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1. Introduction and Preliminaries

The concept of metric space has been generalized from one to different di-
rections by many researchers. Bakhtin [7] (also, Czerwik [13]) introduced the
concept of b-metric space as a generalization of metric space. In 2014, Hussain
et al. [15] introduced the notion of parametric metric space as a generaliza-
tion of metric space and proved some fixed point theorems in such spaces. In
2015, Hussain et al. [16] introduced the concept of parametric b-metric space
as a generalization of parametric metric space and investigated the existence
of fixed points under various contractive conditions in such space. On the
other hand, recently Kamran et al. [17] introduced the concept of extended
b-metric space as a generalization of b-metric space and proved Banach fixed
point theorem in this space.

In 2003, Ran and Reurings [27] proved an analogue of Banach contrac-
tion principle for continuous monotone mapping in metric space endowed with
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partial order and studied the existence of solutions of linear and nonlinear
matrix equations. After that Nieto and Rodriguez-Lépez [21, 22] generalized
the results of Ran and Reurings [27] by relaxing the conditions of continu-
ity as well as monotonicity and presented some applications to first-order
ordinary differential equations with periodic boundary conditions (for more
results on fixed point in ordered set, we refer to [1, 3, 12, 15, 16, 21, 22, 27, 28]
and references therein).

Definition 1.1. [7, 13] Let X be a nonempty set and s > 1 a given real
number. A function d : X x X — [0,+00) is called a b-metric on X, if for
all z,y, z € X, following conditions hold:

(dpl) dp(z,y) =0, if and only =z = y;

(dy2) dy(z,y) = db(y, @);

(dy3) dy(z,y) < sldy(z,y) + di(y, 2)].

Then the pair (X, dp) is called a b-metric space.

Every metric is b-metric for s = 1 but, the converse does not hold in
general. Hence the class of b-metric spaces is effectively larger than that of
metric spaces. The following example shows that b-metric space need not be
metric space.

Example 1.2. [2] Let (X, d) a metric space and dy(x,y) = (d(x,y))?, where
p > 1 is a real number. Then, (X,d;) is a b-metric space with s = 2P~ 1,
However, (X, d;) is not a metric space.

Note that the distance function dj used in b-metric spaces is not con-
tinuous in general (see [11, 14]). For more examples and fixed point results
in b-metric spaces we refer to [2, 8, 11, 13, 14, 24] and references therein).

Definition 1.3. [17] Let X be a nonempty set and 6 : X x X — [1,400).
A function dp : X x X — [0,+00) is called an extended b-metric if for all
x,y,z € X, the following conditions hold:

(dgl) dg(z,y) = 0 if and only if x = y;

(do2) do(z,y) = do(y, x);

(dg3) do(x,y) < O(z,y)|dy(z,2) + do(z,y)]-

Then the pair (X, dyp) is called an extended b-metric space.

Note that if 8(x,y) = s > 1, for all z,y € X, then extended b-metric
space becomes a b-metric space. Therefore, every metric space is a b-metric
space and b-metric space is an extended b-metric space, but the converse
need not be true in general. For more results on extended b-metric spaces
and references, we refer to [4, 5, 6, 17, 25].

Example 1.4. Let X = R. Define 6 : X x X — [1,+o00) and dg : X x X —
[0,400) as: O(x,y) = 1+ |z| + |y|, for all x,y € X and

z[+yl, zyeX,z#uy;
dg(l',y) = {l) I T=y

Then, (X, dy) is an extended b-metric space.
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Definition 1.5. [15] Let X be a nonempty set and P : X2x (0, +00) — [0, +-00)
be a function. We say P is a parametric metric on X if for all z,y,z € X the
following conditions hold:

(P1) P(x,y,t) =0, if and only if x = y, for all ¢ > 0;

(P2) P(zx,y,t) = P(y,z,t), for all ¢ > 0;

(P3) P(z,y,t) < P(x,z,t) + P(z,y,t), for all £ > 0.

Then the pair (X, P) is called a parametric metric space.

Example 1.6. [15] Let X be a set of all functions f : (0,4+00) — R. Define
P X% x (0,400) — [0,+00) as P(f,g,t) = |f(t) — g(t)|, for all f,g € X,
t > 0. Then (X, P) is a parametric metric space.

Example 1.7. [15] Let X = [0,+00) and P : X2 x (0,4+00) — [0,+00) be
defined by

tmax{z,yf, < ;
P(w,y,t)Z{O tou} x#z

for all z,y € X and for all ¢ > 0. Then (X, P) is a parametric metric space.

Let (X,P) be a parametric metric space. Let a € X and r > 0, then
B(a,r) = {x € X : P(a,z,t) < r, for all t > 0} is called an open ball of
radius r > 0 centred at a € X.

Remark 1.8. If (X, P) be a parametric metric space, then parametric metric
P is a continuous function.

Definition 1.9. [16] Let X be a nonempty set and s > 1. A function P}, : X? x
(0, 400) — [0, 400) is said to be a parametric b-metric if for all z,y,z € X,
the following conditions hold:

(Ppl) Py(z,y,t) =0, if and only if x =y, for all ¢ > 0;

(Py2) Po(z,y,t) = Po(y,x,t), for all t > 0;

(Pp3) Po(z,y,t) < s[Py(x, 2,t) + Po(z,y,t)], for all t > 0.

The pair (X, Py) is called a parametric b-metric space.

Note that if s = 1 then, parametric b-metric space becomes a paramet-
ric space. Therefore, every parametric metric space is a parametric b-metric
space, but the converse need not be true in general. In general, a parametric
b-metric function Py, for s > 1 is not continuous in its variables (Example 1.7
of Hussain et al. [16]).

Example 1.10. [16] Let X = [0, +00) and define Py(z,y,t) = t|x — y|P, for all
z,y € X and for all £ > 0. Then P, is a parametric b-metric with constant
s = 2P where p > 1.

Let X be a non-empty set and o : X x X — R be a mapping.

Definition 1.11. [28] A mapping 7': X — X is an a-admissible, if z,y € X,
a(z,y) > 1 implies a(Tz, Ty) > 1.

Definition 1.12. [20] An a- admissible mapping 7T is said to be an o*-admissible,
if for all z,2* € Fiz(T) # 0, a(x,z*) > 1.
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Remark 1.13. We denote Fiz(T) = {z € X|Tz = z}.

Definition 1.14. [18] A mapping T : X — X is a triangular a-admissible if
(Th) T is an a-admissible;
(T2) a(z,y) > 1 and a(y, z) > 1 imply a(z,z) > 1

Definition 1.15. [3] A mapping T': X — X is a weak triangular a-admissible
if

(Th) T is an a-admissible;

(Tz) a(x, Tz) > 1 implies a(x, T?x) > 1.

The following hypothesis is also used in Alsulami et al. [3] for the exis-
tence of uniqueness of fixed point.
Condition (B): For z,y € X, there exists z € X such that a(z,z) > 1 and
a(z,y) > 1.

Definition 1.16. [26] A mapping T': X — X said to be an a-orbital admissible
if z € X, a(x, Tx) > 1 implies o(Tx, T?z) > 1.

Note that every a-admissible mapping is an a-orbital admissible map-
ping (for more details we refer to [26]).

Definition 1.17. An a-orbital admissible mapping 7" is said to be an a*-orbital
admissible, if for all z,z* € Fiz(T) # 0, a(z,z*) > 1.

Definition 1.18. [23] A continuous function ¢ : RT™ — R is called an altering
distance if it is non-decreasing and ¢(r) = 0 if and only if » = 0. Denote by
® the set of all altering distance functions.

Example 1.19. Let ¢, : Rt — RT, where i = 1,2 be defined by:
(i) @y(r) = ¢ + Br - 1.

(ii) ¢5(r) = ar® +In(Br + 1),

where «, 5 > 0.

Clearly, ¢q, 5 are altering distance functions (for more examples on
altering distance function, we refer to Sintunavarat [29]).

Lemma 1.20. [19] Suppose ¢ : R* — R is nondecreasing. Then, for every
r >0, lir+n Y™ (r) = 0 implies ¥(r) < r, where Y™ denotes the nth-iterate
n—-+0oo

of V.

Definition 1.21. [8, 9] A function ¢ : Rt — R™ is said to be a comparison
function, if it is monotonically increasing and ™ (r) — 0 as n — +o0, for all
r > 0 and ¥ denotes the set of all comparison functions.

Example 1.22. [10] Let ¢, : RT — RT,i = 1,2,3, be defined by

(1) ¥1(r) = ar, where 0 < a < 1;

(¥9) a(r) = ﬁ%

(13) Y¥4(r) = By(r), where 15(r) is monotonically increasing, 0 < 8 < 1 and
v : Rt — R such that v"(r) — 0 as n — +o0.
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It is easy to see that v,,i = 1,2,3 are comparison functions. Note that
if ¢ is comparison function, then ¢ (r) < r, for all r > 0 and (0) = 0. We
denote W, the set of all comparison functions.

In the next section, we introduce the concept of parametric (b, 8)-metric
space and prove some fixed point theorems in such space. We also extend the
our result to parametric (b, d)-metric space endowed with partial order and
apply it to prove the existence of solution of integral equation.

2. Main Results

Motivated by Kamran et al. [17], we introduce the notion of parametric (b, 6)-
metric space and investigate some examples. We also introduce the notion of
a-orbital admissible [26] mapping in this space.

Definition 2.1. Let X be a nonempty set and 6 : X x X x (0, +00) — [1, 4+00).
A function Py : X x X x (0,+00) — [0, +00) is said to be parametric (b, 0)-
metric if for all z,y, 2z € X and for all £ > 0, the following conditions hold:
(Pol) Py(z,y,t) =0, if and only if z = y;

(Py2) Po(z,y,t) = Poly,z,t);

(Po3) Po(z,y,t) < 0(z,y,t)[Po(x, 2, t) + Po(z,y,t))].

The pair (X, Py) is called a parametric (b, 0)-metric space.

If (z,y,t) = s > 1, for all t > 0, then parametric (b, §)-metric space be-
comes a parametric b-metric space. Therefore, every parametric metric space
is a parametric b-metric and parametric b-metric space is a parametric (b, 6)-
metric space, but the converse may not be true in general. In the following,
we discuss some examples of parametric (b, #)-metric spaces.

Example 2.2. Let X = R and Py : X2 x (0,+00) — [0,+00) be defined by
Po(x,y,t) = t(z —y)?, where 0(z,y,t) = 2+ t(|z| + |y|), for all 2,y € X and
for all ¢ > 0. Then, (X, Pp) is a parametric (b, #)-metric space.

Example 2.3. Let X = R and 6 : X2 x (0,4+00) — [1,+00) be defined by
O(z,y,t) = 1+ t(Jz| + |y|), for all z,y € X and for all ¢ > 0. Let Py :
X2 x (0,+00) — [0,4+00) be given by

PG(xvy’t) = {

t(lzP + y?), z,ye€ X,z #uy;
0, T =1y,

where, p > 1. Then, (X, Py) is a parametric (b, f)-metric space.

Example 2.4. Let X = [0,1] and 6 : X2 x (0, 4+00) — [1,4+00) be a function
given by 0(z,y,t) = %JF;’H, where 4y > 0 and 6(0,0,t) = 1, for all £ > 0.
Define Py : X2 x (0, 4+00) — [0, +00) as

Po(x,y,t) = , for z,y € (0,1}, # y,t > 0;

t
Ty
Po(x,y,t) = 0, for x=y,t>0;

t
Po(x,0,t) = Pp(0,2,t) = = for x € (0,1],t > 0.
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Then (X, Py) is a parametric (b, §)-metric space.

Example 2.5. Consider the set X = [,(R) with 0 < p < 1, where
L(®) = {{a:} CRIY [aif? < oo}
i=1

Define 6 : X2 x (0,+00) — [1,+00) and Py : X2 x (0, +00) — [0, 4+00) by
0(x,y.t) =27 + t(|z] + [y])

and

1

’ya (ZW i — Yi ‘p)57

where 0 < n(t) < oo, for all x = {x;}, vy = {y;} € X, for all ¢ > 0. Then
(X, Py) is a parametric (b, #)-metric with 0(x,y,t) > 1.
Example 2.6. The space L,[0,1] of all real functions z(p), p € [0,1] such that
fo |z(p)|Pdp < 1, where 0 < p < 1. Define

dp) v

0@yt /‘ 1—|—t

1
O(x,y,t) =2» +L, where x +y > 0 and 60(0,0,t) =

Tty

for all z,y € L,[0,1] and for all ¢ > 0. Then Py is a parametric (b, #)-metric
on L,[0,1].

and

Let (X, Py) be a parametric (b, §)-metric space, where Py is a continuous
parametric (b, §)-metric and let ¢ € X and r > 0, we write

B(a,r) = {z € X|Py(a,z,t) <r, for all t > 0}.

Then, B(a,r) is called an open ball of radius r > 0 centred at a. Let {z,,} be
a sequence in X, then a point 2 € X is called a limit of the sequence {z,} if
limy, - oo Po(@n, x,t) = 0, for all £ > 0 and we say that the sequence {z,} is
convergent to x € X and denotes it as x,, = = an n — 4oc.

The concepts of Cauchy sequence and completeness in a parametric
(b, 0)-metric space can be formulated analogous to the case of parametric
b-metric space.

Definition 2.7. Let (X, Py) be a parametric (b, f)-metric space and {z,} be
a sequence in X. We say that

(a) {x,} in X is said to be a Cauchy sequence in X if for all ¢ > 0,
Po(m, Tn,t) = 0 as m,n — +00;

(b) (X, Py) is said to be a complete if and only if every Cauchy sequence in
X is convergent.
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Definition 2.8. Let (X, Pp) be a parametric (b, 6)-metric space and T : X —
X be a mapping, then we say that T is a continuous at z € X, if for any
sequence {z,} in X such that x,, — = as n — +o00, we have Tz, — Tz as
n — +00o.

Recall that, in general a parametric b-metric function P, with s > 1 is
not continuous in its variables, so Py is also not continuous in general.

Though out the following sections, we assume that a parametric (b, 8)-
metric Py is a continuous function.

Definition 2.9. Let X be a non-empty set and o : X2 x (0,+00) — R be
a mapping. A mapping T : X — X is said to be a parametric a-orbital
admissible if € X, a(x, Tx,t) > 1 implies a(Tz, T?x,t) > 1, for all t > 0.

In addition, T is said to be a parametric a*-orbital admissible, if for all
z,y € Fix(T) #0, a(x,y,t) > 1, for all ¢ > 0.

Example 2.10. Let X = [0, +00). Define a : X2 x (0,+00) > Rand T : X —
X as:

(2,5, 1) 1, ifz >y
a 'r7 ) = .
Y 0, otherwise,

for all ¢ > 0 and Tx = In(1 + z), for all z € X. Then, T is a parametric
c-orbital admissible.

Example 2.11. Let X = [0,400) and T : X — X be a mapping defined by
Tr = %2, for all z € X. Define o : X2 x (0, +00) — R as

(1) 1, ifz,yel0,2];
« 1.7 R = .
Y 0, otherwise,

for all ¢ > 0. Note that Fixz(T) = {0,2}. Then T is a parametric a-orbital
admissible and parametric a*-orbital admissible as well.

Example 2.12. Let X = [0,00). Define T: X — X and a: X2 x (0,00) = R

as Tx =

%‘ for all z € X and for all t > 0,

a x’ b = .
Y 0, otherwise.

Then T is a parametric a-orbital admissible but not a parametric a*-orbital
admissible as Fiz(T) = {1,2,3}.

Lemma 2.13. Let {x,} be any sequence in a parametric (b,0)-metric space
(X, Py). If there exist two functions ¢ € & and p € ¥ such that

0< gp(?’g(mn,anrht)) < ¢<Pa(mn,1,xn,t))
. O(zp, T, )P" (P@(aco,xl,t))
and  lim

<1
n,m——+oo ,(/Jnfl (PO (.130, T, t))
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for any m >n >1 and for all t > 0, then {x,} is a Cauchy sequence in X.

Proof. For all t > 0, we obtain

0< @(Pa(mmxnﬂ,t)) ST,/)(,PG(xnflal'n»t)) <L <yt (PG(anxlvt)>'
Letting n — 400, we obtain

lim go(Pg(xman, )) =0if and only if lim Py(xn,xnt1,t) =0.

n—+o00 n—+00
Setting 0; = 0(x;, Tiqp,t) for each ¢ € N, p > 1 and Py(xo, z1,t) = w, we
obtain

Pﬁ(xn7xn+p7 ) <0 Ty Ln+p, |:,P9 Ty Tn+1, )+ P0($n+179€n+p,t)]

t)
<0(@n, Tntp, 1) Po(Tn, Tnt1,t) + 0(Tn, Tngp, 1) Po(Tntt, Tngp, t)
<O(xyn, Trip, t)Po(Tn, Tny1,t)+
O(zns Trtp, t)0(Xnt1, Tntp)Po(Tns1, Tnyo, t) + .t

O(zn, Totp, t)0(XTnt1, Trgps t)-..

0 Tn4+p—15Ln+p, )7)0 (xn+p—1a LTn+p, t)
S@n’(/Jn (779(5(50, T, t)) + 9n9n+1wn+1 (P@(l‘o, T, t)) + ...
+ 0n0n+1~'0n+p71¢n+p_1 (PO (.’Eo, X, t))

=0,,¢" (w) + 9n9n+1¢"+1(w) F oA 0001 Oy 10" TP (W)
n+p—1

=2 v H‘9

Multiplying H?;l 0; on the right side of the above inequality, we obtain

(
(
(
(
(
(

n+p—1
Po(@n, Tngprt) < Y O Ha
n—li-pn 1 ) n—1 ] i
=Y ¥(w) H 0;— > v [ ¢
i=1 j=1 i=1 j=1

Since,

0(i,i + p,t)0' (Pe(xm 1, t)) 01" (w)
lim - = lim —
e P! (P@(‘rOa 1, t)) e (W)

Therefore, by Ratio test the series o0 1" (w) Hj‘=1 6; converges.

Let § = 372, ¢'(w) H;‘:1 6; and S, = S, 9" (w) H;:1 0j, the se-

quence of partial sum. Consequently, we obtain

,PG(:Enaanrpvt) S [Sn+p71 - Snfl .
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for any n € N and p > 1. Letting limit as n — +00, we obtain {x,} is Cauchy
sequence in X. 1

Setting ¢(£) = € and ¥(§) = k&, where £ € RT, k € [0,1), then we
obtain the following lemma.

Lemma 2.14. Let {x,} be any sequence in a parametric (b,0)-metric space

(X, Pg) such that
0 < Po(xn, Tnt1,t) < kPo(Tn—1,Tn,t) (2.1)

and 1
lim  O(zp, 2m,t) < —

n,m—+4o0o kj,
where k € [0,1), for any m > n > 1 and for all t > 0, then {x,} is a Cauchy
sequence in X.

(2.2)

Theorem 2.15. Let (X, Py) be a complete parametric (b, 0)-metric space and
T : X — X be a continuous self mapping on X. Assume that there exist
a:X?x(0,00) > R, ¢ € ® andp €V such that o(r) > ¥(r), for r > 0
satisfying

a(w,y. 000 (Po(Tz, Ty, 1)) < v (M(z,,1)) (2.3)

where

M((E,yﬂf) = max {Pg(x,y,t),’Pg(:r,Tx,tLPg(y,Ty,tL

Pe(xa Ty7 t) + Pe(y7 Txv t) }
20(x,y,1) ’
for all x,y € X and for allt > 0. If

(i) T is a parametric a-orbital admissible;
(1) there exists xg € X such that a(xg, Txg,t) > 1, for all t > 0;

0(Tn, T, )P (739(51?0, x1,t)

(43) 1y, 1 —s 4 oo <1,
pnt (739(910, z1,t)
where x, =T"xg, m >n > 1, for all t > 0.

Then T possesses a fived point ¢ € X. Moreover the sequence {x,}nen con-

verges to ( € X.
Proof. By given assumption, there exists o € X such that a(xg, Txo,t) > 1,
for all ¢ > 0. Define a sequence {z,} in X such that z,, = T"z, for all
n€N. If zp_1 = xp = Txr_1, for some k € N, then we have xp_1 = Txp_1.
Without lost of generality we assume that x,_1 # x,, for all n € N.
Since T is a parametric a-orbital admissible,
a(zg,z1,t) = a(xg, Txg,t) > 1

implies

a(l'lv T2, t) = OZ(TZL’(), T2.’E0, t) >1,
for each ¢ > 0. Similarly,

a(xy, 0, t) = a(Txg, T?x0,t) > 1
implies

a(xa, x3,t) = a(T?xo, T3x0,t) > 1,
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for all t > 0. Continuing in this way, we obtain inductively that a(z,—1,Zn,t) >
1, where n € N, for all ¢t > 0.
Taking ¢ = x,,—1 and y = x,, for all ¢ > 0, we obtain

w(Pe(:ﬂn, Tpt1, t)) = (,PO(Tl'nfla Ty, t))
SO&(JL‘n_l, T, t)‘)@(,PQ (Txn—lv TJ;TL? t))
S"p (M(l‘nfl, Tn, t))7
where
M(xnfly Tn, t) =max {Pe(xnfh Tn, t)7 P@(xnfly Txnfh t)a PO(xn7 Txna t)a

P9($n_1, T.]?n, t) + P@(Z‘n, T-Tn—h t) }
20(xp—1,Zn,t)

=max {Pe(xnfh Tn, t)7 P@(xnfly Ty t), 7)9(37717 Tn+1, t)?

P@(xn—la Tn+1, t) + P@(mna Ty t) }
20(xp—1,%n,t)

Po(xn—1, Tnt1,t) }
29(-77n71’ Ly t)

For the refinement of the inequality, we shall consider the following cases:
Case (i): If M(xp—1,2n,t) = Po(p_1,2n,t), we obtain

so(Po(xn,tht)) < w(Pg(xn,l,mn,t)), for all t > 0.

Case (i1): If M(zp—1,%n,t) = Po(xn, Tnt1,t), we obtain

@(Pg(;vn,xwrht)) < w(Pg(acn,an,t)) < <,0<779(xmmn+1,t)),

for all ¢ > 0, which is a contradiction.

Case (74i): If M(zp_1,2n,t) = W, we obtain

Pe(wn—l7 Tn+1, t))
20(xp—1,Tn,t)

= max {Pg(l’n_17l’n,t),Pg(In7l'n+1,t),

W(PG(xm Tn+1, t)) Sl/)(

1
S¢(§{P9($n—laxnat) + Pe(xn; Tn+1, t)})a for all ¢ > 0.
If max{Py(xn—1,Tn,t), Po(Tn, Tni1,t)} = Po(Tn,Tni1,t) that is Po(xn_1,Tn,t) <
Po(xp, Tpy1,t), then
@(Pﬂ(xmanrlvt)) < w(PG(xmanrlvt))

which is again a contradiction to the fact that ¢(r) > ¥(r), for » > 0
and for all ¢ > 0. Therefore, Case (i7i) holds whenever Py(zn, Tny1,t) <
Po(xpn—1,Zn,t), for all t > 0.

Consequently, we obtain

0< @(Pg(xn,xwrht)) < (”Pe(xn,l,xn,t)), for all ¢ > 0.
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Since,
e(xna LTy t)wn (PQ(J:O; T, t))
lim
n,m——4o0o ,(/}nfl (739(:1307 1, t))

It follows from Lemma 2.13, we obtain that {z,} is a Cauchy sequence in
X. Since X is a complete parametric (b, d)-metric space, there is ( € X
such that x, — ¢ as n — 400 i.e., lim, 1o Po(xn,(,t) =0, for all ¢t > 0.
We suppose that T is continuous on X, then Tz, — T'( as n — +oco but,
Tx, = xp41 — ¢ as n — +00. Therefore, T¢ = (. 1

<1, forall t > 0.

Example 2.16. Let X = [0,4+00) and Py : X2 x (0,+00) — [0,+00) be a
parametric (b, §)-metric equip with

t@?+y?), zyeX,xz#y;
0, T =y,

PG(I7y7t) = {

where 0(z,y,t) =1+ t(x +y), for all z,y € X and for all ¢ > 0.
Consider T': X — X be a continuous mapping defined by

3z

2T 0< < 1:
Te =< %’ 5 =T=5

20— 3, xz>1

Define o : X2 x (0, +00) — R as: for all ¢ > 0,

W= 0, otherwise.

Clearly, for # € [0,1], a(z, Tx,t) > 1 and «(Tz, T?x,t) > 1, for all t > 0.
Therefore T is a parametric a-orbital admissible. Also, we define ¢ (r) = kr
and ¢(r) = r, where k = =%, then ¢(r) > (r), for all » > 0. In fact for all

167
z,y € X, we obtain
9
Oé(.’E,y7t)g0('Pg(T(E,Ty,t)) :Et(mQ + y2) = kpg(.’[],:%t)
<t (M(x,y,t)), for all £ > 0.

Also, there exists g € X such that a(xg,x1,t) = a(xg, Txo,t) > 1 implies
a(wy,ma,t) = a(Txg, T?x0,t) > 1, for all t > 0. We obtain inductively that
a(rp, Tpi1,t) = a(Txe, T g, t) > 1, for all t > 0, where x,, = T"zg =
(%)"mo. In fact x, = T"x9 — 0 as n — +oo and

1
lim Q(THSC(),Tmmo,t) =1<—-.

n,Mm—~+00 kj

Thus all the conditions of Theorem 2.15 are satisfied and hence, T' possesses
a fixed point. Note that Fiz(T) = {0, 5}.

In the following theorem, we omit the continuity assumption of T
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Theorem 2.17. Let (X, Pyg) be a complete parametric (b,0)-metric space and
T : X — X be a self mapping on X. Assume that there exist a : X2 x
(0,00) > R, p € ® and ¢ € ¥ such that p(r) > ¥(r), r > 0 satisfying

o,y 000 (Po(Te, Ty, ) < 0 (Mlx.9.1)),

where

Po(x, Ty, t) + Py(y, Tx,t
M,y 1) = max {Po(,y,0), (e, T 1), Poly. Ty, 0), 724 y%zzy;(y N

forallz,y € X andt > 0. If
(i) T is a parametric a-orbital admissible;
(ii) there exists xg € X such that a(xo, Txo,t) > 1, for allt > 0;

0(xTn, Tm, )P" (’Pé(x07 x1,t)

(iii) Timy s 400 <1,

Yyt (7’9(107 z1,t)
where x, = T"xg, m >n > 1, for allt > 0;

(iv) {xn} is a sequence in X such that a(xp,Tpy1,t) > 1 and z, — ¢ €
X as n — +oo, then there exists a subsequence {x,,} of {x,} such that
a(Zp,,C,t) > 1, for all t > 0, where ny, > ng > 1. Then T possesses a fived
point in X.

Proof. Following the proof of Theorem 2.15, we obtain that {x,} is a Cauchy
sequence in X. Since X is a complete parametric (b, #)-metric space, there ex-
ists ¢ € X such that z,, — ¢ an n — +o0. From (iv) we obtain a(xy,,(,t) >
1, ng > ny, for all ¢t > 0. Taking ¢ = =, and y = ¢ for all ¢ > 0, we obtain

o (Pown1, T¢,1)) =p(Po(Twa, TG, )
—a(@n, ¢, ) (Po(Tan, TC,1))
< (M, 1))
<p(Mlan,. 1)),

where
M(‘rnk , G, t) = nax {P9 (xnk e t)7 Py (xnk ) Txnk ) t) Py (C Tq, t),

P@(xnkaTC t) +7D9 C Tl'nk, }
29(1’%,4,

= max {’Pe(xnkant)a’PO(xnkaxnk+17 ) PG(C T< )

t)
P@ (xnk ) TC t) + 7)9 C7 .’Enk+17 }
20(zp,,C,t)

Letting k£ — 400 and continuity of ¢, we obtain

(Po(¢.TCH) <o lim  M(@a 6,8) = 0 (Po(¢, TC.)),
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which is a contradiction. Therefore, we conclude that Py(¢,7'¢,t) = 0 and
hence, T¢ = (. I

Theorem 2.18. In addition to the hypothesis of Theorem 2.15 (resp. Theorem
2.17), suppose the mapping T : X — X is a parametric o*-orbital admis-
sible. Then T possesses a unique fized point & € X. Moreover the sequence
{T™xo}nen converges to £ € X.

Proof. By Theorem 2.15 and Theorem 2.17, T possesses a fixed point in X
i.e. Fiz(T) # (). Since T is a parametric a*-orbital admissible, then

a(C, ¢ 1) = a(TC,TC, ) > 1,

for all ¢,(* € Fiz(T) and for all ¢ > 0.
Suppose that ¢ # ¢*, for all ¢t > 0, we obtain

0 < o(Polc.c".0) =p(Po(T¢.TC", 1))
<a(¢.¢" D (Pol(TC, T 1))
<p(M(G.¢)
= (Pa,C". 1))
<¢(Pal¢. ¢ 1),

This is a contradiction and hence, T possesses a unique fixed point in X. I

Corollary 2.19. Let (X, Py) be a complete parametric (b, §)-metric space and
T : X — X be a continuous self mapping satisfying

PG(T:E, Tyv t) < kM(SU, Y, t)

where M(z,y, ) = max {P@(x,y,t), Po(2T2:t)+Po(y.Ty.) Pe(z,Ty7t)+Pe(y7Tz7t)}’

’ 20(z,y,t)
for all x,y € X and for all ¢ > 0. Moreover, if for any zy € X,

. 1
7”17111300 (X, T, ) < T
where z,, = T"zo and 0 < k < 1, for all ¢ > 0. Then T possesses a unique
fixed point ¢ € X.

Remark 2.20. () In Example 2.16, T is a parametric a-orbital admissible
and Fiz(T) = {0,2}, but o(3,T2,t) = a(3,5,t) = 0, for all ¢ > 0. This
shows that T is not parametric a*-orbital admissible. In this case, Theorem
2.18 is not application in Example 2.16.

(i) In Example 2.16, taking © = % and y = 2, then

493t 17t

1
_ _— = -2
64 > 4 P9(27 at),

for all ¢ > 0. This shows that Corollary 2.19 is not application in Example
2.16.

1
Po (Tx, Ty, t) =Py (T§7 T2, t) =
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In the following, we give a theorem which is the direct consequences of
Theorems 2.15, 2.17 and 2.18 in metric space.

Theorem 2.21. Let (X,d) be a complete metric space and T : X — X be a
self mapping on X. Assume that there exist a : X x X — R, p € ® and
¥ € U such that o(r) > ¥(r), for r > 0 satisfying

oz(sr:,y)go(d(Tx,Ty)) < w(M(x,y)), forallz,y € X,

where M(z,y) = max {d(m, y),d(z, Tx),d(y, Ty), W}. If

(i) T is an a-orbital admissible;
(i) there exists xg € X such that a(xg, Txo) > 1;
" (d(l’m z1))
(i) limy, 4 oo ——F——24< < 1, where x,, = T"xy;
Y=t d(zo, 1)
(iv) T is continuous, or {x,} is a sequence in X such that a(x,,Tn41) > 1
and x, — ¢ € X asn — +oo, then there exists a subsequence {x,, } of {zn}
such that a(xy,,C) > 1, where ng > ng > 1.
Then T possesses a fived point ( € X. Moreover the sequence {x,}nen con-
verges to ( € X.

Theorem 2.22. In addition to the hypothesis of Theorem 2.21, suppose the
mapping T : X — X is an o*-orbital admissible. Then, T' possesses a unique
fized point ¢ € X. Moreover the sequence {T"xo}nen converges to ¢ € X.

Recall that if (X, <) be a partial ordered set and T': X — X, we say
that T is monotone non-decreasing, if z,y € X, x < y implies Tz < Ty.

Theorem 2.23. Let (X, =) be a partial ordered set and suppose that there ex-
ists a parametric (b, 0)-metric Py such that (X, Py) be a complete parametric
(b, 0)-metric space. Let T : X — X be a monotone non-decreasing self map-
ping w.r.t. < such that there exist ¢ € ® and ¥ € U, p(r) > ¥(r), forr >0
satisfying

o (Po(Tz, Ty 1)) < v (Mz,y.1))

where

Polx, Ty, t) + Py(y, Tx,t
M, .1) = max {Po(, y.0), Po(e, T 1), Poly. Ty, £), 224 yzezz ” i;y a3

for all x,y € X with x <y. If
(i) there exists xog € X such that xog < Txo;

Q(wru Ty t)dJ" (PS ($Oy Ty, t))

(11) limy, m—s 400 < 1, where x, = T"xy, for all
Pt (730(9007 IClJ))
t>0;

(iti)(a) T is continuous, or (b) {x,} is a non-decreasing sequence in X such
that ©, — ¢ as x, — +00, then there exists a subsequence {xy, } of {xn}

such that x,, =< (¢, where ng > ng.
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Then Fix(T) # ¢. Further, if every pair of elements (,(* € Fix(T) is com-
parable, then Fix(T) is a singleton.

Proof. Define a mapping o : X2 x (0, +00) — [0, +00) as:

(@1, 1) 1, z=xyory=2uz;
@ x? ) = .
Y 0, otherwise,

for all ¢ > 0. Then, we obtain

a(,y, ¢ (Po(Ta, Ty,t)) < v (M. y.1))

for all x,y € X with z <y and for all t > 0.
Since, T is monotone non-decreasing mapping w.r.t. <, so T is a parametric
a-orbital admissible. Indeed, if z € X such that a(z,Tz,t) > 1, for all ¢t > 0,
then x < Tz, or Tz < z. Since, T' is monotone non-decreasing mapping w.r.t
=, we have Tx < T?z, or T?x < Tx , which in turn gives a(Tx, T?x,t) > 1,
for all ¢ > 0.

On the other hand, from (i) there exists xy € X such that 2o < Txo,
then a(xg, Txo,t) > 1, for all t > 0.

From (iii)(a) if T is continuous, then all the hypothesis of Theorem
2.15 are satisfied. Again, from (ii¢)(b) suppose that {x,} is a non-decreasing
sequence in X such that x,, — ( as x,, — 400, then there exists a subsequence
{zn,} of {x,} such that z,,, =, ny > ng, which in turn gives (z,,,(,t) > 1,
for all £ > 0. Thus, all the hypothesis of Theorem 2.17 are satisfied.

Consequently, T possess a fixed point in X i.e., Fiz(T) # ¢. Further,
Assume that every pair of elements ¢,(* € Fix(T) are comparable, then
¢ = (", or ¢* < ¢ which is turn gives a(¢,¢*,t) > 1, for all £ > 0. Therefore,
T is a parametric a*-orbital admissible. Thus all the hypothesis of Theorem
2.18 are satisfied and hence Fiz(T) is a singleton. I

3. Application

Let X = C([0,T],R) be a set of all real valued continuous functions on [0, 7]
and define a parametric (b, #)-metric Py : X x X x (0,4+00) = [0,400) as
Po(w,y,t) = sup {tle() - y(o)2},
c€[0,T]

with 0(z,y,t) =2+ t(x +y), for all x,y € X and for all ¢ > 0.

Then (X,dp) is a complete parametric (b, d)-metric space. Let < be
a partial order on X defined by = < y if and only if xz(0) < y(o) for all
o €10,T].

Consider an integral equation

x(r) =n(r)+ /OT K(r, 5)f(5,9:(5))d5 (3.1)

with the following assumption that:
(Hy): f:[0,T]xR—=>R,n:[0,7] = R, and K : [0,T] x [0,T] — [0,+00)
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are continuous functions;

(Haz) : sup,.¢jo 1y (fo (r, s ds)
(H3) :

W=

‘f where k =

0 <(fls,(5) = f(s.9(5))) < (max {Jo(s) = (), |o(s) = Tw(s) 2.

» [2(5) = Ty(s)[ + ly(s) — Ta(s)P \\ 2
Iy(e) = Ty(a)f% 20(2(s), 4(5), 1) })

forall z,y € X, x <y, s € [0,T] and for all ¢ > 0, where
T
Tz(r) =n(r) +/ K(r, s)f(s,a:(s))ds, r € [0,7] and for all z € X
0

(H,) : there exists zp € X such that

b [ K1 (s s

(Hs) : imy, 1m—yo0 0(@n, Tm, t) < %, where x, = T"xg, m >n > ng € N and
for all t > 0.

We have the following theorem for the existence of solution integral
equation.

Theorem 3.1. Suppose that (Hy) — (Hs) are hold. Then the integral equation
(3.1) has a solution in X.

Proof. Suppose T : X — X be a continuous mapping defined by
T
Tz(r) =n(r) +/ K(r,s)f(s,x(s))ds, r € [0,7] and for all z € X.
0

First we show that T is non-decreasing mapping with respect to <. For this,
let © < y, then by (Hs), we have

0< (f(s,x(s)) - f(&y(s)))7 for all s € [0,T].

Also we have

Ty —Tzx = /OT K(r,s) [f(s,y(s)) - f(s,x(s))]ds >0, for all r € [0, 7.
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Then Tz < Ty i.e., T is monotone non-decreasing mapping with respect to
=. On the other hand by (Hs), (H3) and for all ¢ > 0, we have

Py(Tx,Ty,t) = sup Tx(r) - Ty(r)|”
rel0,T]

§t<rg}(1)1’)T] /OT K(r,s) [f (s,a:(s)) - f(s,y(s))]ds)2

T 1, T 2
§tr€s$)ﬂ K/o K2(r, s)ds) (/0 {f(s,x(s)) ff(s7y(s))} ds)

kt
gﬁ max{|x —yl o — Tz, ly — Tyl?,

2 o2 T
: sz;(xTJ?t) =  ( /O d8)2

1
2

Pz, Ty,t) + Py, Tz, t)

1

=kmax {P(e,y,0), P, T, 0), Ply, Ty, 0), === 50 =5

=kM(z,y,1).

From (Hy), there exists ¢y € X such that 2y € X such that xg < Tzg.
Thus all the conditions of Theorem 2.23 are satisfied setting with the condi-
tion that ¢(r) = r and (r) = kr, where k € (0,1] and hence, the integral
equation (3.1) has a solution in X. Further, the uniqueness of the solution is
obtained if every pair of elements v, v’ € Fixz(T) C X is comparable. I

Open Problem 3.2. Can the condition (2.2) be replaced by a weaker condition

lim Oz, Tm,t) < +o0? (3.2)

n,m—-4oo

Conclusion 3.3. (i) In this paper, we used two types of control functions
¢ € ® and ¢ € U such that ¢(r) > ¢(r), r > 0, where ® is the set of altering
distance functions and W, the set of comparison functions, but ¥ € ¥ is not
necessarily a continuous function.

(#4) Taking M(z,y) = max {d(x, Y), d(m’Tm);d(y’Ty), d(x’Ty);rd(y’T‘r) }, then
N(z,y) < M(z,y), for all z,y € X. Indeed Theorem 2.21 improves Theorem
8 (resp. Theorem 9, 10 and 11) of Alsulami et al. [3], in which the condition of
continuity in control function ¢ is replaced by comparison function, and weak
triangular a-admissible mapping is also replaced by an «a-orbital admissible
of mapping T

(#1) If condition (B) [3] is added to the hypothesis of Theorem 10 (resp.
Theorem 11) of Alsulami et al. [3], then fixed point of T is unique, but con-
dition (B) is not sufficient for the uniqueness of fixed point for the mappings
involved in Theorem 8 (resp. Theorem 9) of Alsulami et al. [3]. However, this
drawback is overcome by using a*-orbital admissible mapping 7'

}
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