using the learning algorithm. Algorithms based on the filter model

examine the intrinsic properties of the data to evaluate the features before the

learning tasks. Filter-based approaches almost always rely on class labels, most

commonly assessing correlations between features and class label. Some typi-15

cal filter methods include data variance, Pearson correlation coefficients, Fisher

score, and the Kolmogorov-Smirnov test.

Ensemble based feature selection methods are designed to generate an op-

timum subset of features by combining multiple feature selectors based on the

intuition behind the ensemble learning. The general idea of ensemble feature20

selection is to aggregate the decisions of diverse feature selection algorithms to

improve representation ability. Recent studies show that the decision of an en-

semble of feature selection algorithms gives more accurate prediction than any

single feature selection technique [4, 5].

Ensemble based feature selection methods involve two major steps: genera-25

tion of diverse feature selectors and aggregation of the decisions. There are three

types of generation approaches studied in the literature employed to construct

a diverse ensemble library, and which can be listed as follows:

1. Data Variation Methods,

2. Function Variation Methods,30
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3. Hybrid Variation Methods.

The first approach, Data Variation, creates subsets of samples by using dif-

ferent methods, such as bagging [6] or boosting[7] or using different feature

subspaces and random subspaces [8]. In the second method, Function Varia-

tion, the diversity of an ensemble is provided by the diversity of feature selection35

functions. Here, the most common functions are filter based rather than wrap-

per approaches because of their advantages in computational cost. Unlike the

first two methods, Hybrid Variation Methods aggregate both data variation and

function variation steps since it is argued that including data variation or func-

tion variation alone is not enough to create a robust ensemble [9]. In [10],the40

similarity between the function variation and hybrid variation is higher than the

similarity between the data variation. Furthermore, function and hybrid varia-

tion methods produce higher classification performance than data variation.

In the literature, there are two main approaches regarding the use of ensem-

bles in feature selection. In the first, feature selection steps are used for obtain-45

ing the diversity needed for using posterior ensemble classification methods[11].

Other authors use ensembles of feature selectors to improve the accuracy, di-

versity, and stability of the feature selection process [12, 13, 14, 15]. This latter

approach is of special interest in knowledge discovery scenarios, and mainly in

high dimensional cases.50

In [16], five different pairwise measures of diversity were compared over 21

datasets with fixed ensemble sizes. They aimed to design a fitness function that

shows the relation between accuracy and diversity. The results showed that

there is a close relationship between the functions employed and the number

of ensemble members that produce the highest accuracy. Other works, such55

as Bolón-Canedo et al. [17] used a fixed number of filters in high dimensional

scenarios. In [18] two different basic methods of heterogeneous type were pro-

posed. The first method applied five filters that fed five classifiers followed by

the aggregation step. The same filters were used in the second formulation

with the aggregation step, previous to classification. In [19], a new algorithm60
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named Multicriterion Fusion-based Recursive Feature Elimination was devel-

oped. Its aim is to increase the robustness of feature selection algorithms by

using multiple feature selection evaluation criteria. Another study used Multi-

layer perceptrons at the ensemble stage [20].

Diversity is a factor that deserves specific emphasis. By using several types65

of feature selectors in an ensemble [3] such as rankers, subset methods filters,

wrappers, embedded methods, or univariate and multivariate methods as in

[13, 18] we can provide diversity.

In [21], several ensembles of filter rankers were applied to the area of soft-

ware quality. The combination of individual rankings included simple methods70

like mean, median, and minimum, and complex methods such as Complete

Linear Aggregation [22] (CLA), Robust Ensemble Feature Selection (Rob-EFS)

[23], SVM-Rank [13], and data complexity measures [24]. Meanwhile, there ex-

ist many parallel and distributed implementations of feature selection methods

[25, 26]Further, various research projects have developed ensembles making use75

of distributed or parallel schemes. In [13]a heterogeneous approach was pro-

posed, with the idea of distributing the dataset in several nodes, applying the

same feature selection method in each of them, and then at the end of their work

aggregating the results. Hong et al [27].also developed a feature selection al-

gorithm for unsupervised clustering which put together the clustering ensemble80

method and the population-based incremental learning algorithm.

The same authors also developed the task of feature ranking for unsuper-

vised clustering [28] for guiding computation of features’ relevance. A different

approach was followed in the work by Morita et al. [29], in which they developed

an ensemble of classifiers based on unsupervised feature selection. Bellal et al.85

[30] developed a new method called semi-supervised ensemble learning guided

feature ranking method (SFR), which combined a bagged ensemble of standard

semi-supervised approaches with permutation-based out-of-bag feature impor-

tance. A new wrapper-type semi-supervised feature selection framework which

finds the relevant features using confident unlabeled data was developed by Han90

et al. [31]. They employed an ensemble classifier that supports the estimation
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of confidence in unlabeled data. Ko et al. [32] developed a dynamic classifier

selection approach where the competencies of the individual classifiers are cal-

culated during the classification step. In their study, majority voting is used

rather than the static selection method because of its superior performance. In95

this paper, DES was used as classifier method in all classification steps in the

proposed Algorithm 1.

It must be noted that in each of the above methods, the number of functions,

i.e., the cardinality of an ensemble library, is not determined theoretically. The

number of functions in the ensemble acts as a hyper-parameter of these meth-100

ods which directly affects the classification performance in the aggregation step.

In the generation step of the ensemble, the most accurate and diverse models

are desired for better prediction performance at the end. However, there might

be models which are weak in the generation phase, causing a decrease in over-

all accuracy. To eliminate such redundancies in the ensemble, a pruning step105

is needed to select the optimum subset of the ensemble. To the best of our

knowledge, no pruning algorithm has been proposed for ensemble-based fea-

ture selection algorithms. There exist pruning methods developed for ensemble

classification of multi-class task problems using Error-Correcting Output Codes

[4, 5]. In these studies, the importance of the accuracy and diversity trade-off110

is highly emphasized and optimization-based approaches are proposed for en-

semble classification models. This trade-off can be explained as follows: High

accuracy in the ensemble leads to a decrease in the diversity of the ensemble,

and an increase in diversity sacrifices the accuracy of the overall ensemble.

In this study, we propose a novel ensemble based feature selection algorithm115

that fills the gap in the literature regarding feature selection problems, described

above, by using an optimization model to simultaneously optimizing the accu-

racy and diversity trade-off. Since the pruning step of the proposed approach

here involves an optimization model, the cardinality of the subset of an ensemble

is not a hyper-parameter anymore, as it is obtained directly as a solution of the120

optimization model. The rest of this paper is structured as follows: In Section

2,background methods are provided and in Section 3, various traditional feature
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selection algorithms that generate the ensemble are summarized. The proposed

ensemble feature selection technique is presented in 4 with the experiment and

results in Section 5. We conclude with some final remarks and ideas for future125

work in Section 6.

2. Background Material

In this section, various background methods used in the pruning, classifica-

tion steps of this study are introduced. In the following subsection, Disciplined

Convex-Concave Programming (DCCP), the core of the pruning step, is in-130

troduced briefly. In the later subsection, the classifier in this study, Dynamic

Ensemble Selection(DES), is summarized.

2.1. Disciplined Convex-Concave Programming

DCCP is an optimization method which was first introduced in [33] and

which combines two ideas: Disciplined Convex Programming (DCP) and Convex-135

Concave Programming (CCP) [34]. DCP requires a set of conventions in which

problems follow, whereas CCP is an organized heuristic for solving nonconvex

problems. Disciplined convex programming can be defined by the following

optimization problem:

minimize
x

f0(x)− g0(x)

subject to fi(x)− gi(x) ≤ 0, i = 1, . . . ,m,

(1)

where x ∈ Rn refers to the optimization variable, and the functions fi : Rn → R140

and gi : Rn → R (i = 1, ...,m) are convex functions.

Above problem (1) can be rewritten as follows:

minimize f0(x)− t

subject to t = g0(x),

fi(x) ≤ gi(x), i = 1, . . . ,m,

(2)
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where x and t refers to the original optimization variable and a new optimization

variable, respectively.

DCCP is an appropriate and simple standard form for Difference Program-145

ming (DC), because the linearized problem of CCP is a DCP problem if the

original problem is DCCP. The linearized problem can then be transformed

into a cone program and solved using generic solvers [34].

2.2. Dynamic Ensemble Selection - COMBO

In this study, Dynamic Ensemble Selection(DES) was used as a classifier150

for the proposed ensemble model. As previously reported, given that selecting

only one classifier is very vulnerable to error, some researchers chose to pick a

subset of classifiers. Ko et al. [32] suggested an approach aimed at imitating the

Oracle model, which obtained the best ensemble results [35]. The KNORA-E

(K Nearest ORAcles - Eliminate) eliminates the classifier from the ensemble if155

the classifier misclassifies any pattern of the neighbors. There exists moreover a

weighted form KNORA-E-W which weights the labels of the chosen classifiers

based on the distance between the test sample and the neighbors. This work

includes two fusion algorithms: KNORAU (K Nearest ORAcles - Union) and

its weighted form KNORA-U-W. Soares et al. [36] choose the N most correct160

classifier, according to a defined region of competence, and the J most diverse

classifiers in order to produce the ensemble. The values of N and J were settled

by the authors. These methods are called dynamic ensemble selection (DES)

since they can choose more than one classifier. In this paper, DecisionTreeClas-

sifier, LogisticRegression, KNeighborsClassifier, RandomForestClassifier,, Gra-165

dientBoostingClassifier were set as estimators of classifer steps. Here, we used

Combo which is a relatively new library specialized in ensemble learning which

provides several common methods under a unified Scikit-learn-compatible API

so that it maintains compatibility with many estimators from the Scikit-learn

ecosystem [37]. The Combo library delivers algorithms that are capable of com-170

bining models for classification, clustering, and anomaly detection tasks, and

it has been used widely in the Kaggle predictive modeling community. Combo
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provides a unified outlook for different ensemble methods whilst remaining com-

patible with Scikit-learn.

2.3. Joint Criterion Method175

In the Joint Criterion Method, quality and diversity terms are merged into a

joint criterion function [38]. For a given ensemble size K, the following objective

function (3) is maximized with respect to find the indices of the best candidates

among the ensemble

α
∑

i=1,...,K

SNMI(Ci, L) + (1− α)
∑
i 6=j

(1−NMI(Ci, Cj)), (3)

where the first term measures the quality, the second term measures the diversity180

and the parameter α controls the impact assigned to each term [38]. It starts

with a single solution having the highest-quality and the next candidate is added

to the ensemble subsequently which maximizes the objective function of the

problem (3) [38].

3. Generation of Ensemble Library185

In this study, 28 different traditional feature selection algorithms are used to

create the ensemble of feature selection methods. These are grouped into four

categories similarity based, information theoretical based, sparse learning based

and statistical based methods.

3.1. Similarity Based Methods190

In general, feature selection algorithms utilize a variety of criteria distance,

separability, information, correlation, dependency, and reconfiguration error to

define attribute appropriateness. Similarity-based feature selection methods as-

sess the importance of preserving data similarity and the importance of features.

They are divided into five sub-categories as follows:195

1. Laplacian Score

The Laplacian Score (LS) is an uncontrolled and three-phase attribute se-

lection algorithm that can best protect the data manifold structure [39]. It
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is generated by Laplacian Eigenmaps [40] and Locality Preserving Projec-

tion [41] which evaluates the features according to their locality preserving200

power.

2. Spectral Feature Selection (SPEC)

SPEC is a graph based feature selection method which is an extension of

LS. It can be used for both supervised and unsupervised scenarios. For

example, in the unsupervised case, Radial Basis Function (RBF) kernel205

function is used to measure data similarity. In the supervised case, a

diagonal matrix is constructed using affinity matrix information [42].

3. Fisher Score

Fisher score is supervised feature selection methods that selects each

feature independently according to their scores under the Fisher criterion210

[43].

4. Trace Ratio Criterion

In the Trace Ratio Criterion method, a feature subset is selected based on

the corresponding subset-level score, which is calculated in a trace ratio

form [44].215

5. ReliefF

ReliefF algorithm is one of the most successful filtering feature selection

methods. It selects features to separate instances from different classes

[45]. It assesses the quality of features based on how well their values

discriminate between samples that are near each other.220

3.2. Information Theoretical Based Methods

Information theoretical based methods use different heuristic filter criteria

to measure the importance of the attributes which maximize the relevance of

the attributes and minimize their redundancy [43]. These types of methods can

be divided into nine sub-categories as follows:225

1. Mutual Information Maximization (MIM) (or Information Gain)

MIM evaluates the significance of a feature by its correlation with the class

label [46].
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2. Mutual Information Feature Selection (MIFS)

The MIFS criterion considers both feature relevance and feature redun-230

dancy in the feature selection phase [47].

3. Minimum Redundancy Maximum Relevance (MRMR)

The MRMR criterion considers both feature with maximum relevance

and feature with minimum redundancy in the feature selection phase [48].

4. Conditional Infomax Feature Extraction (CIFE)235

As long as the feature redundancy of a given class label is stronger than

the intra feature redundancy, the feature selection is affected negatively

[49]. CIFES takes this into account by including a third term which maxi-

mizes the conditional redundancy between unselected features and already

selected features for a given class label.240

5. Joint Mutual Information (JMI)

MIFS and MRMR reduce feature redundancy in the feature selection

process. It is recommended that JMI, an alternative criterion, increase the

shared information between the new selected attribute, and the selected

attributes given the class labels [50]. The basic idea of JMI consists of245

adding new features that are complementary to existing features for a

given class label.

6. Conditional Mutual Information Maximization (CMIM)

CMIM selects features iteratively by maximizing the mutual information

with the class labels given the selected features [51, 52].250

7. Double Input Symmetrical Relevance (DISR)

DISR performs normalization techniques to normalize mutual information

[53].

8. Fast Correlation Based Filter (FCBF)

FCBF is an algorithm that has the capability of being employed as the255

approximation method for relevance and redundancy analysis [54].

9. Interaction Capping

The Interaction Capping feature selection criterion is similar to CMIM ex-

cept that Interaction Capping restricts the term I(Xj ;Xk)−I(Xj ;Xk |Y )
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to be nonnegative where I(., .) refers to the information gain function [55].260

3.3. Sparse Learning Based Methods

Filter based feature selection methods select attributes that are independent

of any learning algorithm. The bias of the learning algorithm is not taken

into account in filter type approaches, so that the selected attributes may not

be optimal for a specific problem. In order to overcome this issue, embedded265

type approaches are developed which embed the feature selection step into the

learning model construction so that each step feeds into one other. There are

three types of embedded feature selection methods: The first is based on pruning

redundant features by assigning binary weights to features while maintaining

prediction accuracy. The second type consists of a built-in feature selection270

mechanism such as ID3 [56] and C4.5 [57]. The last type refers to sparse learning

based methods, which minimize empirical error by inducing a regu- larization

term to the objective function so that some feature coefficients are small or

exactly zero. There are different types of sparse based approaches, but we will

introduce only those that are used in this study.275

1. Multi-Cluster Feature Selection (MCFS)

Most of the existing sparse feature selection methods use label information

of the data where the feature selection step is modeled after determining

the sparse feature coefficients. Since labeled data is costly and time con-

suming to collect, unsupervised sparse learning based feature selection280

has gained increasing attention in recent years [58, 59]. MCFS is one

of the first unsupervised feature selection algorithms developed and per-

forms spectral clustering and sparse coefficient learning before the feature

selection step [60].

2. Feature Selection with L1 norm Regularization285

This method performs feature selection by assigning insignificant input

features with zero weight and useful features with a non zero weight by

incorporating l1 norm penalty functions to the objective function while

minimizing the empirical error on the training set [61].
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3. l2,1 norm Regularized Discriminative Feature Selection290

A widely accepted criterion for choosing an unsupervised feature is to

select attributes that best protect the manifold structure of the data [39].

One crucial property of 2,1-norm regularization is that it allows multiple

predictors to share similar sparsity patterns. However, the resulting op-

timization problem is difficult to solve because of the non-smoothness of295

2,1-norm regularization.

4. Nonnegative Discriminative Feature Selection (NDFS)

NDFS is an algorithm that performs spectral clustering and attribute

selection at the same time to select a subset of distinctive attributes. [62].

Unlike other spectral clustering methods, NDFS executes nonnegative and300

orthogonal constraints in the spectral clustering phase which causes the

learned pseudo class labels to be closer to real cluster results.

3.4. Statistical based Methods

Another feature selection algorithm category is based on various statistical

measurements. Because they rely on statistical criteria instead of learning the305

algorithm to assess the appropriateness of attributes, most of these methods are

filter-based methods. We can divide statistical methods into three categories:

1. F-score

In statistical analysis of binary classification, F-score is a measure of a

test’s accuracy. It considers both the precision and the recall of the test310

to obtain the scores [63].

2. Gini Index

Gini index is a statistical measure to quantify if the feature is able to

separate instances from different classes [64].

3. Correlation Based Feature Selection (CFS)315

The basic idea of CFS is a heuristic approach based on a correlation to

evaluate the value of the attribute subset [65].
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3.5. Feature Selection with Structure Features

Most of the feature selection algorithms are based on the assumption that the

features are independent from each other though the essential structures among320

them are disregarded. Yet, in many real problems, features reveal various types

of structures such as spatial or temporal smoothness, disjointed groups, trees

and graphs [66]. Next, we briefly give the idea of graph based and group based

approaches.

1. Feature Selection with Graph Feature Structures325

In many cases, strong dependencies may occur between the attributes

so that an unverified graph can be used to encode these dependencies

such that nodes represent features and edges between two nodes showing

the pairwise dependencies between features [60]. Those dependencies on

the graph can be transformed to a more mathematical representation by330

adjacency matrices consisting of binary entries.

2. Feature Selection with Group Feature Structures

In many real-world applications, features represent group structures. One

of the most common examples is seen in multi-factor analysis-of-variance

(ANOVA), where each factor is associated with several groups. When335

selecting attributes, this method obtains accurate predictions when the

group structure between attributes is considered [60].

3.6. Wraper Methods

Wrapper methods consider the selection of a set of features as a search

problem, where different combinations are prepared, evaluated, and compared340

to other combinations [67, 68].

4. Proposed Mathematical Model

In this study, we developed a model which determines the optimum subset

of the different solutions among a library of 28 feature selection methods (sum-

marized in the previous sections). After the generation step of the ensemble of345
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feature selectors on the training set, their accuracies and diversties are calcu-

lated by using dynamic ensemble selection which form the entries of matrix T

defined by equation 4 below:

[T ] =

Acci, i = j∑
{Y DES

i 6= Y DES
j }, i 6= j

(4)

In the matrix T , the total number of correct predictions of the i-th feature350

selector by classifier DES, represented by Acci are defined on the diagonal entries

and the total number of uncommon predictions of these feature selectors are

assigned to the off-diagonal entries as a measure of diversity in T . In this way,

diagonal elements of the matrix T represent the accuracy criterion whereas the

off-diagonal elements represent diversity.355

Here, we adapted our previous study for ensemble clustering selection ap-

proach in [69] and [70] to the ensemble based feature selection model. The

previous model differs by involving different accuracy and diversity metrics in

the matrix T . In [69] and [70], since the problem was a clustering problem

which did not have label information, normalized mutual information values360

were previously used to define accuracy and diversity metrics.

In this paper, quality (accuracy) and diversity metrics are defined to be the

total number of accurate predictions and the uncommon pairwise predictions

of each binary couple of feature selectors, respectively. Basically, the main

intuition behind maximizing the accuracy and diversity trade off within the365

ensemble learning library studied previously in [4, 5, 69, 70] is to adapt the

ensemble of feature selectors with the same optimization model (5) by adapting

the accuracy diversity notion using metrics based on feature selectors as follows:

minimize xTTx

subject to
∑n
i=1 xi = k,

xi ∈ {0, 1} (i = 1, 2, . . . , n),

(5)

where k stands for the pruning rate of the ensemble, i.e., the cardinality of the370
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subset of the ensemble. Since above 0- 1 binary integer problem (5) is NP-hard

in general. However, there exist studies that approximates the solution of inte-

ger programming optimally in the literature for many years. One of the recent

study in the field of machine learning, presents a new formulation of the classi-

cal univariate decision tree problem as an Mixed Integer Programming (MIP)375

problem that motivates their new classification method which is called Optimal

Classification Trees (OCT) [71]. In the of the applications of MIP involves with

the tensor complementarity problem where a global solver LINGO was used to

obtain optimal solution [72]. The proposed ensemble pruning model for clus-

tering problem in this paper was inspired from the MIP in [5] which includes380

the parameter k in its constraint. The constraint in problem (5) determines

the size of the subset of the ensemble, in other words, the parameter k is given

by the user beforehand as a pruning rate. Furthermore, its variables are in-

teger because it is defined with a sum that counts the number of elements to

be selected in the new subset of ensemble which can be defined as cardinality385

constraint by a zero norm. Thus, the solution of the MIP and the accuracy of

the machine learning model highly depend on the optimal value of parameter k.

The objective of our study is to get rid of the parameter k to automate finding

the optimal value of k while selecting the best candidates considering both ac-

curacy and diversity within the optimization problem. In order to do this, we390

moved that cardinality constraint to the objective function with a regularization

constant so that the whole MIP turned into continuous optimization problem.

This procedure can also be regarded as regularization in statistical learning to

overcome the complexity as in Lasso regularization

This relaxation by moving the cardinality constraint to the objective function395

with a regularization constant ρ is further improved by adding bound constraint

to variable x to obtain sparse solution as shown below:

minimize
x∈Rn

xTTx+ ρ‖x‖0

subject to xTx = 1,
(6)

Since the model (5) is relaxed to a continuous programming, in order to keep
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the sparsity, an additional constraint that bounds x is added to the problem (6).

The proposed ensemble based feature selection model introduced by equa-400

tion (6) is non-convex because of the second term and the matrix T might be

negative definite. Approximating the zero norm with the student log likelihood

distribution and adding/subtracting the term τI to the first term leads to a

difference of convex functions where τ is defined to be τ ≥ max{0,−λmin(T )}.

Hence the optimization problem (6) can be rewritten as:405

minimize
x∈Rn

{
τ ‖x‖22 −

[
xT
(
T̃ + τI

)
x− ρ

n∑
i=1

log (1 + |xi| /ε)
log (1 + 1/ε)

]}
subject to xTx = 1,

(7)

where T̂ is the normalized form of the matrix T and ρ refers to the regularization

parameter corresponding to the cardinality of a subset of the ensemble which is

introduced by a zero norm.

If the absolute value in equation (7) is replaced with an additional variable

yi by adding an extra constraint −y ≤ x ≤ y, the model (7) takes the following410

final form:

minimize
x,y∈Rn

{
τ ‖x‖22 −

[
xT
(
T̃ + τI

)
x− ρ

n∑
i=1

log (1 + yi/ε)

log (1 + 1/ε)

]}
subject to −y ≤ x ≤ y,

xTx = 1.

(8)

5. Experiments and Results

In this work, the five most popular feature selection data sets, selected from

different domains are used [73]. The features that exist in these datasets are

either numerical or categorical values. The number of features, number of in-415

stances and number of classes are presented in Table (1).
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Dataset Type Feature Value # Feature # Instance # Class

Lung small Bio Discrete 325 73 7

Madelon Artificial Continuous 500 2600 2

Yale Image Continuous 1024 165 15

WarpAR10P Image Continuous 2400 130 10

Colon Bio Discrete 2000 62 2

Urban Land Cover Physical Continuous 148 168 9

Libras Image Bio Continuous 91 360 15

Hill-Valley Physical Continuous 101 606 2

Table 1: Detailed information of benchmark datasets.

The dataset is divided into three parts:testing, validation, and training. 20%

of the entire dataset is used for testing, and remaining 80% is divided into (20%)

validation and (80%) training folds. 28 different feature selection algorithms

were applied on training data. DES were employed with 5-fold cross-validation420

with the selected features by the 28 different feature selection techniques in

order to build T matrix with accuracy and diversity entries.

Optimization problem (8) is solved by the DCCP algorithm [33] of cvxpy li-

brary of Python 3.7. The solution of the optimization model defined by equation

(8) provides the indices of the selection of the results of the 28 attribute selection425

methods. The hyper-parameter ρ was determined by 5 fold cross-validation on

the validation set among the interval of ρ =
[
10−3, 10−2, 10−1, 1, 10, 102, 103

]
and the threshold value of 0.01 was determined experimentally for x values to

binarize it.The coordinates of vector x represent the feature selection methods

and the indices of vector x having 0 values corresponds to redundant feature se-430

lectors being eliminated whereas indices of values of 1 correspond to the methods

which are to be chosen.

The solution of the DCCP model corresponding to the optimum ρ parameter

refers to the best subset among 28 feature selection methods. The elements

of this subset are composed of the different attribute sets Sfi introduced in435

17



Algorithm 1 that are generated by the those feature selection methods outputted

by the DCCP method. The voting algorithm, was applied to aggregate the

results of subsets Sfi of the feature selectors. In this voting step, the solutions

of the algorithms that were voted more than 50% were included in the selected

attributes. We used voting method to select features as an aggregation of feature440

selector in the final subset determined by DCCP. After voting step (best features

are selected) classification step was performed by using DES. Furthermore, final

classification is also performed by DES. In full ensemble there may be methods

which decrease the perfomance of the ensemble. Our main goal is to eliminate

such methods by pruning. One can increase the number of possible method445

candidates in the ensemble so that diversity increases. All pruning methods

compared including the proposed DCCP model and also full ensemble results

find the final set of features using voting. In this manner, voting should be

considered as an aggregation function for both pruned and unpruned cases.

For example, if the solutions of 15 methods from 28 methods were selected to450

the subset by using the DCCP model (8), the attributes of those 15 techniques

which passed the 50% of threshold would be considered to be the final attributes

of the test data. All the steps described here are given in the flowchart shown

by Algorithm 1 and Figure 1 and the performance of the models was compared

with the methods in the literature called Joint Criterion [38].455

18



Algorithm 1 Improved Ensemble Feature Selection with DCCP

Input:Xtr, Xval, Xtest, Sn (Feature Selection Algorithms)

Parameter:ρ (DCCP parameter), k (Number of Features)

Output: percentage of accuracy

1: for i← 1 to n do

2: Sfi = Sn(X) /* the feature selection subset that each feature selection

algorithm chooses /*

3: Acci = acc(DES(Xtr
Sf
i

)) /* DES percentage of accuracies using the train-

ing set /*

4: end for

5: Tii = Acci /* The percentage of accuracies for feature selection methods/*

6: Tij =
∑
i6=j

Y DES
i 6= Y DES

j /* non-common estimation results for i-th and j-th

feature selection methods /*

7: S̆ρ = DCCP(T, ρ) /* Obtaining the optimum subset of feature selection

algorithms with DCCP method on Xval /*

8: F = V otting(S̆ρ) on Xtest

9: Percentage of Accuracy = DES(Xtest)

19



Figure 1: Flow chart of the proposed method
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The percentage of accuracy results on the test set for the proposed model

PrunedOPT is given in the first column of Table 2 and accuracy values of

the unpruned case corresponding to Full Ensemble, and the Joint Criterion

with its best pruning rates are illustrated by second and the third columns

respectively. Here, the best pruning rate of Joint Criterion is selected among460

the values [5, 10, 15, 20] based on corresponding accuracies. It is clear from

the experimental results that the proposed ensemble based feature selection

approach PrunedOPT achieves better prediction accuracies than both unpruned

case and Joint Criterion. In Table 2, the bold numbers correspond to the best

accuracy values measured by the ratio of correct predictions to the total number465

of examples in the test set.

In order to perform a thorough comparison of the results, we presented these

results in Tables 2 and visually by Figure 2 for each of the eight data sets. In Fig-

ure 2, each subfigure stands for different data sets in which our proposed method

called PrunedOPT and the method Joint Criterion are compared against their470

accuracy values versus pruning rate k. It is clear from each subfigure in Figure

2 that the proposed optimization model PrunedOPT approximates the opti-

mal accuracy value with respect to its optimal pruning rate when compared

with accuracy values corresponding to various pruning rates of Joint Criterion

method.475
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As the Joint Criterion method requires pruning rate to be an input parameter

for each different input parameters, we get different accuracy values. In order

to compare the best accuracy results of the Joint Criterion method with the

proposed ensemble pruning, we illustrated the best of each method for each

data referring to their corresponding pruning rates in Table 2. It should be480

noted that our proposed approach achieves better accuracy values than both

unpruned case and Joint Criterion.

For each of the 8 datasets, the performance evaluation was measured against

each of those 28 constituent feature selection methods. Those methods were run

5 times randomly. The performance (accuracy) results, which are calculated by485

DES, of these methods are shown in Table 4 -11 where the first column represents

the method names, remaning second, third, fourth and fifth columns show the

accuracy values calculated by using equation (9) below:

Accuracy =
# of correct predictions

# of samples
. (9)

The last two columns named by AVG and STD show the average accuracy and

average standard deviation values of 5 random iterations for each data set.490

The average running time required for DCCP were calculated as two min-

utes while time required for the Joint Criterion method was three seconds.

From these results, we observe that our proposed ensemble pruning method

takes longer time than Joint Criterion. However, this drawback is not a fair

comparison between two methods since the proposed pruning method gives not495

only higher accuracy but it also automates finding the optimal pruning rate

with a unified framework of optimizing accuracy and diversity simultaneously;

whereas the joint criterion finds the pruning rate combinatorially. Thus, when

one compares the running times, time spend for trials of different selections

of pruning rates should be considered. Further, one cannot know the optimal500

pruning rate without trials in Joint Criterion which differs also in each data set.

In our experimental analysis, the selected features by PrunedOPT, unpruned

case and Joint Criterion for each data set were tested with widely used ML

methods such as decision tree algorithm, nonlinear SVM and DES in Table

23



Figure 2: Graphical illustration of NMI values versus various pruning rates for all data sets.
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Methods PrunedOPT by DCCP Unpruned Case Joint Criterion

Linear SVM 0.634 0.615 0.557

Non-linear SVM 0.625 0.612 0.608

Decision Tree 0.608 0.610 0.578

DES 0.702 0.625 0.557

Table 3: Proposed Feature Selection Algorithm percentage of accuracy.

3. It is clear that best performance was obtained by DES which is the main505

reason that why we selected it as a classification method in this study. It should

be noted that the proposed algorithm PrunedOPT has always better accuracy

values in average for all data sets in Table 3 when compared with other methods

for all classification algorithms except decision tree with a slight difference. The

reason behind this can come from the well-known fact that there is no unique510

and best algorithm that works for all type of data sets. This slight difference

can be seen as negligible.
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Data Accuracy

Small Lung Dataset 1st 2nd 3rd 4th 5th AVG STD

LS 0,53 0,21 0,33 0,00 0,32 0,28 0,19

(SPEC) 0,63 0,47 0,58 0,57 0,32 0,52 0,13

Fisher Score 0,42 0,37 0,67 0,29 0,47 0,44 0,14

Trace Ratio Criterion 0,32 0,32 0,00 0,86 0,21 0,34 0,32

ReliefF 0,16 0,53 0,58 0,43 0,68 0,48 0,20

MIM 0,58 0,42 0,42 0,29 0,47 0,44 0,11

MIFS 0,53 0,11 0,25 0,14 0,37 0,28 0,17

MRMR 0,47 0,32 0,50 0,57 0,68 0,51 0,14

CIFE 0,32 0,26 0,33 0,57 0,68 0,43 0,18

JMI 0,53 0,32 0,42 0,57 0,21 0,41 0,15

CMIM 0,21 0,42 0,17 0,43 0,32 0,31 0,12

DISR 0,53 0,26 0,17 0,29 0,47 0,34 0,15

FCBF 0,32 0,21 0,50 0,71 0,53 0,45 0,20

Interaction Capping 0,63 0,37 0,33 0,57 0,11 0,40 0,21

MCFS 0,26 0,32 0,33 0,86 0,37 0,43 0,24

L1 norm Regularization 0,47 0,26 0,58 0,43 0,47 0,44 0,12

l2;1 norm Regularized 0,37 0,11 0,42 0,57 0,47 0,39 0,17

NDFS 0,26 0,63 0,67 0,71 0,37 0,53 0,20

F-score 0,32 0,26 0,17 0,29 0,32 0,27 0,06

Gini Index 0,37 0,21 0,42 0,57 0,42 0,40 0,13

CFS 0,42 0,21 0,58 0,57 0,42 0,44 0,15

Wraper 0,53 0,21 0,25 0,14 0,26 0,28 0,15

Group Feature Structures 0,47 0,26 0,50 0,43 0,21 0,38 0,13

UDFS 0,26 0,32 0,67 0,29 0,21 0,35 0,18

Tree-fs 0,42 0,21 0,50 0,57 0,42 0,42 0,14

RFS 0,16 0,63 0,33 0,57 0,26 0,39 0,20

SVMBackward 0,63 0,26 0,50 0,71 0,26 0,47 0,21

SVMForward 0,32 0,42 0,50 0,57 0,32 0,42 0,11

AVG 0,40 0,35 0,41 0,48 0,37 0,40 0,16

Table 4: The accuracy measurements for each feature selection algorithms for Small lung

dataset.
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Data Set Accuracy

Madelon Data 1st 2nd 3rd 4th 5th AVG STD

LS 0,38 0,60 0,50 0,56 0,30 0,47 0,13

(SPEC) 0,38 0,50 0,17 0,56 0,50 0,42 0,16

Fisher Score 0,38 0,30 0,33 0,75 0,10 0,37 0,24

Trace Ratio Criterion 0,38 0,50 0,67 0,44 0,20 0,44 0,17

ReliefF 0,31 0,50 0,50 0,69 0,40 0,48 0,14

MIM 0,75 0,30 0,33 0,63 0,70 0,54 0,21

MIFS 0,63 0,60 0,17 0,56 0,60 0,51 0,19

MRMR 0,63 0,50 0,33 0,50 0,40 0,47 0,11

CIFE 0,38 0,40 0,50 0,50 0,40 0,44 0,06

JMI 0,56 0,60 0,33 0,56 0,70 0,55 0,13

CMIM 0,44 0,50 0,33 0,63 0,50 0,48 0,11

DISR 0,56 0,40 0,67 0,81 0,60 0,61 0,15

FCBF 0,56 0,40 0,50 0,69 0,40 0,51 0,12

Interaction Capping 0,44 0,60 0,33 0,56 0,70 0,53 0,14

MCFS 0,69 0,50 0,33 0,63 0,50 0,53 0,14

L1 norm Regularization 0,44 0,70 0,33 0,69 0,40 0,51 0,17

l2;1 norm Regularized 0,50 0,40 0,50 0,56 0,50 0,49 0,06

NDFS 0,44 0,60 0,83 0,88 0,60 0,67 0,18

F-score 0,56 0,20 0,33 0,63 0,40 0,42 0,17

Gini Index 0,63 0,40 0,33 0,69 0,60 0,53 0,15

CFS 0,50 0,20 0,33 0,69 0,20 0,38 0,21

Wraper 0,31 0,50 0,17 0,56 0,30 0,37 0,16

Group Feature Structures 0,44 0,30 0,50 0,81 0,30 0,47 0,21

UDFS 0,44 0,50 0,33 0,69 0,40 0,47 0,13

Tree-fs 0,44 0,10 0,83 0,50 0,60 0,49 0,27

RFS 0,44 0,30 0,17 0,56 0,40 0,37 0,15

SVMBackward 0,56 0,50 0,33 0,63 0,50 0,50 0,11

SVMForward 0,50 0,50 0,33 0,50 0,10 0,39 0,18

AVG 0,48 0,47 0,40 0,62 0,43 0,47 0,15

Table 5: The accuracy measurements for each feature selection algorithms for Madelon dataset.
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Data Accuracy

Yale Dataset 1st 2nd 3rd 4th 5th AVG STD

LS 0,31 0,30 0,12 0,55 0,86 0,43 0,29

(SPEC) 0,17 0,37 0,41 0,64 0,57 0,43 0,18

Fisher Score 0,36 0,44 0,53 0,36 0,57 0,45 0,10

Trace Ratio Criterion 0,12 0,26 0,41 0,45 0,29 0,31 0,13

ReliefF 0,24 0,33 0,24 0,36 0,29 0,29 0,06

MIM 0,19 0,44 0,47 0,55 0,71 0,47 0,19

MIFS 0,24 0,37 0,29 0,36 0,43 0,34 0,07

MRMR 0,36 0,22 0,65 0,64 0,57 0,49 0,19

CIFE 0,33 0,30 0,47 0,82 0,43 0,47 0,21

JMI 0,40 0,48 0,59 0,82 0,57 0,57 0,16

CMIM 0,24 0,48 0,47 0,36 0,43 0,40 0,10

DISR 0,29 0,44 0,59 0,64 0,71 0,53 0,17

FCBF 0,33 0,41 0,47 0,64 0,57 0,48 0,12

Interaction Capping 0,29 0,48 0,59 0,36 1,00 0,54 0,28

MCFS 0,19 0,33 0,12 0,27 0,57 0,30 0,17

L1 norm Regularization 0,26 0,41 0,65 0,55 0,57 0,49 0,15

l2;1 norm Regularized 0,38 0,37 0,41 0,82 0,71 0,54 0,21

NDFS 0,33 0,33 0,24 0,55 0,57 0,40 0,15

F-score 0,24 0,22 0,24 0,27 0,29 0,25 0,03

Gini Index 0,29 0,37 0,41 0,36 0,43 0,37 0,06

CFS 0,17 0,19 0,35 0,18 0,57 0,29 0,17

Wraper 0,31 0,52 0,53 0,45 0,29 0,42 0,12

Group Feature Structures 0,14 0,48 0,53 0,27 0,86 0,46 0,27

UDFS 0,17 0,56 0,59 0,45 0,57 0,47 0,18

Tree-fs 0,26 0,41 0,53 0,45 0,14 0,36 0,16

RFS 0,33 0,48 0,24 0,27 0,71 0,41 0,20

SVMBackward 0,24 0,30 0,47 0,64 0,86 0,50 0,25

SVMForward 0,31 0,41 0,35 0,18 0,57 0,36 0,14

AVG 0,26 0,42 0,42 0,47 0,56 0,42 0,16

Table 6: The accuracy measurements for each feature selection algorithms for Yale dataset.
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Data Accuracy

Warp Dataset 1st 2nd 3rd 4th 5th AVG STD

LS 0,38 0,31 0,30 0,13 0,13 0,25 0,12

(SPEC) 0,44 0,25 0,70 0,50 0,31 0,44 0,18

Fisher Score 0,50 0,44 0,90 0,56 0,63 0,61 0,18

Trace Ratio Criterion 0,44 0,56 0,90 0,19 0,69 0,56 0,27

ReliefF 0,50 0,44 0,60 0,25 0,19 0,40 0,17

MIM 0,69 0,69 0,80 0,50 0,63 0,66 0,11

MIFS 0,13 0,31 0,60 0,50 0,31 0,37 0,18

MRMR 0,56 0,38 0,80 0,56 0,44 0,55 0,16

CIFE 0,56 0,25 0,60 0,56 0,19 0,43 0,20

JMI 0,75 0,50 0,70 0,56 0,50 0,60 0,12

CMIM 0,56 0,56 0,50 0,38 0,50 0,50 0,08

DISR 0,69 0,75 0,60 0,31 0,44 0,56 0,18

FCBF 0,19 0,63 1,00 0,75 0,75 0,66 0,30

Interaction Capping 0,56 0,56 0,70 0,38 0,50 0,54 0,12

MCFS 0,69 0,56 0,90 0,69 0,56 0,68 0,14

L1 norm Regularization 0,50 0,19 0,70 0,56 0,19 0,43 0,23

l2;1 norm Regularized 0,88 0,50 0,50 0,69 0,56 0,63 0,16

NDFS 0,88 0,38 0,80 0,50 0,56 0,62 0,21

F-score 0,44 0,25 0,60 0,50 0,50 0,46 0,13

Gini Index 0,06 0,44 0,60 0,44 0,25 0,36 0,21

CFS 0,50 0,88 0,90 0,19 0,31 0,56 0,32

Wraper 0,38 0,50 0,50 0,50 0,31 0,44 0,09

Group Feature Structures 0,56 0,38 0,90 0,56 0,19 0,52 0,26

UDFS 0,63 0,06 0,70 0,50 0,44 0,47 0,25

Tree-fs 0,38 0,88 0,70 0,38 0,19 0,50 0,28

RFS 0,44 0,69 0,70 0,38 0,38 0,52 0,17

SVMBackward 0,63 0,31 0,90 0,63 0,31 0,56 0,25

SVMForward 0,38 0,63 0,50 0,88 0,19 0,51 0,26

AVG 0,51 0,51 0,7 0,48 0,39 0,51 0,19

Table 7: The accuracy measurements for each feature selection algorithms for Warp dataset.
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Data Accuracy

Colon Dataset 1st 2nd 3rd 4th 5th AVG STD

LS 0,31 0,88 0,80 0,50 0,44 0,59 0,24

(SPEC) 0,56 0,75 0,80 0,44 0,88 0,69 0,18

Fisher Score 0,81 1,00 0,90 0,63 0,94 0,86 0,15

Trace Ratio Criterion 0,88 0,94 1,00 0,75 0,69 0,85 0,13

ReliefF 0,88 1,00 0,50 0,69 0,81 0,78 0,19

MIM 0,88 1,00 0,90 0,75 0,88 0,88 0,09

MIFS 0,63 0,94 0,50 0,44 0,63 0,63 0,19

MRMR 0,56 0,94 0,80 0,63 0,88 0,76 0,16

CIFE 1,00 0,88 0,40 0,88 0,88 0,81 0,23

JMI 0,94 1,00 0,80 0,63 0,88 0,85 0,14

CMIM 0,69 0,88 1,00 0,69 0,81 0,81 0,13

DISR 0,94 0,63 1,00 0,88 0,88 0,86 0,14

FCBF 0,88 0,94 1,00 0,88 0,88 0,91 0,06

Interaction Capping 0,56 0,69 0,40 0,31 0,38 0,47 0,15

MCFS 0,88 0,75 0,50 0,44 0,88 0,69 0,21

L1 norm Regularization 0,50 0,50 0,50 0,75 0,56 0,56 0,11

l2;1 norm Regularized 0,94 0,75 0,90 0,56 0,88 0,81 0,15

NDFS 0,88 0,81 0,60 0,56 0,75 0,72 0,13

F-score 0,63 0,44 0,50 0,56 0,75 0,58 0,12

Gini Index 0,81 0,69 0,60 0,56 0,56 0,65 0,11

CFS 0,50 0,88 0,50 0,88 0,81 0,71 0,20

Wraper 0,56 0,75 0,90 0,81 0,38 0,68 0,21

Group Feature Structures 0,75 0,88 0,80 0,56 0,69 0,74 0,12

UDFS 0,56 0,81 0,70 0,63 0,81 0,70 0,11

Tree-fs 0,94 0,69 0,80 0,56 0,69 0,74 0,14

RFS 0,81 0,50 0,80 0,50 0,81 0,69 0,17

SVMBackward 0,69 0,63 0,50 0,81 0,69 0,66 0,11

SVMForward 0,88 0,69 0,60 0,63 0,81 0,72 0,12

AVG 0,74 0,83 0,71 0,63 0,74 0,72 0,14

Table 8: The accuracy measurements for each feature selection algorithms for Colon dataset.
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Data Accuracy

Urban Land Cover Dataset 1st 2nd 3rd 4th 5th AVG STD

LS 0,56 0,64 0,61 0,49 0,70 0,60 0,08

(SPEC) 0,47 0,70 0,70 0,61 0,35 0,57 0,15

Fisher Score 0,88 0,64 0,65 0,44 0,85 0,69 0,18

Trace Ratio Criterion 0,70 0,58 0,61 0,61 0,55 0,61 0,06

ReliefF 0,65 0,51 0,65 0,38 0,45 0,53 0,12

MIM 0,65 0,45 0,38 0,44 0,60 0,50 0,12

MIFS 0,52 0,58 0,70 0,32 0,45 0,51 0,14

MRMR 0,79 0,58 0,43 0,55 0,50 0,57 0,14

CIFE 0,65 0,58 0,79 0,44 0,60 0,61 0,13

JMI 0,70 0,58 0,56 0,61 0,35 0,56 0,13

CMIM 0,61 0,51 0,70 0,61 0,50 0,59 0,08

DISR 0,65 0,95 0,75 0,49 0,35 0,64 0,23

FCBF 0,65 0,64 0,84 0,38 0,75 0,65 0,17

Interaction Capping 0,79 0,70 0,70 0,73 0,65 0,71 0,05

MCFS 0,56 0,58 0,52 0,26 0,70 0,52 0,16

L1 norm Regularization 0,56 0,58 0,75 0,55 0,65 0,62 0,08

l2;1 norm Regularized 0,56 0,64 0,75 0,49 0,55 0,60 0,10

NDFS 0,79 0,58 0,65 0,49 0,45 0,59 0,14

F-score 0,65 0,58 0,56 0,49 0,55 0,57 0,06

Gini Index 0,52 0,51 0,70 0,44 0,50 0,53 0,10

CFS 0,56 0,58 0,61 0,38 0,50 0,52 0,09

Wraper 0,47 0,51 0,65 0,61 0,55 0,56 0,07

Group Feature Structures 0,52 0,45 0,56 0,32 0,50 0,47 0,09

UDFS 0,61 0,70 0,70 0,61 0,40 0,60 0,12

Tree-fs 0,70 0,64 0,70 0,67 0,45 0,63 0,10

RFS 0,79 0,51 0,52 0,44 0,60 0,57 0,14

SVMBackward 0,70 0,76 0,43 0,61 0,70 0,64 0,13

SVMForward 0,61 0,45 0,56 0,55 0,50 0,54 0,06

AVG 0.63 0,59 0,63 0,50 0,54 0,58 0,11

Table 9: The accuracy measurements for each feature selection algorithms for Urban Land

Cover dataset.
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Data Accuracy

Libras Movement Dataset 1st 2nd 3rd 4th 5th AVG STD

LS 0,49 0,30 0,72 0,67 0,56 0,55 0,17

(SPEC) 0,36 0,36 0,88 0,76 0,56 0,58 0,23

Fisher Score 0,43 0,59 0,62 0,62 0,69 0,59 0,10

Trace Ratio Criterion 0,36 0,36 0,62 0,76 0,69 0,56 0,19

ReliefF 0,61 0,30 0,35 0,29 0,50 0,41 0,14

MIM 0,30 0,54 0,56 0,71 0,56 0,54 0,15

MIFS 0,43 0,42 0,56 0,67 0,69 0,55 0,13

MRMR 0,43 0,36 0,72 0,90 0,75 0,63 0,23

CIFE 0,49 0,36 0,46 0,67 0,75 0,54 0,16

JMI 0,43 0,48 0,41 0,67 0,69 0,53 0,14

CMIM 0,43 0,36 0,51 0,52 0,63 0,49 0,10

DISR 0,61 0,48 0,83 0,52 0,75 0,64 0,15

FCBF 0,43 0,30 0,77 0,43 0,50 0,49 0,18

Interaction Capping 0,49 0,42 0,51 0,52 0,50 0,49 0,04

MCFS 0,49 0,42 0,46 0,62 0,69 0,53 0,11

L1 norm Regularization 0,43 0,36 0,72 0,57 0,56 0,53 0,14

l2;1 norm Regularized 0,49 0,48 0,72 0,62 0,69 0,60 0,11

NDFS 0,74 0,36 0,51 0,76 0,75 0,62 0,18

F-score 0,61 0,30 0,62 0,67 0,63 0,56 0,15

Gini Index 0,30 0,48 0,67 0,62 0,50 0,51 0,14

CFS 0,55 0,42 0,51 0,57 0,50 0,51 0,06

Wraper 0,43 0,48 0,67 0,71 0,69 0,59 0,13

Group Feature Structures 0,49 0,36 0,62 0,62 0,56 0,53 0,11

UDFS 0,49 0,48 0,51 0,71 0,56 0,55 0,10

Tree-fs 0,49 0,30 0,62 0,57 0,63 0,52 0,13

RFS 0,61 0,48 0,67 0,48 0,63 0,57 0,09

SVMBackward 0,49 0,42 0,77 0,71 0,81 0,64 0,18

SVMForward 0,43 0,42 0,67 0,43 0,56 0,50 0,11

AVG 0,47 0,42 0,61 0,62 0,62 0,54 0.13

Table 10: The accuracy measurements for each feature selection algorithms for Libras Move-

ment dataset.
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Data Accuracy

Hill-Valley Dataset 1st 2nd 3rd 4th 5th AVG STD

LS 0,63 0,33 0,50 0,31 0,50 0,45 0,13

(SPEC) 0,56 0,27 0,44 0,44 0,63 0,47 0,14

Fisher Score 0,50 0,53 0,44 0,44 0,50 0,48 0,04

Trace Ratio Criterion 0,63 0,40 0,56 0,31 0,44 0,47 0,13

ReliefF 0,63 0,27 0,56 0,56 0,50 0,50 0,14

MIM 0,50 0,60 0,63 0,50 0,69 0,58 0,08

MIFS 0,44 0,53 0,38 0,56 0,38 0,46 0,09

MRMR 0,50 0,40 0,44 0,50 0,56 0,48 0,06

CIFE 0,69 0,53 0,44 0,50 0,63 0,56 0,10

JMI 0,50 0,40 0,63 0,63 0,44 0,52 0,10

CMIM 0,44 0,40 0,38 0,50 0,44 0,43 0,05

DISR 0,63 0,60 0,38 0,50 0,69 0,56 0,12

FCBF 0,44 0,53 0,56 0,25 0,50 0,46 0,12

Interaction Capping 0,88 0,67 0,38 0,44 0,44 0,56 0,21

MCFS 0,81 0,60 0,38 0,38 0,63 0,56 0,19

L1 norm Regularization 0,69 0,60 0,44 0,31 0,56 0,52 0,15

l2;1 norm Regularized 0,63 0,40 0,63 0,63 0,56 0,57 0,10

NDFS 0,63 0,53 0,44 0,31 0,50 0,48 0,12

F-score 0,63 0,40 0,38 0,63 0,31 0,47 0,15

Gini Index 0,50 0,53 0,38 0,44 0,69 0,51 0,12

CFS 0,56 0,40 0,44 0,56 0,56 0,51 0,08

Wraper 0,50 0,33 0,56 0,56 0,31 0,45 0,12

Group Feature Structures 0,75 0,40 0,31 0,50 0,56 0,51 0,17

UDFS 0,56 0,40 0,63 0,38 0,63 0,52 0,12

Tree-fs 0,75 0,60 0,44 0,50 0,19 0,50 0,21

RFS 0,56 0,40 0,44 0,38 0,38 0,43 0,08

SVMBackward 0,63 0,33 0,56 0,50 0,69 0,54 0,14

SVMForward 0,63 0,27 0,56 0,56 0,50 0,50 0,14

AVG 0,6 0.50 0,47 0,46 0,51 0.50 0.12

Table 11: The accuracy measurements for each feature selection algorithms for Hill-Valley

dataset.
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6. Discussion and Conclusion

In this paper, a novel ensemble learning based feature selection is proposed

which automatically calculates the best subset of feature selectors considering515

the accuracy and diversity trade off with an optimization framework by DCCP

algorithm. The proposed approach is validated on the most well known data

sets and the performance results are compared with an un-pruned case of en-

semble learning and Joint criterion method. DES is used as a classifier of these

classification tasks. In addition to this, we implmented our model with other520

classification algorithms such as Linear SVM, nonlinear SVM and decision tree

method where our proposed approach gave better accuracy performance with

those classification techniques as well. As a future study, ensemble library can

be enhanced by considering data variation techniques such as bagging.

The performance evaluation was carried out against each of those 28 con-525

stituent feature selection methods. When analyzing feature selection algorithms

individually versus Ensemble Feature selection method performance, ensemble

methods show great promise for large feature domains. It turns out that the best

trade-off between accuracy and diversity performance depends on the ensemble

feature selection model, giving rise to a new model selection strategy.530
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[1] Iñaki Inza, Pedro Larrañaga, Rosa Blanco, and Antonio J Cerrolaza. Fil-

ter versus wrapper gene selection approaches in dna microarray domains.

Artificial intelligence in medicine, 31(2):91–103, 2004.

34



[2] George Forman. An extensive empirical study of feature selection metrics

for text classification. Journal of machine learning research, 3(Mar):1289–540

1305, 2003.

[3] Verónica Bolón-Canedo, Noelia Sánchez-Maroño, and Amparo Alonso-

Betanzos. Feature selection for high-dimensional data. Progress in Artificial

Intelligence, 5(2):65–75, 2016.
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