Cited references
Ågren, Anneli M.; Paul, Siddhartho Shekhar; Lidberg, William (2022), “Mapped drainage ditches in forested landscapes”, Mendeley Data, V1, doi: 10.17632/zxkg43jsx8.1
Buntgen, U. et al. (2021). Recent European drought extremes beyond Common Era background variability. Nat Geosci, doi: 10.1038/s41561-021-00698-0.
Evans, C.D. et al. (2021). Overriding water table control on managed peatland greenhouse gas emissions. Nature 593, 548–552, doi: 10.1038/s41586-021-03523-1.
Finér, L. et al. (2021). Drainage for forestry increases N, P and TOC export to boreal surface waters. Sci. Tot. Environ, 762, 144098, doi: 10.1016/j.scitotenv.2020.144098.
IPCC, The Physical Science Basis, https://www.ipcc.ch/report/sixth-assessment-report-working-group-i/, 2021.
Kreyling, J. et al. (2021). Rewetting does not return drained fen peatlands to their old selves. Nature Com., 12, 5693, doi: 10.1038/s41467-021-25619-y.
Lidberg, W., Westphal, F., & Ågren, A. (2022). Mapping-drainage-ditches-in-forested-landscapes-using-deep-learning-and-aerial-laser-scanning (Version 1.0.0) [Computer software].https://doi.org/10.5281/zenodo.1234
Lindenmayer, D.B., Hobbs, R.J., Likens, G.E., Krebs, C.J. & Banks, S.C. (2011). Newly discovered landscape traps produce regime shifts in wet forests. Proc. Natl. Acad. Sci., 108, 15887-15891, doi: 10.1073/pnas.1110245108.
Lindsay, J. B. (2014, April). The whitebox geospatial analysis tools project and open-access GIS. In Proceedings of the GIS Research UK 22nd Annual Conference, The University of Glasgow (pp. 16-18).
Löfmarck, E., Uggla, Y., & Lidskog, R. (2017). Freedom with what? Interpretations of “responsibility” in Swedish forestry practice. Forest Policy and Economics, 75, 34-40, doi: 10.1016/j.forpol.2016.12.004.
Malmström, C. Meddelanden från Statens skogsförsöksanstalt 26:1, 1931 (In Swedish).
Menberu, M. W., Tahvanainen, T., Marttila, H., Irannezhad, M., Ronkanen, A. K., Penttinen, J., & Kløve, B. (2016). Water‐table‐dependent hydrological changes following peatland forestry drainage and restoration: Analysis of restoration success. Wat. Resour. Res., 52, 3742-3760, doi: 10.1002/2015WR018578.
Nieminen, M. Sarkkola, S., Sallantaus, T., Hasselquist, E.M. & Laudon, H. (2021). Peatland drainage-a missing link behind increasing TOC concentrations in waters from high latitude forest catchments? Sci. Tot. Environ. 774, 145150, doi: 10.1016/j.scitotenv.2021.145150.
Peacock, M. et al. (2021). Small artificial waterbodies are widespread and persistent emitters of methane and carbon dioxide. Glob. Chang. Biol., 27, 5109-5123, doi: 10.1111/gcb.15762.
Pierson, P. (2000). Increasing returns, path dependence, and the study of politics. American political science review, 94(2), 251-267, doi: 10.2307/2586011.
Sit, M., Demiray, B. Z., Xiang, Z., Ewing, G. J., Sermet, Y., & Demir, I. (2020). A comprehensive review of deep learning applications in hydrology and water resources. Water Sci. Technol., 82, 2635–2670, doi: 10.2166/wst.2020.369.
Spinoni, J., Vogt, J. V., Naumann, G., Barbosa, P., & Dosio, A. (2018). Will drought events become more frequent and severe in Europe? Int. J. Climatol., 38, 1718-1736, doi: 10.1002/joc.5291.
Strack, M. (2008). Peatlands and climate change, International Peat Society.
Unruh, G.C. & Carrillo-Hermosilla, J. (2006). Globalizing carbon lock-in. Energy Policy, 34, doi: 10.1016/j.enpol.2004.10.013.