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Abstract

We consider the dynamics of an Boussinesq approximation Bénard convection fluid evolving

in a three-dimensional domain bounded below by a fixed flatten boundary and above by a free

moving surface. The domain is horizontally periodic and the effect of the surface tension is

neglected on the free surface. By developing a priori estimates for the model, we prove the

global existence and almost exponential decay of solutions in the framework of high regularity.
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1 Introduction

1.1. Formulation of the problem in Eulerian problem

We consider the Bénard convection problem in a shallow horizontal layer of a fluid heated from

below evolving in a moving domain

Ω(t) = {y ∈ Σ×R| − b < y3 < η(y1, y2, t)}.

where we assume that Σ = (L1T)×(L2T) for T = R/Z and L1, L2 > 0 periodicity lengths. The depth

of the lower boundary b > 0 is assumed to be fixed constant, but the upper boundary is a free surface

that is the graph of the unknown function η : Σ×R+ → R. We will write Σ(t) = {y3 = η(y1, y2, t)}
for the free surface of the fluid and Σb = {y3 = −b} for the fixed bottom surface of the fluid.

Assuming the Boussinesq approximation, we obtain the basic hydrodynamic equations governing

Bénard convection as follows:

∂tũ+ ũ · ∇ũ+ 1
ρ0
∇p̃ = µ∆ũ+ gαθ̃ey3 , in Ω(t),

divũ = 0, in Ω(t),

∂tθ̃ + ũ · ∇θ̃ = κ∆θ̃, in Ω(t),
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ũ|t=0 = ũ0(y1, y2, y3), θ̃|t=0 = θ̃0(y1, y2, y3),

Here, ũ = (ũ1, ũ2, ũ3) is the velocity field of the fluid satisfying divũ = 0, p̃ the pressure, g > 0

the strength of gravity, µ > 0 the kinematic viscosity, α the thermal expansion coefficient, ey3 the

unit upward vector, θ̃ the temperature field of the fluid, κ the thermal diffusively coefficient, and

ρ0 is the density at the temperature T0. Notice that, we have made the shift of actual pressure

p̃ = p̃+ gy3 − p̃atm with the constant atmosphere pressure p̃atm.

The boundary condition is

∂tη = ũ3 − ũ1∂y1η − ũ2∂y2η, on Γ(t),

(p̃I − µD(ũ))n = gηn, on Γ(t),

n · ∇θ̃ +Biθ̃ = −1, on Γ(t),

ũ|y3=−1 = 0, θ̃|y3=−1 = 0, on Γb,

Here, I the 3 × 3 identity matrix, D(ũ)ij = ∂iũj + ∂j ũi the symmetric gradient of ũ, N the upper

normal vector of the free boundary y3 = η, n = N/|N | the unit upward vector of the free surface

y3 = η where N = (−∂1η,−∂2η, 1) is the upward normal vector of the free surface y3 = η and |N | =√
(∂1η)2 + (∂2η)2 + 1, Bi ≥ 0 the Biot number. Here div?,∇? denote the horizontal differential

operator.(along with writing x? = (x1, x2)).

We will always assume the natural condition that there exists a positive number δ0 such that

b + η0 ≥ δ0 > 0 on Γ(0), which means that the initial free surface is strictly separated from the

bottom. And without loss of generality, we may assume that ρ0 = µ = κ = α = g = Bi = 1, i.e.,

we will consider the equations

∂tũ+ ũ · ∇ũ+∇p̃−∆ũ− θ̃ey3 = 0, in Ω(t)

divũ = 0, in Ω(t)

∂tθ̃ + ũ · ∇θ̃ −∆θ̃ = 0, in Ω(t)

(p̃I − Dũ)n = ηn, on Γ(t),

∇θ̃ · n+ θ̃ = −1, on Γ(t),

∂tη + ũ1∂1η + ũ2∂2η = ũ3, on Γ(t),

ũ = 0, θ̃ = 0, on Γb,

ũ|t=0 = ũ0, θ̃|t=0 = θ̃0, η|t=0 = η0,

(1.1)

We assume that the initial surface function η0 satisfies the ”zero average” condition

1

L1L2

∫
Σ
η0 = 0. (1.2)

Notice that for sufficiently regular solutions to the periodic problem, the condition (1.2) persists in

time since ∂tη = ũ · ν
√

1 + |∇?η|2:

d

dt

∫
Σ
η =

∫
Σ
∂tη =

∫
Γ(t)

ũ · ν =

∫
Ω(t)

divũ = 0.
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1.2. Reformulation of equations

In order to work in a fixed domain, we use a flattening transformation introduce by Beale [1], [2],

also see [7],[8],[9]. We consider the fixed equilibrium domain

Ω := {x ∈ Σ× R| − b < x3 < 0},

for which we will write the coordinates as x ∈ Ω. We will think of Σ as the upper boundary of Ω,

and we will write Σb = {x3 = −b} for the lower boundary. We continue to view η as a function on

Σ×R+. We then define

η := Pη = harmonic extension of η into the lower half space,

where P is as defined by

Pη(x) =
∑

n∈(L−1
1 Z)×(L−1

2 Z)

e2πin·x?e2π|n|x3 η̂(n),

where we have written

η̂(n) =

∫
Σ
η(x?)

e−2πin·x?

L1L2
dx?,

The harmonic extension η allows us to flatten the coordinate domain via the mapping

Ω 3 x 7→ (x1, x2, x3 + η(x, t)(1 + x3/b)) = Φ(x, t) = (y1, y2, y3) ∈ Ω(t), (1.3)

Note that Φ(Σ, t) = {y3 = η(y1, y2, t)} = Φ(t) and Φ(·, t)|Σb
= IdΣb

, i.e. Φ maps Σ to the free

surface and keeps the lower surface fixed. We have

∇Φ =

 1 0 0

0 1 0

A B J

 and A := (∇Φ−1)T =

 1 0 −AK
0 1 −BK
0 0 K


for

A = ∂1ηb̃− (x3η∂1b)/b
2, B = ∂2ηb̃− (x3η∂2b)/b

2,

J = 1 + η/b+ ∂3ηb̃, K = J−1,

b̃ = (1 + x3/b).

Here J = det∇Φ is the Jacobian of the coordinate transformation.

Now we define the transformed quantities as

u(t, x) := ũ(t,Φ(t, x)), p(t, x) := p̃(t,Φ(t, x)), θ(t, x) := θ̃(t,Φ(t, x)).

In the new coordinates we rewrite (1.1) as

∂tu− ∂tηb̃K∂3u+ u · ∇Au+∇Ap−∆Au− θ∇Ay3 = 0, in Ω

divAu = 0, in Ω

∂tθ − ∂tηb̃K∂3θ + u · ∇Aθ −∆Aθ = 0, in Ω

(pI − DAu)N = ηN , on Σ,

∇Aθ · N + θ|N | = −|N |, on Σ,

∂tη + u1∂1η + u2∂2η = u3, on Σ,

u = 0, θ = 0, on Σb,

(1.4)
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Here we have written the differential operators ∇A, divA, and ∆A with their actions given by

(∇Af)i := Aij∂jf , divAX = Aij∂jXi, and ∆Af = divA∇Af for approximate f and X; for u · ∇Au
we mean (u · ∇Au)i := ujAjk∂kui. We have also written (DAu)ij =

∑
k(Aik∂kuj +Ajk∂kui). Also,

N = (−∇?η, 1) denotes the non-unit normal on Γ(t).

The Bénard convection problem was firstly observed from the experiments by Bénard [3]. Later

on, Rayleigh [5] gives the linearized stability of the Bénard convection model in the fixed slab

{0 < x3 < 1}. For the viscous surface wave problem with surface tension case, the existence and

decay of global in time solutions with free boundary surface was proved by T.Nishida, Y.Teramoto

and H.Yoshihara[11]. For small Rayleigh and Marangoni numbers, T.Ioraha [10] proved the existence

of exponentially decaying solutions in the class of small initial data. For these similar results can

be seen in [12],[13],[14]. They all utilized the framework of [1], [2] in the Lagrangian coordinates.

In T.Ioraha’ result and our previous paper [6], we can see that the surface tension appears as the

requirement that the solutions would be exponential decay. Now we will consider the case when the

surface tension is absent, by using the flattening coordinate [7] and high regularity framework [9],

we prove almost exponential decay of solutions for the Bénard convection problem.

The paper is organized as follows. In section 2 we define the energy and dissipations, we also

state our main result. In section 3 we develop basic energy-dissipative estimates. In section 4 we

provide the estimates for the nonlinearities. In section 5 we enhanced the estimates by the elliptic

estimates. In section 6 we complete our a priori estimates and prove our main results.

In the following, some notation were introduced. When using space-time differential multi-

indices, we will use N1+m = {α = (α0, α1, ..., αm)} to emphasize that the 0-index term is related

to temporal derivatives. For just spatial derivatives we write Nm. For α ∈ N1+m we write ∂α =

∂α0
t ∂α1

1 ...∂αm
m . We define the parabolic counting of such multi-indices by writing |α| = 2α0 + α1 +

...+αm. We will also write ∇∗f for the horizontal gradient of f , that is ∇∗f = ∂1fe1 +∂2fe2, while

∇f will denote the usual full gradient.

For a given norm ‖ · ‖ and an integer k ≥ 0, we introduce the following notation for sums of

spatial derivatives:

‖∇k∗f‖2 :=
∑

α∈N2,|α|≤k

‖∂αf‖2 and ‖∇kf‖2 :=
∑

α∈N3,|α|≤k

‖∂αf‖2 (1.5)

The convention we adopt in this notation is that ∇∗ refers to only horizontal spatial derivatives,

while ∇ refers to full spatial derivatives. For space-time derivatives we ass bars to our notation:

‖∇̄k∗f‖2 :=
∑

α∈N1+2,|α|≤k

‖∂αf‖2 and ‖∇̄kf‖2 :=
∑

α∈N1+3,|α|≤k

‖∂αf‖2 (1.6)

Here the spaces Hs denote the usual L2− based Sobolev spaces of order s. For simplicity, we

will write ‖ · ‖s for Hs(Ω) norm and ‖ · ‖Σ,s for Hs(Σ) norms.

2 Main results

In order to state our main results we first define the energy and dissipation functionals that we shall

use in our analysis. We will consider energies and dissipates at both the N + 2 and 2N levels. For
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any N ≥ 3, we define the high energy via

En :=
n∑
j=0

(‖∂jt u‖22n−2j + ‖∂jt θ‖22n−2j + ‖∂jt η‖22n−2j) +
n−1∑
j=0

‖∂jt p‖22n−2j−1. (2.1)

and define the corresponding dissipation as

Dn :=
n∑
j=0

(‖∂jt u‖22n−2j+1 + ‖∂jt θ‖22n−2j+1) +
n−1∑
j=0

‖∂jt p‖22n−2j

+ ‖η‖22n−1/2 + ‖∂tη‖22n−1/2 +

n+1∑
j=2

‖∂jt η‖22n−2j+5/2.

(2.2)

We write the high-order spatial derivatives of η as

F2N := ‖η‖24N+1/2. (2.3)

and specialized term as

K = ‖∇u‖2L∞ + ‖∇2u‖2L∞ +
2∑
i=1

‖Dui‖2H2(Σ). (2.4)

Finally, we define the total energy as

G2N := sup
0≤r≤t

E2N (r) +

∫ t

0
D2N (r)dr + sup

0≤r≤
(1 + r)4N−8EN+2(r) + sup

0≤r≤t

F2N (r)

(1 + r)
, (2.5)

We now state our a priori estimates for solution to (1.4).

Theorem 2.1. Suppose that (u, P, η,M) solves (1.4) on the temporal interval [0, T ]. There exists

a universal constant 0 < δ∗ < 1(independent of T ) such that if G2N (T ) ≤ δ∗, then

G2N ≤ C(E2N (0) + F2N (0)) (2.6)

for all t ∈ [0, T ], where C is a universal constant.

In order to prove the existence of almost exponential decaying solutions, we couple a priori

estimates with a local existence result. In [15] Zheng has been constructed local-in-time solutions

of the form (1.4) without surface tension. We will simply state the result that one can prove by [15]

in straightforward ways.

To state the local result we will need to define H1 := {u ∈ H1(Ω)|u|Σb
= 0} and

XT = {u ∈ L2([0, T ];H1)|divA(t)u(t) = 0 for a.e. t}.

The compatibility conditions for the initial data are natural ones that would be satisfied for solutions

in our framework. They are cumbersome to write, so we shall not record them here. We refer the

reader to [15] for their precise definition.

Now we can state the local existence result.
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Theorem 2.2. Let N ≥ 3 be an integer. Assume that η0 + b ≥ δ > 0, and that the initial data

(u0, θ0, η0) satisfies the bounds ‖u0‖2H4N + ‖θ0‖2H4N + ‖η0‖2H4N+1/2 < ∞ as well as the appropriate

compatibility conditions. Let ε > 0, there exists a δ0 = δε > 0, then there exists a δ0 = δ0(ε) > 0

and a

T0 = C(ε) min{1, 1

‖η0‖4N+1/2
} > 0 (2.7)

so that if 0 < T ≤ T0 and ‖u0‖24N + ‖θ0‖24N + ‖η0‖24N ≤ δ0, then there exists a unique solution

(u, p, θ, η) to (1.4) on the interval [0, T ] that achieves the initial data. The solution obeys the

estimate

sup
0≤t≤T

E2N (t) +

∫ T

0
D2N (t)dt+

∫ T

0
(‖∂2N+1

t u‖(XT )∗ + ‖∂2N+1
t θ‖(XT )∗ + ‖∂2N

t p(t)‖20)dt

≤ C1(‖u0‖2H4N + ‖θ0‖2H4N + T‖η0‖2H4N+1/2),

(2.8)

and ∑
0≤t≤T

F2N (t) ≤ C1(‖u0‖2H4N + ‖θ0‖2H4N + (1 + T )‖η0‖2H4N+1/2), (2.9)

The solution is unique among functions that achieve the initial data and for which the left-hand side

of is finite. Moreover, η is such that the mapping Φ(·, t), defined by (1.3), is a C1 diffeomorphism

for each t ∈ [0, T ].

Coupled a priori estimates Theorem 2.1 with local existence Theorem 2.2, we may deduce a

global existence and almost exponential decay result.

Theorem 2.3. Suppose the initial data (u0, θ0, η0) satisfying the compatibility conditions of Theorem

2.1, and assume that η0 satisfy the zero average condition (1.2). Let N ≥ 3 be an integer. There

exists a 0 < κ = κ(N) so that if E2N (0) + F2N (0) < κ, then there exists a unique solution (u, p, η)

on the interval [0,∞) that achieves the initial data. The solution obeys the estimate

G2N (∞) ≤ C(E2N (0) + F2N (0)) < Cκ, (2.10)

where C > 0 is a universal constant.

3 Energy-dissipation equations

In this section we show two forms of the energy-dissipation for solutions to (1.4). The one form is the

geometric form which is ideal for estimating temporal derivatives. The other form is the perturbed

linear form which is ideal for estimating horizonal spatial derivatives and for elliptic regularity.

3.1. Geometric form

In controlling the interaction between highest time derivative pressure and velocity, the perturbed

linear form wound be failed. Thus, we adopt the geometric form which is a linear formulation of

(1.4). We assume that u and η are given and that A,N ,J , etc. are given in terms of η as in (1.4).
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Consider the following system for (v, q, ζ, h):

∂tv − ∂tηb̃K∂3v + u · ∇Av +∇Aq −∆Av − ϑ∇Ay3 = F 1, in Ω

divAv = F 2, in Ω

∂tϑ− ∂tηb̃K∂3ϑ+ u · ∇Aϑ−∆Aϑ = F 3, in Ω

(qI − DAv)N = ζN + F 4, on Σ,

∇Aϑ · N + ϑ|N | = F 5, on Σ,

∂tζ − v · N = F 6, on Σ,

v = ϑ = 0 on Σb

(3.1)

We now record the energy-dissipation equality associated to solutions to (3.1)

Proposition 3.1. Let u and η be given and solve (1.4). If (v, q, ζ, ϑ) solve (3.1) then

d

dt
(

∫
Ω

|v|2

2
J +

∫
Σ

|ζ|2

2
) +

∫
Ω

|DAv|2

2
J =

∫
Ω

(v · F 1 + q · F 2)J

+

∫
Σ

(−v · F 4 + ζF 6) +

∫
Ω
ϑ∇Ay3 · vJ, (3.2)

and

d

dt

∫
Ω

|ϑ|2

2
J +

∫
Ω
|∇Aϑ|2J +

∫
Σ
|ϑ|2|N | =

∫
Ω
ϑ · F 3J +

∫
Σ
ϑ · F 5, (3.3)

Proof. We take the product of the first equation in (3.1) with Jv and integrate over Ω to find that

I + II = III,

for

I =

∫
Ω
∂tviJvi − ∂tηb̃∂3vivi + ujAjk∂kviJvi,

II =

∫
Ω
Ajk∂kSij(v, q)Jvi, III =

∫
Ω
F 1 · vJ.

A simple computation shows that

I =
d

dt

∫
Ω

|v|2

2
J.

To handle the term II we first integrate

II =

∫
Ω
−AjkSij(v, q)J∂kvi +

∫
Σ
JAj3Sij(v, q)vi

=

∫
Ω
−qAjk∂kviJ + J

|DAv|2

2
+

∫
Σ
Sij(v, q)Njvi

=

∫
Ω
−qJF 2 + J

|DAv|2

2
+

∫
Σ
ζN · v + F 4 · v

For the fourth equation in (3.1) we may compute∫
Σ
ζN · v =

∫
Σ
ζ(∂tζ − F 6) =

d

dt

∫
Σ

|ζ|2

2
−
∫

Σ
ζF 6.
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Similarly, multiplying the third equation in (3.1) with Jϑ and integrating over Ω, we have

IV + V = V I,

for

IV =

∫
Ω
∂tϑJϑ− ∂tηb̃∂3ϑϑ+ ujAjk∂kϑJϑ,

V = −
∫

Ω
∆AϑJϑ, V I =

∫
Ω
F 3ϑJ.

A simple computation shows that

IV =
d

dt

∫
Ω

|ϑ|2

2
J.

To handle the term V we first integrate

V =

∫
Ω
|∇Aϑ|2J −

∫
Σ
∇Aϑ · Nϑ

=

∫
Ω
|∇Aϑ|2J +

∫
Σ
|ϑ|2|N | − F 5ϑ,

We will employ the form (3.1) to study the temporal derivative of solutions to (1.4). That

is, we will employ ∂α to (1.4) to deduce that (v, q, ζ, ϑ) = (∂αu, ∂αp, ∂αη, ∂αθ) satisfy (3.1) for

certain terms F i for ∂α = αα0
t with α0 ≤ 2N . Below we record the form of these forcing terms

F i, i = 1, 2, 3, 4, 5, 6 for this particular problem.

We have that F 1 =
∑5

i=1 F
1,i, for

F 1,1
i :=

∑
0<β<α

Cα,β∂
β(∂tη̄b̃K)∂α−β∂3ui +

∑
0<β≤α

Cα,β∂
α−β∂tη̄∂

β(b̃K)∂3ui

F 1,2
i := −

∑
0<β≤α

Cα,β(∂β(ujAjk)∂α−β∂kui + ∂βAik∂α−β∂kp)

F 1,3
i :=

∑
0<β≤α

Cα,β∂
βAjl∂α−β∂l(Aim∂muj + |m∂mui)

F 1,4
i :=

∑
0<β<α

Cα,βAjk∂k(∂βAil∂α−β∂luj + ∂βAjl∂α−β∂lui)

F 1,5
i := ∂α∂tη̄K∂3ui and F 1,6

i := Ajk∂k(∂αAil∂luj + ∂αAjl∂lui)
F 1,7
i :=

∑
0<β≤α

Cα,β∂
α−βθ∂β(Ajl∂ly3), (3.4)

F 2,1 := −
∑

0<β<α

Cα,β∂
βAij∂α−β∂jui, and F 2,2 = −∂αAij∂jui. (3.5)

F 3,1 :=
∑

0<β<α

Cα,β∂
β(∂tη̄b̃K)∂α−β∂3ui +

∑
0<β≤α

Cα,β∂
α−β∂tη̄∂

β(b̃K)∂3ui

F 3,2 := −
∑

0<β≤α
Cα,β∂

β(ujAjk)∂α−β∂kθ

8
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F 3,3 :=
∑

0<β≤α
Cα,β∂

βAjl∂α−β∂lAjm∂mθ

F 3,4 :=
∑

0<β<α

Cα,βAjk∂k∂βAjl∂α−β∂lθ

F 3,5 := ∂α∂tηb̄K∂3θ and F 3,6 := Ajk∂k∂αAjl∂lθ. (3.6)

F 4 = F 4,1 + F 4,2, where for i = 1, 2, 3 we have

F 4,1
i := −(

∑
0<β≤α

Cα,β∂
βDη(∂α−βη − ∂α−βp)

F 4,2
i :=

∑
0<β≤α

Cα,β(∂β(NjAim)∂α−β∂muj + ∂β(NjAjm)∂α−β∂mui), (3.7)

F 5 := −
∑

0<β≤α
Cα,β[∂β(Ajk · Nj)∂k∂α−βθ − ∂α−βθ∂β|N |]− ∂α|N |, (3.8)

F 6 := −
∑

0<β≤α
Cα,β∂

βDη · ∂α−βu. (3.9)

3.2. Perturbed Linear form

Next, we consider an alternate way of linearizing (1.4) that eliminates the A coefficients in favor for

constant coefficients. This is advantageous for applying elliptic regularity results and is the context

in which we will derive estimates horizontal spatial derivatives. We may rewrite (1.4) as

∂tu+∇p−∆u− θe3 = G1, in Ω

divu = G2, in Ω

∂tθ −∆θ = G3, in Ω

(pI − Du− ηI)e3 = G4, on Σ,

∇θ · e3 + θ = G5, on Σ,

∂tη − u3 = G6, on Σ,

(3.10)

Here we have written the nonlinear terms Gi for i = 1, ..., 5 as follows. We write G1 := G1,1 +G1,2 +

G1,3 +G1,4 +G1,5 +G1,6, for

G1,1
i := (δij −Aij)∂jp

G1,2
i := ujAjk∂kui,

G1,3
i := [K2(1 +A2 +B2)− 1]∂33ui − 2AK∂13ui − 2BK∂23ui,

G1,4
i := [−K3(1 +A2 +B2)∂3J +AK2(∂1J + ∂3A) +BK2(∂2J + ∂3B)]∂3ui,

G1,5
i := ∂tη(1 + x3/b)K∂3ui,

G1,6
i := θ∇Ay3 − θe3, (3.11)

G2 := AK∂3u1 +BK∂3u2 + (1−K)∂3u3, (3.12)

G3 = G3,1 +G3,2 +G3,3, for

G3,1
i := ujAjk∂kθ,

9
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G3,2
i := [K2(1 +A2 +B2)− 1]∂33θ − 2AK∂13ui − 2BK∂23θ,

G3,3
i := [−K3(1 +A2 +B2)∂3J +AK2(∂1J + ∂3A) +BK2(∂2J + ∂3B)]∂3θ, (3.13)

G4 := ∂1η

 p− η − 2(∂1u1 −AK∂3u1)

− ∂2u1 − ∂1u2 +BK∂3u1 +AK∂3u2

− ∂1u3 −K∂3u1 +AK∂3u3



+∂2η

 − ∂2u1 − ∂1u2 +BK∂3u1 +AK∂3u2

p− η − 2(∂2u2 −BK∂3u2)

− ∂2u3 −K∂3u2 +BK∂3u3

 +

 (K − 1)∂3u1 +AK∂3u3

(K − 1)∂3u2 +BK∂3u3

2(K − 1)∂3u3

 , (3.14)

G5 := −|N | − (∇Aθ · N + θ|N |) +∇θ · e3 + θ, (3.15)

G6 := Dη · u, (3.16)

Next we consider the energy-dissipation evolution equation for solutions to problem of the form

(3.10).

Proposition 3.2. Suppose (v, q, ζ, ϑ) solve

∂tv +∇q −∆v − ϑe3 = Φ1, in Ω

divv = Φ2, in Ω

∂tϑ−∆ϑ = Φ3, in Ω

(qI − Dv − ζI)e3 = Φ4, on Σ,

∇ϑ · e3 + ϑ = Φ5, on Σ,

∂tζ − v3 = Φ6, on Σ,

v = θ = 0, on Σb,

(3.17)

Then

d

dt
(

∫
Ω

|v|2

2
+

∫
Σ

|ζ|2

2
) +

∫
Ω

|Dv|2

2

=

∫
Ω
v · Φ1 + q · Φ2 +

∫
Σ

(−v · Φ4 + ζΦ6) +

∫
Ω
ϑe3 · v, (3.18)

and

d

dt

∫
Ω

|ϑ|2

2
+

∫
Ω
|∇ϑ|2 +

∫
Σ
|ϑ|2 =

∫
Ω
ϑ · Φ3 +

∫
Σ
ϑ · Φ5, (3.19)

Proof. From the first equation in (3.17) we compute

∂tvi + ∂iq −∆vi − ϑe3 − ∂iΦ2 = Φ1
i − ∂iΦ2,

By the usual energy estimates we may compute

d

dt

∫
Ω

|v|2

2
+

∫
Ω

|Dv|2

2
+

∫
Σ
v3ζ︸ ︷︷ ︸
I

=

∫
Ω
v · Φ1 + qΦ2 − v · ∇Φ4 +

∫
Ω
ϑe3 · v,

10
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We compute I by integrating by parts and using (3.17):

I =

∫
Σ
ζ∂tζ − ζΦ6 =

d

dt

∫
Σ

|ζ|2

2
−
∫

Σ
ζΦ6,

Similarly, from the third equation in (3.17) and usual energy estimates, we compute

d

dt

∫
Ω
|ϑ|2 +

∫
Ω
|∇ϑ|2 +

∫
Σ
|ϑ|2 =

∫
Ω

Φ3ϑ+

∫
Σ
ϑΦ5,

4 Estimates of the nonlinearities

In this section, we record estimates for the nonlinearities that appear in (3.1) and (3.10). Throughout

this section we will repeatedly use the estimates of Lemmas B.1 and B.2 in [16] to estimates η, as

well as Lemma B.3 in [16] to estimate various nonlinearities. Before doing these, we firstly give a

lemma for moving the appearance of J and A factors.

4.1. Useful L∞ estimates

Lemma 4.1. There exists a universal 0 < δ < 1 so that if ‖η‖25/2 ≤ δ, then the following hold.

(1) We have the estimate

‖J − 1‖2L∞ + ‖A‖2L∞ + ‖B‖2L∞ ≤
1

2
, and ‖K‖2L∞ + ‖A‖2L∞ . 1, (4.1)

(2) The map Θ defined by (1.3) is a diffeomorphism.

(3) There exists a universal constant C > 0 such that for all v ∈ H1(Ω) such that v = 0 on Σb we

have ∫
Ω
|Dv|2 ≤

∫
Ω
J |DAv|2 + C

√
E
∫

Ω
|Dv|2, (4.2)

Proof. The proof of this lemma can be founded in [9]

4.2. Nonlinearities in (3.1)

Our goal now is to estimate the nonlinear terms F i for i = 1, ..., 6, as defined in (3.6)-(3.9). These

estimates will be used principally to estimates the interaction terms on the right side of (3.2) and

(3.3).

Theorem 4.2. Let ∂α = ∂α0
t and let F 1, ..., F 6 de defined in (3.6)-(3.9). Then the following

estimates hold. For 0 ≤ α0 ≤ 2N , we have

‖F 1‖20 + ‖∂t(JF 2)‖20 + ‖F 3‖20 + ‖F 4‖20 + ‖F 5‖20 + ‖F 6‖20 . E2ND2N , (4.3)

and

‖F 2‖20 ≤ E2
2N , (4.4)

11
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For 0 ≤ α0 ≤ N + 2, we have

‖F 1‖20 + ‖∂t(JF 2)‖20 + ‖F 3‖20 + ‖F 4‖20 + ‖F 5‖20 + +‖F 6‖20 . E2NDN+2, (4.5)

Also,

‖F 2‖20 ≤ E2NEN+2, (4.6)

Proof. The proof is similar to the estimates in Theorem 4.1-4.2 of [15].

4.3. Nonlinearities in (3.10)

Now we turn our attention to the nonlinear terms Gi for i = 1, ..., 6, as defined in (3.11)-(3.16).

Theorem 4.3. Let G1, ..., G6 de defined in (3.11)-(3.16). Then, the following estimates hold:

‖∇̄4N−2G1‖20 + ‖∇̄4N−2G2‖20 + ‖∇̄4N−2G3‖20 + ‖∇̄4N−2
∗ G4‖21/2

+ ‖∇̄4N−2
∗ G5‖21/2 + ‖∇̄4N−2

∗ G6‖21/2 . E1+θ
2N ,

(4.7)

and

‖∇̄4N−2G1‖20 + ‖∇̄4N−2G2‖20 + ‖∇̄4N−2G3‖20 + ‖∇̄4N−2
∗ G4‖21/2 + ‖∇̄4N−2G5‖21/2

+ ‖∇̄4N−2G6‖21/2 + ‖∇̄4N−3∂tG
1‖20 + ‖∇̄4N−2∂tG

2‖20 + ‖∇̄4N−3∂tG
3‖20

+ ‖∇̄4N−3
∗ ∂tG

4‖21/2 + ‖∇̄4N−3
∗ ∂tG

5‖21/2 + ‖∇̄4N−2∂tG
6‖21/2 . Eθ2ND2N ,

(4.8)

and

‖∇̄4N−1G1‖20 + ‖∇̄4N−1G2‖20 + ‖∇̄4N−1G3‖20 + ‖∇̄4N−2
1 G4‖21/2

+ ‖∇̄4N−1G5‖21/2 . EθD2N +KF2N ,
(4.9)

and

‖∇̄2(N+2)−2G1‖20 + ‖∇̄2(N+2)−2G2‖20 + ‖∇̄2(N+2)−2G3‖20 + ‖∇̄2(N+2)−2
∗ G4‖21/2

+ ‖∇̄2(N+2)−2
∗ G5‖21/2 + ‖∇̄2(N+2)−2

∗ G6‖21/2 . Eθ2NEN+2,
(4.10)

and

‖∇̄2(N+2)−1G1‖20 + ‖∇̄2(N+2)−1G2‖20 + ‖∇̄2(N+2)−1G3‖20 + ‖∇̄2(N+2)−1
∗ G4‖21/2

+ ‖∇̄2(N+2)−1
∗ G5‖21/2 + ‖∇̄2(N+2)−1

∗ G5‖21/2 + ‖∇̄2(N+2)−2
∗ ∂tG

6‖21/2 . Eθ2NDN+2,
(4.11)

Proof. Here the term G1, ..., G6 terms are estimated similar as [16], so we omit it.

5 A priori estimates

In this section we combine energy-dissipation estimates with various elliptic estimates and estimate

the nonlinearities in order to deduce a system of a priori estimates.

12
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5.1. Energy-dissipation estimates

In order to state our energy-dissipation estimates. First, we define the energy and dissipation

involving only temporal derivatives by

Ē0
n :=

n∑
j=0

(‖
√
J∂jt u‖20 + ‖

√
J∂jt θ‖20 + ‖∂jt η‖20) and D̄0

n :=
n∑
j=0

(‖D∂jt u‖20 + ‖∇∂jt θ‖20). (5.1)

Then define the horizontal energies and dissipations

Ē+
n :=‖∇̄2n−1

∗ u‖20 + ‖∇∗∇̄2n−1
∗ u‖20 + ‖∇̄2n−1

∗ M‖20
+ ‖∇∗∇̄2n−1

∗ M‖20 + ‖∇̄2n−1
∗ η‖20 + ‖∇∗∇̄2n−1

∗ η‖20,
(5.2)

and

D̄+
n :=‖∇̄2n−1

∗ D(u)‖20 + ‖∇∗∇̄2n−1
∗ D(u)‖20 + ‖∇̄2n−1

∗ ∇θ‖20 + ‖∇∗∇̄2n−1
∗ ∇θ‖20 (5.3)

We will also need to use the functional

H :=

∫
Ω
∂N+1
t pF 2J, (5.4)

and

Ēn = Ē0
n + Ē+

n and D̄n = D̄0
n + D̄+

n . (5.5)

First, we present the temporal derivatives for solutions.

Theorem 5.1. In the case 0 ≤ α0 ≤ 2N , There exist a ι > 0 so that

E0
2N (t) +

∫ t

0
D0

2N . E2N (0) + (E2N (t))3/2 +

∫ t

0
(E2N )ιD2N . (5.6)

In the case 0 ≤ α0 ≤ N + 2, we have

d

dt
(Ē0
N+2 − 2H) + D̄0

N+2 .
√
E2NDN+2, (5.7)

Proof. We write N = {0, 1, 2, ...} for the collection of non-negative integers. When using space-time

differential multi-indices, we will write N1+m = {α = (α0, α1, ..., αm)} to emphasize that the 0-index

term is related to temporal derivatives. For just spatial derivatives, we write Nm. For α ∈ N1+m,

we write ∂α = ∂α0
t ∂α1

1 ...∂αm
m . We apply ∂α to (1.4) to derive an equation for (∂αu, ∂αp, ∂αη, ∂αθ).

We will consider the form of this equation in different ways depending on α.

Suppose that ∂α = ∂α0
t with 0 ≤ α0 ≤ 2N . Then v = ∂α0

t u, q = ∂α0
t p, ζ = ∂α0

t η, ϑ = ∂α0
t θ satisfy

(3.1) with F 1, ..., F 6 as given in (3.6)-(3.9). According to Proposition 3.1 we then have that

d

dt
(

∫
Ω

|∂α0
t u|2

2
J +

∫
Σ

|∂α0
t η|2

2
+

∫
Ω

|∂α0
t θ|2

2
J) +

∫
Ω

|DA∂α0
t u|2

2
J

+

∫
Ω
|∇A∂α0

t θ|2J +

∫
Σ
|∂α0
t θ|2|N | =

∫
Ω

(∂α0
t u · F 1 + ∂α0

t pF 2 + ∂α0
t θ · F 3)J

+

∫
Σ

(−∂α0
t u · F 4 + ∂α0

t θF 5 + ∂α0
t ηF 6) +

∫
Ω
∂α0
t θ∇Ay3 · ∂α0

t uJ, (5.8)

We now estimate the in the right side hand of (5.8). We divide into two cases.

13
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In the case 0 ≤ α0 ≤ 2N , for the pressure term in the right side hand of (5.8), we then write∫ t

0
∂2N
t pJF 2 := −

∫ t

0

∫
Ω
∂2N−1
t p∂t(JF

2) +

∫
Ω

(∂2N−1
t pJF 2)(t)

−
∫

Ω
(∂2N−1
t pJF 2)(0).

It is easy to verify that∫
Ω

(∂2N−1
t pF 2J)(t)−

∫
Ω

(∂2N−1
t pF 2J)(0) . E2N (0) + (E2N (t))3/2,

Hence, ∫ T

0

∫
Ω
∂2N
t pF 2J . E2N (0) + (E2N (t))3/2 +

∫ T

0

√
E2ND2N , (5.9)

Next, we estimate all of the remaining terms on the right side of (5.7). In dealing with these

terms, acoording to the estimates (4.3)-(4.4) in Theorem 4.2 we may bound∫
Ω

(∂α0
t u · F 1 + ∂α0

t θ · F 3)J +

∫
Σ

(−∂α0
t u · F 4 + ∂α0

t θF 5 + ∂α0
t ηF 6)

+

∫
Ω
θ∇Ay3 · ∂α0

t uJ .
∫ T

0

√
E2ND2N , (5.10)

Furthermore, by lemma 4.1 we can deduce that∫
Ω

|D∂α0
t u|2

2
J .

∫
Ω

|DA∂α0
t u|2

2
J +

∫ T

0

√
E2ND2N , (5.11)

Therefore we complete the first claim of the Theorem 5.1.

On the other hand, in the case 0 ≤ α0 ≤ N + 2, as for the pressure term, we have the estimate∫
Ω
∂N+2
t pF 2J =

d

dt

∫
Ω
∂N+1
t pF 2J −

∫
Ω
∂N+1
t p∂t(F

2J),

hence, ∫
Ω
∂N+2
t pF 2J =

d

dt

∫
Ω
∂N+1
t pF 2J +

√
E2NDN+2, (5.12)

Similarly, we may argue as in to show that we may bound∫
Ω

(∂α0
t u · F 1 + ∂α0

t θ · F 3)J +

∫
Σ

(−∂α0
t u · F 4 + ∂α0

t θF 5 + ∂α0
t ηF 6)

+

∫
Ω
∂α0
t θ∇Ay3 · ∂α0

t uJ .
∫ T

0

√
E2NDN+2, (5.13)

and ∫
Ω

|D∂α0
t u|2

2
J .

∫
Ω

|DA∂α0
t u|2

2
J +

∫ T

0

√
E2NDN+2, (5.14)

Then the second claim is completed. Thus the theorem 5.1 follows.
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Theorem 5.2. Let α ∈ N1,2. In the case 0 ≤ α0 ≤ 2N − 1 and |α| ≤ 4N , There exist a ι > 0 so

that

Ē+
2N (t) +

∫ t

0
D̄+

2N . Ē+
2N (0) +

∫ t

0
(E2N )ιD2N +

√
D2NKF2N

+ εD2N + ε−8N−1D̄0
2N .

(5.15)

In the case 0 ≤ α0 ≤ N + 1 and |α| ≤ 2(N + 2), we have

d

dt
Ē+
N+2 + D̄+

N+2 . E ι2NDN+2 + εDN+2 + ε−4N−9D̄0
N+2. (5.16)

Proof. Now we view (u, p, η, θ) in terms of (3.10), which then means that (v, q, ζ, ϑ) = (∂αu, ∂αp, ∂αη, ∂αθ)

satisfy (3.17) with Φi = ∂αGi for i = 1, ..., 5, where the nonlinearities Gi are as defined in (3.11)-

(3.16), then apply Proposition 3.2 to see that

d

dt
(

∫
Ω

|∂αu|2

2
+

∫
Σ

|∂αη|2

2
+

∫
Ω

|∂αθ|2

2
) +

∫
Ω

|D∂αu|2

2
+

∫
Ω
|∇∂αθ|2 +

∫
Σ
|∂αθ|2

=

∫
Ω

(∂αu · ∂αG1 + ∂αp∂αG2 + ∂αθ · ∂αG3 + ∂αθe3 · ∂αu)

+

∫
Σ

(−∂αu · ∂αG4 + ∂αθ · ∂αG5) + ∂αη∂αG6,

(5.17)

We will estimate the right hand side of (5.17). In the case 0 ≤ α0 ≤ 2N − 1 and |α| ≤ 4N . Assume

initially that |α| ≤ 4N − 1, then by the estimate (4.7)-(4.11) in Theorem 4.3 we have∫
Ω

(∂αu · ∂αG1 + ∂αp∂αG2 + ∂αθ · ∂αG3)

. ‖∂αu‖0‖∂αG1‖0 + ‖∂αp‖0‖∂αG2‖0 + ‖∂αθ‖0‖∂αG3‖0
+ ‖∂αθ‖0‖∂αu‖0 .

√
D2N

√
E ιD2N +KF2N ,

(5.18)

and ∫
Ω
∂αθe3 · ∂αu . ‖∂αθ‖0‖∂αu‖0

. ‖∇4N−2α0
0 ∂α0

t u‖0
√
D2N .

√
D2N‖∂α0

t u‖4N−2α0

(5.19)

We estimate the 4N − 2α0 norm with standard Sobolev interpolation:

‖∂α0
t u‖4N−2α0 . ‖∂α0

t u‖χ0‖∂
α0
t u‖1−χ4N−2α0+1 . (D̄0

2N )χ/2(D2N )(1−χ)/2, (5.20)

where χ = (4N − 2α0 + 1)−1 ∈ (0, 1). Then Young’s inequality allows us to further bound√
D2N‖∂α0

t u‖4N−2α0 .
√
D2N (D̄0

2N )χ/2(D2N )(1−χ)/2

. ε(1− χ

2
)D2N +

χ

2
ε(χ−2)/χD̄0

2N . εD2N + ε−8N−1D̄0
2N .

(5.21)

where in the last inequality we have used the fact that (2−χ)/χ = 8N − 4α0 + 1 to find the largest

power of 1/ε when 0 ≤ α0 ≤ 2N .

Again by the estimate (4.7)-(4.11) in Theorem 4.3, together with the trace theorem, we have∫
Σ

(−∂αu · ∂αG4 + ∂αθ · ∂αG5) + ∂αη∂αG6

. ‖∂αu‖Σ,0‖∂αG4‖0 + ‖∂αθ‖Σ,0‖∂αG5‖0
+ ‖∂αη‖0‖∂αG6‖0 .

√
D2N

√
E ιD2N +KF2N ,

(5.22)
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Now we assume that |α| = 4N . Since α0 ≤ 2N − 1, we have α1 + α2 ≥ 2, then we can integrate

by parts on the horizontal directions. We write ∂α = ∂β∂γ so that |γ| = 4N − 1. So by integrating

by parts in the G1 terms in (5.17) and using the estimates the estimate (4.7)-(4.11) in Theorem 4.3,

we obtain

RHS of (5.10) =

∫
Ω

(−∂α+βu · ∂γG1 + ∂αp∂αG2 + ∂α+βθ · ∂ωG3 + ∂αθe3 · ∂αu)

+

∫
Σ

(−∂αu · ∂αG4 + ∂αθ · ∂αG5) . ‖∂α+βu‖0‖∂γG1‖0 + ‖∂αp‖0‖∂αG2‖0

+ ‖∂αθ‖0‖∂αG3‖0 + ‖∂αθ‖0‖∂αu‖0 + ‖∂αu‖Σ,0‖∂αG4‖0 + ‖∂αθ‖0‖∂αG5‖0
.

√
D2N

√
E ιD2N +KF2N ,

(5.23)

For the G6 term we split into two cases: α0 ≥ 1 and α0 = 0. In the former case, we have

‖∂αη‖1/2 ≤
√
D2N , and hence∫

Σ
∂αη∂αG6 . |

∫
Σ
∂α+βη∂α−βG6| . ‖∂α+βη‖−1/2‖∂α−βG6‖1/2

. ‖∂α+βη‖−1/2‖∂α−βG6‖1/2 . ‖∂αη‖1/2‖∂α−βG6‖1/2

.
√
D2N

√
E ιD2N +KF2N ,

(5.24)

In the latter case, ∂α only involves spatial derivatives, we may use Lemma 5.1 of [9] to bound∫
Σ
∂αη∂αG6 .

√
D2N

√
E ιD2N +KF2N , (5.25)

Consequently, in light of (5.17)-(5.25), the first claim in the theorem follows. Similarly, we follow

the steps of the first claim, we can conclude the second claim. Thus Theorem 5.2 follows.

5.2. Enhanced energy estimates

From the energy-dissipative estimates of Theorem 5.1 and Theorem 5.2 we have control of Ēn and

D̄n. Our goal now is to show that these can be used to control En and Dn up to some error terms

that we will be able to guarantee are small, for both n = 2N and n = N + 2. We begin with the

energy estimate.

Theorem 5.3. There exists a ι > 0 so that

E2N . Ē2N + E1+ι
2N , (5.26)

and

EN+2 . ĒN+2 + E ι2NEN+2, (5.27)

Proof. We first let n denote either 2N or N + 2 throughout the proof, and we compactly write

Wn =

n−1∑
j=0

‖∂jtG1‖22n−2j−2 + ‖∂jtG2‖22n−2j−1 + ‖∂jtG4‖22n−2j−3/2. (5.28)

and

Zn =

n−1∑
j=0

‖∂jtG3‖22n−2j−2 + ‖∂jtG5‖22n−2j−3/2. (5.29)

16
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According to the definitions of Ē0
n and Ē+

n , we have

‖∂nt u‖20 + ‖∂nt θ‖20 +
n∑
j=0

‖∂jt η‖22n−2j . Ēn, (5.30)

For estimating u and p we recall the standard Stokes estimates: for r ≥ 0,

‖u‖r + ‖p‖r−1 . ‖φ‖r−2 + ‖ψ‖r−1 + ‖α‖Σ,r− 3
2
, (5.31)

if 

−∆u+∇p = φ ∈ Hr−2(Ω)

divv = ψ ∈ Hr−1(Ω)

(pI − Du)e3 = α ∈ Hr− 3
2 (Σ)

u|Σb
= 0,

Now we let j = 0, ..., n− 1 and then apply ∂jt to the equations to find

−∆∂jt u+∇∂jt p = −∂j+1
t u+ ∂jtG

1

div∂jt u = ∂jtG
2

(∂jt pI − D(∂jt u))e3 = ∂jt ηIe3 − ∂jtG4

∂jt u = 0, on Σb,

(5.32)

and hence we may apply (5.11) and the estimate (4.4) of Theorem 4.3 to see that

‖∂jt u‖22n−2j + ‖∂jt p‖22n−2j−1 . ‖∂j+1
t u‖22n−2j−2 + ‖∂jtG1‖22n−2j−2 + ‖∂jtG2‖22n−2j−2

+ ‖∂jt η‖22n−2j−3/2 + ‖G4‖22n−2j−3/2

. ‖∂j+1
t u‖22n−2(j+1) + Ēn +Wn.

(5.33)

Similarly, for estimating θ, we have
−∆∂jt θ = −∂t∂jt θ + ∂jtG

3

∇∂jt θ · e3 + ∂jt θ = ∂jtG
5

∂jt θ = 0, on Σb,

and hence we deduce that

‖∂jt θ‖22n−2j . ‖∂
j+1
t θ‖22n−2j−2 + ‖∂jtG3‖22n−2j−2

+ ‖∂jt θ‖22n−2j−3/2 + ‖G5‖22n−2j−3/2

. ‖∂j+1
t θ‖22n−2(j+1) + Ēn + Zn.

(5.34)

We claim that

En . Ēn +Wn + Zn. (5.35)

We prove the claim by a finite induction based on the estimate. For j = n− 1, we obtain

‖∂n−1
t u‖22 + ‖∂n−1

t p‖21 + ‖∂n−1
t θ‖22

. ‖∂nt u‖20 + ‖∂nt θ‖20 + Ēn +Wn + Zn

. Ēn +Wn + Zn.
(5.36)
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Now suppose that the following holds for 1 ≤ l ≤ n− 1

‖∂n−lt u‖22 + ‖∂n−lt p‖21 + ‖∂n−lt θ‖22 . Ēn +Wn + Zn. (5.37)

We apply (5.31) with j = n− (l + 1) and use the induction hypothesis (5.37) to find

‖∂n−(l+1)
t u‖22(l+1) + ‖∂n−(l+1)

t p‖22(l+1)−1 + ‖∂n−(l+1)
t θ‖22(l+1)

. ‖∂n−lt u‖22l + ‖∂n−lt θ‖22l + Ēn +Wn + Zn

. Ēn +Wn + Zn.

(5.38)

Hence by finite induction, the bound holds for all l = 1, ..., n− 1. Summing (5.36) and (5.37) over

l = 1, ..., n− 1 and changing the index, we then have

n−1∑
j=0

‖∂jt u‖22n−2j + ‖∂jt p‖22n−2j−1 + ‖∂jt θ‖22n−2j . Ēn +Wn + Zn. (5.39)

We then conclude the claim (5.35) by summing (5.31) and (5.39).

Finally, setting n = 2N in (5.35), and using Theorem 4.3 to bound W2N + Zn . (E2N )1+ι,

we obtain (5.26); setting n = N + 2 in (5.35), and using Theorem 4.3 to bound WN+2 + Zn .
(E2N )ιEN+2, we obtain (5.27);

5.3. Enhanced dissipate estimates.

We now complete Theorem 5.2 by proving a corresponding result for the dissipation.

Theorem 5.4. There exists a ι > 0 so that

D2N . D̄2N +KF2N + E1+ι
2N , (5.40)

and

DN+2 . D̄N+2 + E ι2NDN+2, (5.41)

Proof. We again let n denote either 2N or N + 2 and compactly write

Yn =‖∇̄2n−1G1‖20 + ‖∇̄2n−1G2‖21 + ‖∇̄2n−1G3‖20 + ‖∇̄2n−1
∗ G4‖21/2

+ ‖∇̄2n−1
∗ G5‖21/2 + ‖∇̄2n−1

∗ G6‖21/2 + ‖∇̄2n−1
∗ ∂tG

6‖21/2.
(5.42)

First, by the definition of D̄0
n, D̄+

n and Korn’s inequality, we obtain

‖∇̄2n−1
∗ u‖21 + ‖∇∗∇̄2n−1

∗ u‖21 + ‖∇̄2n−1
∗ θ‖21 + ‖∇∗∇̄2n−1

∗ θ‖21 . D̄+
n , (5.43)

and
n∑
j=0

‖∂jt u‖21 +

n∑
j=0

‖∂jt θ‖21 . D̄0
n, (5.44)

Summing these estimates (5.42) and (5.43), we find that

‖∇̄2n
∗ u‖21 . D̄n, (5.45)
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Notice that we have not yet derived an estimate of η in terms of dissipation, so we can not use

previous boundary condition. Instead, we can apply the definition of Sobolev norm on T 2 and the

trace theorem to see from (5.44) that

‖∂jt u‖2H2n−2j+1/2(Σ)
. ‖∂jt u‖2L2(Σ) + ‖∇2n−2j

∗ ∂jt u‖2H1/2(Σ)

. ‖∂jt u‖2H1(Ω) + ‖∇2n−2j
∗ ∂jt u‖2H1(Ω) . D̄n,

(5.46)

Let j = 0, ..., n− 1, and observe that (∂jt u, ∂
j
t p) solve the problem

−∆∂jt u+∇∂jt p = −∂j+1
t u+ ∂jtG

1 in Ω

div∂jt u = ∂jtG
2 in Ω

∂jt u = ∂jt u on Σ

∂jt u = 0 on Σb,

(5.47)

We apply the Stokes estimate with r = 2n− 2j + 1 to the problem (5.46) using the estimates and

summing up, we find

‖∂jt u‖2H2n−2j+1 + ‖∇∂jt p‖2H2n−2j−1 . ‖∂j+1
t u‖2H2n−2j−1

+ ‖∂j+1
t G1‖2H2n−2j−1 + ‖∂jtG2‖2H2n−2j + ‖∂jt u‖2H2n−2j+1/2(Σ)

. ‖∂j+1
t u‖2H2n−2j−1 + Yn + D̄n,

(5.48)

Similarly, for the θ dissipative estimate, we directly use the Stokes elliptic estimates to following

equations 
−∆∂jt θ = −∂j+1

t θ + ∂jtG
3

∇∂jt θ · e3 + ∂jt θ = ∂jtG
5

∂jt θ = 0, on Σb,

and hence we derive that

‖∂jt θ‖2H2n−2j+1 . ‖∂j+1
t θ‖2H2n−2j−1 + ‖∂jtG3‖2H2n−2j−1

+ ‖∂jt θ‖2H2n−2j+1/2(Σ)
+ ‖∂jtG5‖2

H2n−2j+1/2(Σ)

. ‖∂j+1
t θ‖2H2n−2j−1 + Yn + D̄n,

(5.49)

We now claim that

n∑
j=0

‖∂jt u‖2H2n−2j+1 +
n−1∑
j=0

‖∂jt∇p‖2H2n−2j−1 +
n∑
j=0

‖∂jt θ‖2H2n−2j+1 . Yn + D̄n, (5.50)

We prove this claim by a finite induction. For j = n− 1, we obtain

‖∂n−1
t u‖2H3 + ‖∇∂n−1

t ∇p‖2H1 +

n∑
j=0

‖∂n−1
t θ‖2H3 . ‖∂nt u‖21 + Yn + D̄n . Yn + D̄n, (5.51)

Now we suppose that the following holds for 1 ≤ l ≤ n− 1:

‖∂n−lt u‖2H2l+1 + ‖∇∂n−lt ∇p‖2H2l−1 +

n∑
j=0

‖∂n−lt θ‖2H2l+1 . Yn + D̄n, (5.52)
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We apply with j = n− (l + 1) and use the induction hypothesis (5.52) to find

‖∂n−(l+1)
t u‖2

H2(l+1)+1 + ‖∇∂n−(l+1)
t p‖2

H2(l+1)−1 + ‖∂n−(l+1)
t θ‖2

H2(l+1)+1

. ‖∂n−lt u‖2H2l+1 + ‖∂n−lt θ‖2H2l+1 + Yn + D̄n

. Yn + D̄n,

(5.53)

Hence the bound (5.52) holds for all l = 1, ..., n. We then conclude the claim (5.50) by summing

this over l = 1, ..., n, adding (5.44) and changing the index.

Now that we have obtained (5.50), we estimate the remaining parts in Dn. We will turn to the

boundary conditions in (3.10). First we derive estimates for η. For the term ∂jt η for j ≥ 2 we use

the boundary condition

∂tη = u3 +G6 on Σ, (5.54)

Indeed, for j = 2, ..., n+ 1 we apply ∂j−1
t to (5.54) to see that

‖∂jt η‖22n−2j+5/2 . ‖∂j−1
t u3‖2H2n−2j+5/2(Σ)

+ ‖∂j−1
t G6‖2

H2n−2j+5/2(Σ)

. ‖∂j−1
t u3‖2H2n−2(j−1)+1 + ‖∂j−1

t G6‖2
H2n−2(j−1)+1/2

. Zn + D̄n,

(5.55)

For the term ∂tη, we again use (5.54), (5.50) and (5.42) to find

‖∂jt η‖22n−1/2 . ‖u3‖2H2n−1/2(Σ)
+ ‖∂j−1

t G6‖2
H2n−1/2(Σ)

. ‖u3‖2H2n + ‖∂j−1
t G6‖2

H2n−1/2

. Zn + D̄n,

(5.56)

For the remaining η term, that is those without temporal derivatives, we use the boundary conditions

η = p− ∂3u3 +G4 (5.57)

Notice that at this point we do not have any bound on p on the boundary Σ, but we have bounded

∇p in Ω. Applying ∂1, ∂2 to (5.56) and (5.57), respectively, by (5.50) and (5.42), we obtain

‖∇∗η‖22n−3/2 . ‖∇∗p‖2H2n−3/2(Σ)
+ ‖∇∗∂3u3‖2H2n−3/2(Σ)

+ ‖∇∗G6‖2
H2n−3/2(Σ)

. ‖∇p‖2H2n + ‖u3‖2H2n+1 + ‖G6‖2
H2n−1/2

. Yn + D̄n,

(5.58)

Since
∫
T 2 η = 0, we may then use Poincare inequality on Σ to obtain from (5.58) that

‖η‖22n−1/2 . ‖η‖20 + ‖∇∗η‖22n−3/2 . ‖∇∗η‖22n−3/2 . Yn + D̄n, (5.59)

Summing (5.55), (5.56) and (5.59), we complete the estimate for η:

‖η‖22n−1/2 + ‖∂tη‖22n−1/2 +
n−1∑
j=0

‖∂jt η‖22n−2j+5/2 . Yn + D̄n, (5.60)
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It remains to bound ‖∂jt p‖0. Applying ∂jt , j = 0, ..., n− 1 to (5.47) and employing (5.50),(5.60)

and (5.42), we find

‖∂jt p‖2L2(Σ) . ‖∂
j
t η‖2L2(Σ) + ‖∂3∂

j
t u3‖2L2(Σ) + ‖∂jtG6‖20

. ‖∂jt η‖2L2(Σ) + ‖∂jt u3‖2H2 + ‖∂jtG6‖20 . Yn + D̄n,
(5.61)

This, and (5.44) and (5.42), and (5.60) allow us improve (5.50) to

Dn . Zn + D̄n, (5.62)

Setting n = 2N in (5.62) and using the estimates (4.7)-(4.11) in Theorem 4.3 to estimate Z2N .
(E2N )ιD2N +KF2N . On the other hand, we may set n = N + 2 to bound ZN+2 . (E2N )ιDN+2.

6 Proof of main results

6.1. Estimates involving F2N and K

We first need to control F2N . This is achieved by the following proposition.

Proposition 6.1. There exists a universal constant 0 < δ < 1 so that if G2N ≤ δ, then

sup
0≤r≤t

F2N (r) . F2N (0) + t

∫ t

0
D2N , for all 0 ≤ t ≤ T. (6.1)

Proof. Based on the transport estimate on the kinematic boundary condition, we may show as in

Lemma 7.1 of [9] that

sup
0≤r≤t

F2N (r) . exp(C

∫ t

0

√
K(r)dr)

× [F2N (0) + t

∫ t

0
(1 + E2N (r))D2N (r)dr + (

∫ t

0

√
K(r)F2N (r))2].

(6.2)

The Sobolev and trace embeddings allow us to estimate K . EN+2, and hence∫ t

0

√
K(r)dr .

∫ t

0

√
EN+2(r)dr .

√
δ

∫ t

0

1

(1 + r)2N−4
dr .

√
δ. (6.3)

Since δ ≤ 1, this implies that for any constant C > 0,

exp(C

∫ t

0

√
K(r)dr) . 1. (6.4)

Then by (6.3) and (6.4), we deduce from (6.2) that

sup
0≤r≤t

F2N (r) . F2N (0) + t

∫ t

0
D2N (r)dr + sup

0≤r≤t
F2N (r)(

∫ t

0

√
K(r)dr)2

. F2N (0) + t

∫ t

0
D2N (r)dr + δ sup

0≤r≤t
F2N (r)

(6.5)

By taking δ small enough, we get (6.1) .
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This bound on F2N allows us to estimate the integral of KF2N and
√
D2NKF2N as in Corollary

7.3 of [9].

Corollary 6.2. There exists 0 < δ < 1 so that if G2N ≤ δ, then∫ t

0

√
D2NKF2N . F2N (0) +

√
δ

∫ t

0
D2N (r)dr, (6.6)

and ∫ t

0
KF2N . δF2N (0) + δ

∫ t

0
D2N (r)dr, (6.7)

Now we show the boundness of the high-order terms.

Proposition 6.3. There exists 0 < δ < 1 so that if G2N ≤ δ, then

sup
0≤r≤t

E2N (r) +

∫ t

0
D2N + sup

0≤r≤t

F2N (r)

(1 + r)
. E2N (0) + F2N (0), for all 0 ≤ t ≤ T. (6.8)

Proof. Note first that since E2N (t) ≤ G2N ≤ δ, by taking δ small, from Theorem 5.3 and Theorem

5.4 we know that

E2N . Ē2N . EN+2, and D̄2N . D2N . D̄2N +KF2N . (6.9)

Now we multiplying (5.6) by a constant 1 +C∗ (with precise value to be choose later) and add this

to (5.15) find that

Ē+
2N (t) + Ē0

2N (t) +

∫ t

0
(1 + β)D̄0

2N + D̄+
2N

. (1 + β)E2N (0) + Ē+
2N (0) + (1 + β)(E2N (t))3/2 +

∫ t

0
(1 + β)E ι2ND2N

+

∫ t

0

√
D2NKF2N + εD2N + C(ε)D̄0

2N .

(6.10)

Then we may improve

E2N (t) +

∫ t

0
D2N . (1 + β)E2N (0) + (1 + β)(E2N (t))1+ι +

∫ t

0
(2 + β)E ι2ND2N

+

∫ t

0

√
D2NKF2N +KF2N + εD2N + C(ε)D̄0

2N .

(6.11)

We plug the estimates (6.6) and (6.7) into (6.10), then take ε sufficiently small first, β sufficiently

large second, and δ sufficiently small third; we may then conclude

sup
0≤r≤t

E2N (t) +

∫ t

0
D2N . E2N (0) + F2N (0), (6.12)

It remains to show the decay estimates of EN+2.
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Proposition 6.4. There exists 0 < δ < 1 so that if G2N ≤ δ, then

(1 + t4N−8)EN+2(t) . E2N (0) + F2N (0) for all 0 ≤≤ T. (6.13)

Proof. Since E2N (t) . G2N (T ), by taking δ small, from Theorem 5.3 and 5.4 we know that

EN+2 . ĒN+2 . EN+2, and D̄N+2 . DN+2 . D̄N+2. (6.14)

By these estimates and the smallness of δ, from Theorem 5.1 and 5.2 we may deduce that there

exists an instantaneous energy, which is equivalent to EN+2, such that

d

dt
EN+2 +DN+2 . 0. (6.15)

On the other hand, based on the Sobolev interpolation inequality we can prove

EN+2 . DιN+2E1−ι
2N , where ι =

4N − 8

4N − 7
(6.16)

Now since we know that the boundness of high energy estimate Proposition 6.3, we get

sup
0≤r≤t

E2N (r) . E2N (0) + F2N (0) :=M0, where ι =
4N − 8

4N − 7
(6.17)

we obtain form (6.14) that

EN+2 .M1−ιDιN+2. (6.18)

Hence by (6.17) and (6.15), there exists some constant C1 > 0 such that

d

dt
EN+2 +

C1

Ms
0

E1+s
N+2 . 0, where s =

1

ι
− 1 =

1

4N − 8
, (6.19)

Solving this differential inequality directly, we obtain

EN+2(t) .
M0

(Ms
0 + sC1(EN+2(0))st)1/s

EN+2(0), (6.20)

Using that EN+2(0) .M0 and the fact 1/s = 4n− 8 > 1, we obtain that

EN+2(t) .
M0

1 + sC1t)1/s
.

M0

1 + t)1/s
.

M0

1 + t)4N−8
. (6.21)

This implies (6.13).

Now we combine proposition to arrive at our ultimate a priori estimates for G2N .

Theorem 6.5. There exists a universal 0 < δ < 1 so that if G2N (T ) ≤ δ, then

G2N (t) ≤ C2(E2N (0) + F2N (0)) for all 0 ≤ t ≤ T. (6.22)

Proof. The conclusion follows directly from the definition of G2N and Propositions.

In order to combine the local existence result with the a priori estimates, we must be able to

estimate G2N in terms of the right and side. This is achieved by the following proposition 6.3 and

6.4.
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Proposition 6.6. There exists a universal constant C3 > 0 so that the following hold. If 0 ≤ T ,

then we have the estimate

G2N (t) ≤ sup
0≤t≤T

E2N (t) +

∫ T2

0
D2N (t)dt

+ sup
0≤t≤T

F2N (t) + C3(1 + T )4N−8 sup
0≤t≤T

E2N (t).
(6.23)

If 0 < T1 ≤ T2, then we have

G2N (T2) ≤ C3G2N (T1) + sup
T1≤t≤T2

E2N (t) +

∫ T2

T1

D2N (t)dt

+
1

(1 + T1)
sup

T1≤t≤T2
F2N (t) + C3(T2 − T1)2(1 + T )4N−8 sup

0≤t≤T
E2N (t).

(6.24)

Proof. The proof is same as Proposition 9.1 of [9].

6.2. Global well-posedness

Now we turn to the completion of the proof of our main theorem.

Proof of Theorem 2.1. let 0 < δ < 1 and C2 > 0 be the constants in Theorem 6.5, C1 > 0 be

the constant in () and C1 > 0 be the constant in (2.9). By the local existence result, Theorem 2.2,

for any ε > 0 there exists δ0(ε) < 1 and 0 < T < 1 so that if κ < δ0, then there is a unique solution

of (1.3) on [0,T] satisfying the estimates

sup
0≤t≤T

E2N (t) +

∫ T

0
D2N (t)dt+

∫ T

0
(‖∂2N+1

t u‖2−1 + ‖∂2N
t p(t)‖20)dt ≤ ε (6.25)

and

sup
0≤t≤T

F2N (t) ≤ C1F2N (0) + ε. (6.26)

Hence if we choose ε = δ/(4 + C324N−7) and then choose κ < δ/(2C1), we may use the estimate of

Proposition to see that

G2N (T ) ≤ C1κ+ ε(2 + C324N−8) < δ. (6.27)

Now we define

T∗(κ) = sup{for every choice of initial data satisfying the compatibility
conditions and E2N (0) + F2N (0) < κ, there exists a unique

solution of (1.3) on [0, T ] satisfying G2N (T ) ≤ δ}.
(6.28)

By the above analysis, T∗(κ) is well-defined and satisfies T∗(κ) > 0 if κ is small enough, that is there

is a κ1 > 0 so that T∗ : (0, κ1] → (0,∞]. It is easy to verify that T∗ is non-increasing on (0, κ1].

Now we set

ε =
δ

3
min{1

2
,

1

C3
} (6.29)

and then define κ0 ∈ (0, κ1] by

κ0 = min{ δ

3C2(C3 + 2C1)
,
δ0(ε)

C2
, κ1} (6.30)
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We claim that T∗(κ0) =∞. Once the claim is established, the proof the theorem is complete since

then T∗(κ) =∞ for all 0 < κ < κ0.

We prove the claim by contradiction. Suppose that T∗(κ0) < ∞. By the definition of T∗(κ0),

for any 0 < T1 < T∗(κ0) and for any choice of data satisfying the compatibility conditions and the

bound E2N (0)+F2N (0) < κ0, there exists a unique solution of (1.3) on [0, T1] satisfying G2N (T1) ≤ δ.
Then by Theorem 6.5, we have

G2N (T1) ≤ C2(E2N (0) + F2N (0)) < C2κ0. (6.31)

In particular (6.31), (6.30) imply

E2N (T1) +
F2N

(1 + T1)
< C2κ0 ≤ δ0(ε), ∀ < T1 < T∗(κ0). (6.32)

We can view (u(T1), p(T1), η(T1)) as initial data for a new problem; they satisfy the compatibility

conditions as initial data since they are already solutions on [0, T1]. Since E2N < δ0(ε), we may use

Theorem to extend the solution to [T1, T2], where T2 is any time satisfying

0 < T2 − T1 ≤ T0 := C(ε) min{1,F2N (T1)−1}. (6.33)

By (6.31), we have

T̄ := C(ε) min{1, 1

δ0(1 + T∗(κ0))
} ≤ T0. (6.34)

Note that T̄ depends on ε and T∗(κ0) but does depend on T1. Let

γ = min{T̄ , T?(κ0),
1

(1 + 2T∗(κ0))2N−4
}, (6.35)

and then choose T1 = T∗(κ0)− γ/2 and T2 = T∗(κ0) + γ/2. We have

0 < T1 < T∗(κ0) < T2 < 2T∗(κ0) and 0 < γ = T2 − T1 ≤ T̄ ≤ T0, (6.36)

By the above argument, we have extended the solution to [0, T2] and on the extended time interval

[T1, T2] we have

sup
T1≤t≤T2

E2N (t) +

∫ T2

T1

D2N (t)dt+

∫ T2

T1

(‖∂2N+1
t u‖2−1 + ‖∂2N

t p(t)‖20)dt ≤ ε (6.37)

and

sup
T1≤t≤T2

F2N (t) ≤ C1F2N (0) + ε. (6.38)

We now combine the estimates (6.37)-(6.38), (6.31)-(6.33) and (6.24) with the definitions (6.29),

(6.30), and (6.37) to see that

G2N (T2) < C2C3κ0 + ε+
C1C2κ0(1 + T1) + ε

(1 + T1)
+ εC3(T2 − T1)2(1 + T2)4N−8

κ0C2(C3 + C1) + 2ε+ εC3γ
2(1 + 2T∗(κ0))4N−8

δ

3
+
δ

3
+
δ

3
= δ.

(6.39)
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Hence G2N ≤ δ, which contradicts the definition of T∗(κ0). Therefore, we have T∗(κ0) = ∞. This

proves the claim and complete the proof Theorem 2.1.
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