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1. Introduction and Preliminaries

The concept of metric space has been generalized from one to different di-
rections by many researchers. Bakhtin [7] (also, Czerwik [13]) introduced the
concept of b-metric space as a generalization of metric space. In 2014, Hussain
et al. [15] introduced the notion of parametric metric space as a generaliza-
tion of metric space and proved some fixed point theorems in such spaces. In
2015, Hussain et al. [16] introduced the concept of parametric b-metric space
as a generalization of parametric metric space and investigated the existence
of fixed points under various contractive conditions in such space. On the
other hand, recently Kamran et al. [17] introduced the concept of extended
b-metric space as a generalization of b-metric space and proved Banach fixed
point theorem in this space.

In 2003, Ran and Reurings [27] proved an analogue of Banach contrac-
tion principle for continuous monotone mapping in metric space endowed with
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partial order and studied the existence of solutions of linear and nonlinear
matrix equations. After that Nieto and Rodŕıguez-López [21, 22] generalized
the results of Ran and Reurings [27] by relaxing the conditions of continu-
ity as well as monotonicity and presented some applications to first-order
ordinary differential equations with periodic boundary conditions (for more
results on fixed point in ordered set, we refer to [1, 3, 12, 15, 16, 21, 22, 27, 28]
and references therein).

Definition 1.1. [7, 13] Let X be a nonempty set and s ≥ 1 a given real
number. A function db : X ×X → [0,+∞) is called a b-metric on X, if for
all x, y, z ∈ X, following conditions hold:
(db1) db(x, y) = 0, if and only x = y;
(db2) db(x, y) = db(y, x);
(db3) db(x, y) ≤ s[db(x, y) + db(y, z)].
Then the pair (X, db) is called a b-metric space.

Every metric is b-metric for s = 1 but, the converse does not hold in
general. Hence the class of b-metric spaces is effectively larger than that of
metric spaces. The following example shows that b-metric space need not be
metric space.

Example 1.2. [2] Let (X, d) a metric space and db(x, y) = (d(x, y))p, where
p > 1 is a real number. Then, (X, db) is a b-metric space with s = 2p−1.
However, (X, db) is not a metric space.

Note that the distance function db used in b-metric spaces is not con-
tinuous in general (see [11, 14]). For more examples and fixed point results
in b-metric spaces we refer to [2, 8, 11, 13, 14, 24] and references therein).

Definition 1.3. [17] Let X be a nonempty set and θ : X × X → [1,+∞).
A function dθ : X × X → [0,+∞) is called an extended b-metric if for all
x, y, z ∈ X, the following conditions hold:
(dθ1) dθ(x, y) = 0 if and only if x = y;
(dθ2) dθ(x, y) = dθ(y, x);
(dθ3) dθ(x, y) ≤ θ(x, y)[dθ(x, z) + dθ(z, y)].
Then the pair (X, dθ) is called an extended b-metric space.

Note that if θ(x, y) = s > 1, for all x, y ∈ X, then extended b-metric
space becomes a b-metric space. Therefore, every metric space is a b-metric
space and b-metric space is an extended b-metric space, but the converse
need not be true in general. For more results on extended b-metric spaces
and references, we refer to [4, 5, 6, 17, 25].

Example 1.4. Let X = R. Define θ : X ×X → [1,+∞) and dθ : X ×X →
[0,+∞) as: θ(x, y) = 1 + |x|+ |y|, for all x, y ∈ X and

dθ(x, y) =

{
|x|+ |y|, x, y ∈ X,x 6= y;

0, x = y.

Then, (X, dθ) is an extended b-metric space.
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Definition 1.5. [15] Let X be a nonempty set and P : X2×(0,+∞)→ [0,+∞)
be a function. We say P is a parametric metric on X if for all x, y, z ∈ X the
following conditions hold:
(P1) P(x, y, t) = 0, if and only if x = y, for all t > 0;
(P2) P(x, y, t) = P(y, x, t), for all t > 0;
(P3) P(x, y, t) ≤ P(x, z, t) + P(z, y, t), for all t > 0.
Then the pair (X,P) is called a parametric metric space.

Example 1.6. [15] Let X be a set of all functions f : (0,+∞) → R. Define
P : X2 × (0,+∞) → [0,+∞) as P(f, g, t) = |f(t) − g(t)|, for all f, g ∈ X,
t > 0. Then (X,P) is a parametric metric space.

Example 1.7. [15] Let X = [0,+∞) and P : X2 × (0,+∞) → [0,+∞) be
defined by

P(x, y, t) =

{
tmax{x, y}, x 6= y;

0, x = y,

for all x, y ∈ X and for all t > 0. Then (X,P) is a parametric metric space.

Let (X,P) be a parametric metric space. Let a ∈ X and r > 0, then
B(a, r) = {x ∈ X : P(a, x, t) < r, for all t > 0} is called an open ball of
radius r > 0 centred at a ∈ X.

Remark 1.8. If (X,P) be a parametric metric space, then parametric metric
P is a continuous function.

Definition 1.9. [16] Let X be a nonempty set and s ≥ 1. A function Pb : X2×
(0,+∞) → [0,+∞) is said to be a parametric b-metric if for all x, y, z ∈ X,
the following conditions hold:
(Pb1) Pb(x, y, t) = 0, if and only if x = y, for all t > 0;
(Pb2) Pb(x, y, t) = Pb(y, x, t), for all t > 0;
(Pb3) Pb(x, y, t) ≤ s[Pb(x, z, t) + Pb(z, y, t)], for all t > 0.
The pair (X,Pb) is called a parametric b-metric space.

Note that if s = 1 then, parametric b-metric space becomes a paramet-
ric space. Therefore, every parametric metric space is a parametric b-metric
space, but the converse need not be true in general. In general, a parametric
b-metric function Pb for s > 1 is not continuous in its variables (Example 1.7
of Hussain et al. [16]).

Example 1.10. [16] Let X = [0,+∞) and define Pb(x, y, t) = t|x− y|p, for all
x, y ∈ X and for all t > 0. Then Pb is a parametric b-metric with constant
s = 2p, where p ≥ 1.

Let X be a non-empty set and α : X ×X → R be a mapping.

Definition 1.11. [28] A mapping T : X → X is an α-admissible, if x, y ∈ X,
α(x, y) ≥ 1 implies α(Tx, Ty) ≥ 1.

Definition 1.12. [20] An α- admissible mapping T is said to be an α∗-admissible,
if for all x, x∗ ∈ Fix(T ) 6= ∅, α(x, x∗) ≥ 1.
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Remark 1.13. We denote Fix(T ) = {x ∈ X|Tx = x}.

Definition 1.14. [18] A mapping T : X → X is a triangular α-admissible if
(T1) T is an α-admissible;
(T2) α(x, y) ≥ 1 and α(y, z) ≥ 1 imply α(x, z) ≥ 1.

Definition 1.15. [3] A mapping T : X → X is a weak triangular α-admissible
if
(T1) T is an α-admissible;
(T2) α(x, Tx) ≥ 1 implies α(x, T 2x) ≥ 1.

The following hypothesis is also used in Alsulami et al. [3] for the exis-
tence of uniqueness of fixed point.
Condition (B): For x, y ∈ X, there exists z ∈ X such that α(x, z) ≥ 1 and
α(z, y) ≥ 1.

Definition 1.16. [26] A mapping T : X → X said to be an α-orbital admissible
if x ∈ X, α(x, Tx) ≥ 1 implies α(Tx, T 2x) ≥ 1.

Note that every α-admissible mapping is an α-orbital admissible map-
ping (for more details we refer to [26]).

Definition 1.17. An α-orbital admissible mapping T is said to be an α∗-orbital
admissible, if for all x, x∗ ∈ Fix(T ) 6= ∅, α(x, x∗) ≥ 1.

Definition 1.18. [23] A continuous function ϕ : R+ → R+ is called an altering
distance if it is non-decreasing and ϕ(r) = 0 if and only if r = 0. Denote by
Φ the set of all altering distance functions.

Example 1.19. Let ϕi : R+ → R+, where i = 1, 2 be defined by:
(i) ϕ1(r) = eαr + βr − 1;
(ii) ϕ2(r) = αr2 + ln(βr + 1),
where α, β > 0.

Clearly, ϕ1, ϕ2 are altering distance functions (for more examples on
altering distance function, we refer to Sintunavarat [29]).

Lemma 1.20. [19] Suppose ψ : R+ → R+ is nondecreasing. Then, for every
r > 0, lim

n→+∞
ψn(r) = 0 implies ψ(r) < r, where ψn denotes the nth-iterate

of ψ.

Definition 1.21. [8, 9] A function ψ : R+ → R+ is said to be a comparison
function, if it is monotonically increasing and ψn(r)→ 0 as n→ +∞, for all
r > 0 and Ψ denotes the set of all comparison functions.

Example 1.22. [10] Let ψi : R+ → R+, i = 1, 2, 3, be defined by
(ψ1) ψ1(r) = αr, where 0 ≤ α < 1;
(ψ2) ψ2(r) = t

1+r ;

(ψ3) ψ3(r) = βγ(r), where ψ3(r) is monotonically increasing, 0 ≤ β < 1 and
γ : R+ → R+ such that γn(r)→ 0 as n→ +∞.
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It is easy to see that ψi, i = 1, 2, 3 are comparison functions. Note that
if ψ is comparison function, then ψ(r) < r, for all r > 0 and ψ(0) = 0. We
denote Ψ, the set of all comparison functions.

In the next section, we introduce the concept of parametric (b, θ)-metric
space and prove some fixed point theorems in such space. We also extend the
our result to parametric (b, θ)-metric space endowed with partial order and
apply it to prove the existence of solution of integral equation.

2. Main Results

Motivated by Kamran et al. [17], we introduce the notion of parametric (b, θ)-
metric space and investigate some examples. We also introduce the notion of
α-orbital admissible [26] mapping in this space.

Definition 2.1. Let X be a nonempty set and θ : X×X×(0,+∞)→ [1,+∞).
A function Pθ : X ×X × (0,+∞)→ [0,+∞) is said to be parametric (b, θ)-
metric if for all x, y, z ∈ X and for all t > 0, the following conditions hold:
(Pθ1) Pθ(x, y, t) = 0, if and only if x = y;
(Pθ2) Pθ(x, y, t) = Pθ(y, x, t);
(Pθ3) Pθ(x, y, t) ≤ θ(x, y, t)[Pθ(x, z, t) + Pθ(z, y, t)].
The pair (X,Pθ) is called a parametric (b, θ)-metric space.

If θ(x, y, t) = s ≥ 1, for all t > 0, then parametric (b, θ)-metric space be-
comes a parametric b-metric space. Therefore, every parametric metric space
is a parametric b-metric and parametric b-metric space is a parametric (b, θ)-
metric space, but the converse may not be true in general. In the following,
we discuss some examples of parametric (b, θ)-metric spaces.

Example 2.2. Let X = R and Pθ : X2 × (0,+∞) → [0,+∞) be defined by
Pθ(x, y, t) = t(x− y)2, where θ(x, y, t) = 2 + t(|x|+ |y|), for all x, y ∈ X and
for all t > 0. Then, (X,Pθ) is a parametric (b, θ)-metric space.

Example 2.3. Let X = R and θ : X2 × (0,+∞) → [1,+∞) be defined by
θ(x, y, t) = 1 + t(|x| + |y|), for all x, y ∈ X and for all t > 0. Let Pθ :
X2 × (0,+∞)→ [0,+∞) be given by

Pθ(x, y, t) =

{
t(|x|p + |y|p), x, y ∈ X,x 6= y;

0, x = y,

where, p ≥ 1. Then, (X,Pθ) is a parametric (b, θ)-metric space.

Example 2.4. Let X = [0, 1] and θ : X2 × (0,+∞) → [1,+∞) be a function
given by θ(x, y, t) = 1+x+y+t

x+y , where x+y > 0 and θ(0, 0, t) = 1, for all t > 0.

Define Pθ : X2 × (0,+∞)→ [0,+∞) as

Pθ(x, y, t) =
t

xy
, for x, y ∈ (0, 1], x 6= y, t > 0;

Pθ(x, y, t) = 0, for x = y, t > 0;

Pθ(x, 0, t) = Pθ(0, x, t) =
t

x
, for x ∈ (0, 1], t > 0.
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Then (X,Pθ) is a parametric (b, θ)-metric space.

Example 2.5. Consider the set X = lp(R) with 0 < p < 1, where

lp(R) =
{
{xi} ⊆ R|

∞∑
i=1

|xi|p <∞
}
.

Define θ : X2 × (0,+∞)→ [1,+∞) and Pθ : X2 × (0,+∞)→ [0,+∞) by

θ(x, y, t) = 2
1
p + t(|x|+ |y|)

and

Pθ(x, y, t) =
( ∞∑
i=1

|η(t)(xi − yi)|p
) 1
p

,

where 0 < η(t) < ∞, for all x = {xi}, y = {yi} ∈ X, for all t > 0. Then
(X,Pθ) is a parametric (b, θ)-metric with θ(x, y, t) > 1.

Example 2.6. The space Lp[0, 1] of all real functions x(ρ), ρ ∈ [0, 1] such that∫ 1

0
|x(ρ)|pdρ < 1, where 0 < p < 1. Define

Pθ(x, y, t) =
(∫ 1

0

∣∣∣x(ρ)− y(ρ)

1 + t

∣∣∣pdρ) 1
p

and

θ(x, y, t) = 2
1
p +

1 + t

x+ y
, where x+ y > 0 and θ(0, 0, t) = 1

for all x, y ∈ Lp[0, 1] and for all t > 0. Then Pθ is a parametric (b, θ)-metric
on Lp[0, 1].

Let (X,Pθ) be a parametric (b, θ)-metric space, where Pθ is a continuous
parametric (b, θ)-metric and let a ∈ X and r > 0, we write

B(a, r) = {x ∈ X|Pθ(a, x, t) < r, for all t > 0}.

Then, B(a, r) is called an open ball of radius r > 0 centred at a. Let {xn} be
a sequence in X, then a point x ∈ X is called a limit of the sequence {xn} if
limn→+∞ Pθ(xn, x, t) = 0, for all t > 0 and we say that the sequence {xn} is
convergent to x ∈ X and denotes it as xn → x an n→ +∞.

The concepts of Cauchy sequence and completeness in a parametric
(b, θ)-metric space can be formulated analogous to the case of parametric
b-metric space.

Definition 2.7. Let (X,Pθ) be a parametric (b, θ)-metric space and {xn} be
a sequence in X. We say that
(a) {xn} in X is said to be a Cauchy sequence in X if for all t > 0,
Pθ(xm, xn, t)→ 0 as m,n→ +∞;
(b) (X,Pθ) is said to be a complete if and only if every Cauchy sequence in
X is convergent.
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Definition 2.8. Let (X,Pθ) be a parametric (b, θ)-metric space and T : X →
X be a mapping, then we say that T is a continuous at x ∈ X, if for any
sequence {xn} in X such that xn → x as n → +∞, we have Txn → Tx as
n→ +∞.

Recall that, in general a parametric b-metric function Pb with s > 1 is
not continuous in its variables, so Pθ is also not continuous in general.

Though out the following sections, we assume that a parametric (b, θ)-
metric Pθ is a continuous function.

Definition 2.9. Let X be a non-empty set and α : X2 × (0,+∞) → R be
a mapping. A mapping T : X → X is said to be a parametric α-orbital
admissible if x ∈ X, α(x, Tx, t) ≥ 1 implies α(Tx, T 2x, t) ≥ 1, for all t > 0.

In addition, T is said to be a parametric α∗-orbital admissible, if for all
x, y ∈ Fix(T ) 6= ∅, α(x, y, t) ≥ 1, for all t > 0.

Example 2.10. Let X = [0,+∞). Define α : X2× (0,+∞)→ R and T : X →
X as:

α(x, y, t) =

{
1, if x ≥ y;

0, otherwise,

for all t > 0 and Tx = ln(1 + x), for all x ∈ X. Then, T is a parametric
α-orbital admissible.

Example 2.11. Let X = [0,+∞) and T : X → X be a mapping defined by

Tx = x2

2 , for all x ∈ X. Define α : X2 × (0,+∞)→ R as

α(x, y, t) =

{
1, if x, y ∈ [0, 2];

0, otherwise,

for all t > 0. Note that Fix(T ) = {0, 2}. Then T is a parametric α-orbital
admissible and parametric α∗-orbital admissible as well.

Example 2.12. Let X = [0,∞). Define T : X → X and α : X2 × (0,∞)→ R

as Tx =

√∣∣∣x(x2+11)−6
6

∣∣∣, for all x ∈ X and for all t > 0,

α(x, y, t) =

{
1, ifx, y ∈ [0, 2];

0, otherwise.

Then T is a parametric α-orbital admissible but not a parametric α∗-orbital
admissible as Fix(T ) = {1, 2, 3}.

Lemma 2.13. Let {xn} be any sequence in a parametric (b, θ)-metric space
(X,Pθ). If there exist two functions ϕ ∈ Φ and ψ ∈ Ψ such that

0 < ϕ
(
Pθ(xn, xn+1, t)

)
≤ ψ

(
Pθ(xn−1, xn, t)

)
and lim

n,m→+∞

θ(xn, xm, t)ψ
n
(
Pθ(x0, x1, t)

)
ψn−1

(
Pθ(x0, x1, t)

) < 1
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for any m > n ≥ 1 and for all t > 0, then {xn} is a Cauchy sequence in X.

Proof. For all t > 0, we obtain

0 < ϕ
(
Pθ(xn, xn+1, t)

)
≤ψ
(
Pθ(xn−1, xn, t)

)
≤ ... ≤ ψn

(
Pθ(x0, x1, t)

)
.

Letting n→ +∞, we obtain

lim
n→+∞

ϕ
(
Pθ(xn, xn+1, t)

)
= 0 if and only if lim

n→+∞
Pθ(xn, xn+1, t) = 0.

Setting θi = θ(xi, xi+p, t) for each i ∈ N, p ≥ 1 and Pθ(x0, x1, t) = ω, we
obtain

Pθ(xn, xn+p, t) ≤θ(xn, xn+p, t)
[
Pθ(xn, xn+1, t) + Pθ(xn+1, xn+p, t)

]
≤θ(xn, xn+p, t)Pθ(xn, xn+1, t) + θ(xn, xn+p, t)Pθ(xn+1, xn+p, t)

≤θ(xn, xn+p, t)Pθ(xn, xn+1, t)+

θ(xn, xn+p, t)θ(xn+1, xn+p)Pθ(xn+1, xn+2, t) + ...+

θ(xn, xn+p, t)θ(xn+1, xn+p, t)...

θ(xn+p−1, xn+p, t)Pθ(xn+p−1, xn+p, t)

≤θnψn
(
Pθ(x0, x1, t)

)
+ θnθn+1ψ

n+1
(
Pθ(x0, x1, t)

)
+ ...

+ θnθn+1...θn+p−1ψ
n+p−1

(
Pθ(x0, x1, t)

)
=θnψ

n(ω) + θnθn+1ψ
n+1(ω) + ...+ θnθn+1...θn+p−1ψ

n+p−1(ω)

=

n+p−1∑
i=n

ψi(ω)

i∏
j=n

θj .

Multiplying
∏n−1
i=1 θi on the right side of the above inequality, we obtain

Pθ(xn, xn+p, t) ≤
n+p−1∑
i=n

ψi(ω)

i∏
j=1

θj

=

n+p−1∑
i=1

ψi(ω)

i∏
j=1

θj −
n−1∑
i=1

ψi(ω)

i∏
j=1

θj .

Since,

lim
i→+∞

θ(i, i+ p, t)ψi
(
Pθ(x0, x1, t)

)
ψi−1

(
Pθ(x0, x1, t)

) = lim
i→+∞

θiψ
i(ω)

ψi−1(ω)
< 1.

Therefore, by Ratio test the series
∑∞
i=1 ψ

i(ω)
∏i
j=1 θj converges.

Let S =
∑∞
i=1 ψ

i(ω)
∏i
j=1 θj and Sn =

∑n
i=1 ψ

i(ω)
∏i
j=1 θj , the se-

quence of partial sum. Consequently, we obtain

Pθ(xn, xn+p, t) ≤
[
Sn+p−1 − Sn−1

]
.
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for any n ∈ N and p ≥ 1. Letting limit as n→ +∞, we obtain {xn} is Cauchy
sequence in X.

Setting ϕ(ξ) = ξ and ψ(ξ) = kξ, where ξ ∈ R+, k ∈ [0, 1), then we
obtain the following lemma.

Lemma 2.14. Let {xn} be any sequence in a parametric (b, θ)-metric space
(X,Pθ) such that

0 < Pθ(xn, xn+1, t) ≤ kPθ(xn−1, xn, t) (2.1)

and

lim
n,m→+∞

θ(xn, xm, t) <
1

k
, (2.2)

where k ∈ [0, 1), for any m > n ≥ 1 and for all t > 0, then {xn} is a Cauchy
sequence in X.

Theorem 2.15. Let (X,Pθ) be a complete parametric (b, θ)-metric space and
T : X → X be a continuous self mapping on X. Assume that there exist
α : X2 × (0,∞) → R, ϕ ∈ Φ and ψ ∈ Ψ such that ϕ(r) > ψ(r), for r > 0
satisfying

α(x, y, t)ϕ
(
Pθ(Tx, Ty, t)

)
≤ ψ

(
M(x, y, t)

)
(2.3)

where

M(x, y, t) = max
{
Pθ(x, y, t),Pθ(x, Tx, t),Pθ(y, Ty, t),

Pθ(x, Ty, t) + Pθ(y, Tx, t)
2θ(x, y, t)

}
,

for all x, y ∈ X and for all t > 0. If
(i) T is a parametric α-orbital admissible;
(ii) there exists x0 ∈ X such that α(x0, Tx0, t) ≥ 1, for all t > 0;

(iii) limn,m→+∞
θ(xn, xm, t)ψ

n

(
Pθ(x0, x1, t)

)
ψn−1

(
Pθ(x0, x1, t)

) < 1,

where xn = Tnx0, m > n ≥ 1, for all t > 0.
Then T possesses a fixed point ζ ∈ X. Moreover the sequence {xn}n∈N con-
verges to ζ ∈ X.

Proof. By given assumption, there exists x0 ∈ X such that α(x0, Tx0, t) ≥ 1,
for all t > 0. Define a sequence {xn} in X such that xn = Tnx0, for all
n ∈ N. If xk−1 = xk = Txk−1, for some k ∈ N, then we have xk−1 = Txk−1.
Without lost of generality we assume that xn−1 6= xn, for all n ∈ N.

Since T is a parametric α-orbital admissible,

α(x0, x1, t) = α(x0, Tx0, t) ≥ 1

implies
α(x1, x2, t) = α(Tx0, T

2x0, t) ≥ 1,

for each t > 0. Similarly,

α(x1, x2, t) = α(Tx0, T
2x0, t) ≥ 1

implies
α(x2, x3, t) = α(T 2x0, T

3x0, t) ≥ 1,
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for all t > 0. Continuing in this way, we obtain inductively that α(xn−1, xn, t) ≥
1, where n ∈ N, for all t > 0.

Taking x = xn−1 and y = xn for all t > 0, we obtain

ϕ
(
Pθ(xn, xn+1, t)

)
=ϕ
(
Pθ(Txn−1, Txn, t)

)
≤α(xn−1, xn, t)ϕ

(
Pθ(Txn−1, Txn, t)

)
≤ψ
(
M(xn−1, xn, t)

)
,

where

M(xn−1, xn, t) = max
{
Pθ(xn−1, xn, t),Pθ(xn−1, Txn−1, t),Pθ(xn, Txn, t),

Pθ(xn−1, Txn, t) + Pθ(xn, Txn−1, t)
2θ(xn−1, xn, t)

}
= max

{
Pθ(xn−1, xn, t),Pθ(xn−1, xn, t),Pθ(xn, xn+1, t),

Pθ(xn−1, xn+1, t) + Pθ(xn, xn, t)
2θ(xn−1, xn, t)

}
= max

{
Pθ(xn−1, xn, t),Pθ(xn, xn+1, t),

Pθ(xn−1, xn+1, t)

2θ(xn−1, xn, t)

}
For the refinement of the inequality, we shall consider the following cases:
Case (i): If M(xn−1, xn, t) = Pθ(xn−1, xn, t), we obtain

ϕ
(
Pθ(xn, xn+1, t)

)
≤ ψ

(
Pθ(xn−1, xn, t)

)
, for all t > 0.

Case (ii): If M(xn−1, xn, t) = Pθ(xn, xn+1, t), we obtain

ϕ
(
Pθ(xn, xn+1, t)

)
≤ ψ

(
Pθ(xn, xn+1, t)

)
< ϕ

(
Pθ(xn, xn+1, t)

)
,

for all t > 0, which is a contradiction.

Case (iii): If M(xn−1, xn, t) = Pθ(xn−1,xn+1,t)
2θ(xn−1,xn,t)

, we obtain

ϕ
(
Pθ(xn, xn+1, t)

)
≤ψ
(Pθ(xn−1, xn+1, t)

2θ(xn−1, xn, t)

)
≤ψ
(1

2

{
Pθ(xn−1, xn, t) + Pθ(xn, xn+1, t)

})
, for all t > 0.

If max{Pθ(xn−1, xn, t),Pθ(xn, xn+1, t)} = Pθ(xn, xn+1, t) that is Pθ(xn−1, xn, t) <
Pθ(xn, xn+1, t), then

ϕ
(
Pθ(xn, xn+1, t)

)
≤ ψ

(
Pθ(xn, xn+1, t)

)
which is again a contradiction to the fact that ϕ(r) > ψ(r), for r > 0
and for all t > 0. Therefore, Case (iii) holds whenever Pθ(xn, xn+1, t) <
Pθ(xn−1, xn, t), for all t > 0.

Consequently, we obtain

0 < ϕ
(
Pθ(xn, xn+1, t)

)
≤ψ
(
Pθ(xn−1, xn, t)

)
, for all t > 0.
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Since,

lim
n,m→+∞

θ(xn, xm, t)ψ
n
(
Pθ(x0, x1, t)

)
ψn−1

(
Pθ(x0, x1, t)

) < 1, for all t > 0.

It follows from Lemma 2.13, we obtain that {xn} is a Cauchy sequence in
X. Since X is a complete parametric (b, θ)-metric space, there is ζ ∈ X
such that xn → ζ as n → +∞ i.e., limn→+∞ Pθ(xn, ζ, t) = 0, for all t > 0.
We suppose that T is continuous on X, then Txn → Tζ as n → +∞ but,
Txn = xn+1 → ζ as n→ +∞. Therefore, Tζ = ζ.

Example 2.16. Let X = [0,+∞) and Pθ : X2 × (0,+∞) → [0,+∞) be a
parametric (b, θ)-metric equip with

Pθ(x, y, t) =

{
t(x2 + y2), x, y ∈ X,x 6= y;

0, x = y,

where θ(x, y, t) = 1 + t(x+ y), for all x, y ∈ X and for all t > 0.

Consider T : X → X be a continuous mapping defined by

Tx =

{
3x
4 , 0 ≤ x ≤ 1;

2x− 5
4 , x > 1.

Define α : X2 × (0,+∞)→ R as: for all t > 0,

α(x, y, t) =

{
1, x, y ∈ [0, 1];

0, otherwise.

Clearly, for x ∈ [0, 1], α(x, Tx, t) ≥ 1 and α(Tx, T 2x, t) ≥ 1, for all t > 0.
Therefore T is a parametric α-orbital admissible. Also, we define ψ(r) = kr
and ϕ(r) = r, where k = 9

16 , then ϕ(r) > ψ(r), for all r > 0. In fact for all
x, y ∈ X, we obtain

α(x, y, t)ϕ
(
Pθ(Tx, Ty, t)

)
=

9

16
t(x2 + y2) = kPθ(x, y, t)

≤ψ
(
M(x, y, t)

)
, for all t > 0.

Also, there exists x0 ∈ X such that α(x0, x1, t) = α(x0, Tx0, t) ≥ 1 implies
α(x1, x2, t) = α(Tx0, T

2x0, t) ≥ 1, for all t > 0. We obtain inductively that
α(xn, xn+1, t) = α(Tnx0, T

n+1x0, t) ≥ 1, for all t > 0, where xn = Tnx0 =
( 3
4 )nx0. In fact xn = Tnx0 → 0 as n→ +∞ and

lim
n,m→+∞

θ(Tnx0, T
mx0, t) = 1 <

1

k
.

Thus all the conditions of Theorem 2.15 are satisfied and hence, T possesses
a fixed point. Note that Fix(T ) = {0, 54}.

In the following theorem, we omit the continuity assumption of T .
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Theorem 2.17. Let (X,Pθ) be a complete parametric (b, θ)-metric space and
T : X → X be a self mapping on X. Assume that there exist α : X2 ×
(0,∞)→ R, ϕ ∈ Φ and ψ ∈ Ψ such that ϕ(r) > ψ(r), r > 0 satisfying

α(x, y, t)ϕ
(
Pθ(Tx, Ty, t)

)
≤ ψ

(
M(x, y, t)

)
,

where

M(x, y, t) = max
{
Pθ(x, y, t),Pθ(x, Tx, t),Pθ(y, Ty, t),

Pθ(x, Ty, t) + Pθ(y, Tx, t)
2θ(x, y, t)

}
,

for all x, y ∈ X and t > 0. If
(i) T is a parametric α-orbital admissible;
(ii) there exists x0 ∈ X such that α(x0, Tx0, t) ≥ 1, for all t > 0;

(iii) limn,m→+∞
θ(xn, xm, t)ψ

n

(
Pθ(x0, x1, t)

)
ψn−1

(
Pθ(x0, x1, t)

) < 1,

where xn = Tnx0, m > n ≥ 1, for all t > 0;
(iv) {xn} is a sequence in X such that α(xn, xn+1, t) ≥ 1 and xn → ζ ∈
X as n → +∞, then there exists a subsequence {xnk} of {xn} such that
α(xnk , ζ, t) ≥ 1, for all t > 0, where nk ≥ n0 ≥ 1. Then T possesses a fixed
point in X.

Proof. Following the proof of Theorem 2.15, we obtain that {xn} is a Cauchy
sequence in X. Since X is a complete parametric (b, θ)-metric space, there ex-
ists ζ ∈ X such that xn → ζ an n→ +∞. From (iv) we obtain α(xnk , ζ, t) ≥
1, nk ≥ n0, for all t > 0. Taking x = xnk and y = ζ for all t > 0, we obtain

ϕ
(
Pθ(xnk+1, T ζ, t)

)
=ϕ
(
Pθ(Txnk , T ζ, t)

)
=α(xnk , ζ, t)ϕ

(
Pθ(Txnk , T ζ, t)

)
≤ψ
(
M(xnk , ζ, t)

)
<ϕ
(
M(xnk , ζ, t)

)
,

where

M(xnk , ζ, t) = max
{
Pθ(xnk , ζ, t),Pθ(xnk , Txnk , t),Pθ(ζ, T ζ, t),

Pθ(xnk , T ζ, t) + Pθ(ζ, Txnk , t)
2θ(xnk , ζ, t)

}
= max

{
Pθ(xnk , ζ, t),Pθ(xnk , xnk+1, t),Pθ(ζ, T ζ, t),

Pθ(xnk , T ζ, t) + Pθ(ζ, xnk+1, t)

2θ(xnk , ζ, t)

}
.

Letting k → +∞ and continuity of ϕ, we obtain

ϕ
(
Pθ(ζ, T ζ, t)

)
< ϕ

(
lim

nk→+∞
M(xnk , ζ, t)

)
= ϕ

(
Pθ(ζ, T ζ, t)

)
,
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which is a contradiction. Therefore, we conclude that Pθ(ζ, T ζ, t) = 0 and
hence, Tζ = ζ.

Theorem 2.18. In addition to the hypothesis of Theorem 2.15 (resp. Theorem
2.17), suppose the mapping T : X → X is a parametric α∗-orbital admis-
sible. Then T possesses a unique fixed point ξ ∈ X. Moreover the sequence
{Tnx0}n∈N converges to ξ ∈ X.

Proof. By Theorem 2.15 and Theorem 2.17, T possesses a fixed point in X
i.e. Fix(T ) 6= ∅. Since T is a parametric α∗-orbital admissible, then

α(ζ, ζ∗, t) = α(Tζ, Tζ∗, t) ≥ 1,

for all ζ, ζ∗ ∈ Fix(T ) and for all t > 0.
Suppose that ζ 6= ζ∗, for all t > 0, we obtain

0 < ϕ
(
Pθ(ζ, ζ∗, t)

)
=ϕ
(
Pθ(Tζ, Tζ∗, t)

)
≤α(ζ, ζ∗, t)ϕ

(
Pθ(Tζ, Tζ∗, t)

)
≤ψ
(
M(ζ, ζ∗, t)

)
=ψ
(
Pθ(ζ, ζ∗, t)

)
<ϕ
(
Pθ(ζ, ζ∗, t)

)
,

This is a contradiction and hence, T possesses a unique fixed point in X.

Corollary 2.19. Let (X,Pθ) be a complete parametric (b, θ)-metric space and
T : X → X be a continuous self mapping satisfying

Pθ(Tx, Ty, t) ≤ kM(x, y, t)

whereM(x, y, t) = max
{
Pθ(x, y, t), Pθ(x,Tx,t)+Pθ(y,Ty,t)2 , Pθ(x,Ty,t)+Pθ(y,Tx,t)2θ(x,y,t)

}
,

for all x, y ∈ X and for all t > 0. Moreover, if for any x0 ∈ X,

lim
n,m→∞

θ(xn, xm, t) <
1

k
,

where xn = Tnx0 and 0 ≤ k < 1, for all t > 0. Then T possesses a unique
fixed point ζ ∈ X.

Remark 2.20. (i) In Example 2.16, T is a parametric α-orbital admissible
and Fix(T ) = {0, 54}, but α( 5

4 , T
5
4 , t) = α( 5

4 ,
5
4 , t) = 0, for all t > 0. This

shows that T is not parametric α∗-orbital admissible. In this case, Theorem
2.18 is not application in Example 2.16.
(ii) In Example 2.16, taking x = 1

2 and y = 2, then

Pθ(Tx, Ty, t) = Pθ(T
1

2
, T2, t) =

493t

64
>

17t

4
= Pθ(

1

2
, 2, t),

for all t > 0. This shows that Corollary 2.19 is not application in Example
2.16.
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In the following, we give a theorem which is the direct consequences of
Theorems 2.15, 2.17 and 2.18 in metric space.

Theorem 2.21. Let (X, d) be a complete metric space and T : X → X be a
self mapping on X. Assume that there exist α : X × X → R, ϕ ∈ Φ and
ψ ∈ Ψ such that ϕ(r) > ψ(r), for r > 0 satisfying

α(x, y)ϕ
(
d(Tx, Ty)

)
≤ ψ

(
M(x, y)

)
, for all x, y ∈ X,

where M(x, y) = max
{
d(x, y), d(x, Tx), d(y, Ty), d(x,Ty)+d(y,Tx)2

}
. If

(i) T is an α-orbital admissible;
(ii) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1;

(iii) limn→+∞
ψn
(
d(x0, x1)

)
ψn−1

(
d(x0, x1)

) < 1, where xn = Tnx0;

(iv) T is continuous, or {xn} is a sequence in X such that α(xn, xn+1) ≥ 1
and xn → ζ ∈ X as n→ +∞, then there exists a subsequence {xnk} of {xn}
such that α(xnk , ζ) ≥ 1, where nk ≥ n0 ≥ 1.
Then T possesses a fixed point ζ ∈ X. Moreover the sequence {xn}n∈N con-
verges to ζ ∈ X.

Theorem 2.22. In addition to the hypothesis of Theorem 2.21, suppose the
mapping T : X → X is an α∗-orbital admissible. Then, T possesses a unique
fixed point ζ ∈ X. Moreover the sequence {Tnx0}n∈N converges to ζ ∈ X.

Recall that if (X,�) be a partial ordered set and T : X → X, we say
that T is monotone non-decreasing, if x, y ∈ X, x � y implies Tx � Ty.

Theorem 2.23. Let (X,�) be a partial ordered set and suppose that there ex-
ists a parametric (b, θ)-metric Pθ such that (X,Pθ) be a complete parametric
(b, θ)-metric space. Let T : X → X be a monotone non-decreasing self map-
ping w.r.t. � such that there exist ϕ ∈ Φ and ψ ∈ Ψ, ϕ(r) > ψ(r), for r > 0
satisfying

ϕ
(
Pθ(Tx, Ty, t)

)
≤ ψ

(
M(x, y, t)

)
where

M(x, y, t) = max
{
Pθ(x, y, t),Pθ(x, Tx, t),Pθ(y, Ty, t),

Pθ(x, Ty, t) + Pθ(y, Tx, t)
2θ(x, y, t)

}
,

for all x, y ∈ X with x � y. If
(i) there exists x0 ∈ X such that x0 � Tx0;

(ii) limn,m→+∞
θ(xn, xm, t)ψ

n

(
Pθ(x0, x1, t)

)
ψn−1

(
Pθ(x0, x1, t)

) < 1, where xn = Tnx0, for all

t > 0;
(iii)(a) T is continuous, or (b) {xn} is a non-decreasing sequence in X such
that xn → ζ as xn → +∞, then there exists a subsequence {xnk} of {xn}
such that xnk � ζ, where nk ≥ n0.
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Then Fix(T ) 6= φ. Further, if every pair of elements ζ, ζ∗ ∈ Fix(T ) is com-
parable, then Fix(T ) is a singleton.

Proof. Define a mapping α : X2 × (0,+∞)→ [0,+∞) as:

α(x, y, t) =

{
1, x � y or y � x;

0, otherwise,

for all t > 0. Then, we obtain

α(x, y, t)ϕ
(
Pθ(Tx, Ty, t)

)
≤ ψ

(
M(x, y, t)

)
for all x, y ∈ X with x � y and for all t > 0.
Since, T is monotone non-decreasing mapping w.r.t. �, so T is a parametric
α-orbital admissible. Indeed, if x ∈ X such that α(x, Tx, t) ≥ 1, for all t > 0,
then x � Tx, or Tx � x. Since, T is monotone non-decreasing mapping w.r.t
�, we have Tx � T 2x, or T 2x � Tx , which in turn gives α(Tx, T 2x, t) ≥ 1,
for all t > 0.

On the other hand, from (ii) there exists x0 ∈ X such that x0 � Tx0,
then α(x0, Tx0, t) ≥ 1, for all t > 0.

From (iii)(a) if T is continuous, then all the hypothesis of Theorem
2.15 are satisfied. Again, from (iii)(b) suppose that {xn} is a non-decreasing
sequence inX such that xn → ζ as xn → +∞, then there exists a subsequence
{xnk} of {xn} such that xnk � ζ, nk ≥ n0, which in turn gives (xnk , ζ, t) ≥ 1,
for all t > 0. Thus, all the hypothesis of Theorem 2.17 are satisfied.

Consequently, T possess a fixed point in X i.e., Fix(T ) 6= φ. Further,
Assume that every pair of elements ζ, ζ∗ ∈ Fix(T ) are comparable, then
ζ � ζ∗, or ζ∗ � ζ which is turn gives α(ζ, ζ∗, t) ≥ 1, for all t > 0. Therefore,
T is a parametric α∗-orbital admissible. Thus all the hypothesis of Theorem
2.18 are satisfied and hence Fix(T ) is a singleton.

3. Application

Let X = C([0, T ],R) be a set of all real valued continuous functions on [0, T ]
and define a parametric (b, θ)-metric Pθ : X ×X × (0,+∞)→ [0,+∞) as

Pθ(x, y, t) = sup
σ∈[0,T ]

{
t|x(σ)− y(σ)|2

}
,

with θ(x, y, t) = 2 + t(x+ y), for all x, y ∈ X and for all t > 0.
Then (X, dθ) is a complete parametric (b, θ)-metric space. Let � be

a partial order on X defined by x � y if and only if x(σ) � y(σ) for all
σ ∈ [0, T ].

Consider an integral equation

x(r) = η(r) +

∫ T

0

K(r, s)f
(
s, x(s)

)
ds (3.1)

with the following assumption that:
(H1) : f : [0, T ] × R → R, η : [0, T ] → R, and K : [0, T ] × [0, T ] → [0,+∞)
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are continuous functions;

(H2) : supr∈[0,T ]

( ∫ T
0
K2(r, s)ds

) 1
2

<
√
k
T , where k = 1

22 ;

(H3) :

0 ≤
(
f(s, x(s))− f(s, y(s))

)
≤
(

max
{
|x(s)− y(s)|2, |x(s)− Tx(s)|2,

|y(s)− Ty(s)|2, |x(s)− Ty(s)|2 + |y(s)− Tx(s)|2

2θ(x(s), y(s), t)

}) 1
2

for all x, y ∈ X, x � y, s ∈ [0, T ] and for all t > 0, where

Tx(r) = η(r) +

∫ T

0

K(r, s)f
(
s, x(s)

)
ds, r ∈ [0, T ] and for all x ∈ X;

(H4) : there exists x0 ∈ X such that

x0(r) ≤ η(r) +

∫ T

0

K(r, s)f
(
s, x0(s)

)
ds;

(H5) : limn,m→∞ θ(xn, xm, t) <
1
k , where xn = Tnx0, m > n ≥ n0 ∈ N and

for all t > 0.

We have the following theorem for the existence of solution integral
equation.

Theorem 3.1. Suppose that (H1)− (H5) are hold. Then the integral equation
(3.1) has a solution in X.

Proof. Suppose T : X → X be a continuous mapping defined by

Tx(r) = η(r) +

∫ T

0

K(r, s)f
(
s, x(s)

)
ds, r ∈ [0, T ] and for all x ∈ X.

First we show that T is non-decreasing mapping with respect to �. For this,
let x � y, then by (H3), we have

0 ≤
(
f(s, x(s))− f(s, y(s))

)
, for all s ∈ [0, T ].

Also we have

Ty − Tx =

∫ T

0

K(r, s)
[
f
(
s, y(s)

)
− f

(
s, x(s)

)]
ds ≥ 0, for all r ∈ [0, T ].
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Then Tx � Ty i.e., T is monotone non-decreasing mapping with respect to
�. On the other hand by (H2), (H3) and for all t > 0, we have

Pθ(Tx, Ty, t) = sup
r∈[0,T ]

t|Tx(r)− Ty(r)|2

≤t
(

sup
r∈[0,T ]

∫ T

0

K(r, s)
[
f
(
s, x(s)

)
− f

(
s, y(s)

)]
ds
)2

≤t sup
r∈[0,T ]

[( ∫ T

0

K2(r, s)ds
) 1

2
(∫ T

0

[
f
(
s, x(s)

)
− f

(
s, y(s)

)]2
ds
) 1

2
]2

≤ kt
T 2

max
{
|x− y|2, |x− Tx|2, |y − Ty|2,

|x− Ty|2 + |y − Tx|2

2θ(x, y, t)

}(∫ T

0

ds
)2

=kmax
{
P(x, y, t),P(x, Tx, t),P(y, Ty, t),

P(x, Ty, t) + P(y, Tx, t)

2θ(x, y, t)

}
=kM(x, y, t).

From (H4), there exists x0 ∈ X such that x0 ∈ X such that x0 � Tx0.
Thus all the conditions of Theorem 2.23 are satisfied setting with the condi-
tion that ϕ(r) = r and ψ(r) = kr, where k ∈ (0, 1] and hence, the integral
equation (3.1) has a solution in X. Further, the uniqueness of the solution is
obtained if every pair of elements v, v′ ∈ Fix(T ) ⊆ X is comparable.

Open Problem 3.2. Can the condition (2.2) be replaced by a weaker condition

lim
n,m→+∞

θ(xn, xm, t) < +∞? (3.2)

Conclusion 3.3. (i) In this paper, we used two types of control functions
ϕ ∈ Φ and ψ ∈ Ψ such that ϕ(r) > ψ(r), r > 0, where Φ is the set of altering
distance functions and Ψ, the set of comparison functions, but ψ ∈ Ψ is not
necessarily a continuous function.

(ii) Taking N (x, y) = max
{
d(x, y), d(x,Tx)+d(y,Ty)2 , d(x,Ty)+d(y,Tx)2

}
, then

N (x, y) ≤M(x, y), for all x, y ∈ X. Indeed Theorem 2.21 improves Theorem
8 (resp. Theorem 9, 10 and 11) of Alsulami et al. [3], in which the condition of
continuity in control function ψ is replaced by comparison function, and weak
triangular α-admissible mapping is also replaced by an α-orbital admissible
of mapping T .
(iii) If condition (B) [3] is added to the hypothesis of Theorem 10 (resp.
Theorem 11) of Alsulami et al. [3], then fixed point of T is unique, but con-
dition (B) is not sufficient for the uniqueness of fixed point for the mappings
involved in Theorem 8 (resp. Theorem 9) of Alsulami et al. [3]. However, this
drawback is overcome by using α∗-orbital admissible mapping T .
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