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Abstract

We consider the dynamics of an Boussinesq approximation Bénard convection fluid evolving
in a three-dimensional domain bounded below by a fixed flatten boundary and above by a free
moving surface. The domain is horizontally periodic and the effect of the surface tension is
neglected on the free surface. By developing a priori estimates for the model, we prove the
global existence and almost exponential decay of solutions in the framework of high regularity.
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1 Introduction

1.1. Formulation of the problem in Eulerian problem

We consider the Bénard convection problem in a shallow horizontal layer of a fluid heated from

below evolving in a moving domain

Qt)={ye X x R|—b<ys <nly,y2,t)}

where we assume that ¥ = (L1 T)x (LeT) for T = R/Z and L1, Ly > 0 periodicity lengths. The depth
of the lower boundary b > 0 is assumed to be fixed constant, but the upper boundary is a free surface
that is the graph of the unknown function 1 : ¥ x Ry — R. We will write 3(¢) = {y3 = n(y1, y2,t)}
for the free surface of the fluid and ¥, = {y3 = —b} for the fixed bottom surface of the fluid.
Assuming the Boussinesq approximation, we obtain the basic hydrodynamic equations governing
Bénard convection as follows:

Ot + @ - Vi + VP = pAi + gadey,, in Q(t),
diva =0, in Q(t),
00 +1-V0 = kA, in Q(t),
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itli—o = @0 (y1, Y2, 3), Oli—o = Oo(y1,Y2,y3),

Here, @ = (uy, U, us3) is the velocity field of the fluid satisfying divi = 0, p the pressure, g > 0
the strength of gravity, ;> 0 the kinematic viscosity, o the thermal expansion coefficient, e,, the
unit upward vector, 8 the temperature field of the fluid, s the thermal diffusively coefficient, and
po is the density at the temperature Tp. Notice that, we have made the shift of actual pressure
P = D + gy3 — Patm With the constant atmosphere pressure Paim,.

The boundary condition is

Oy = U3 — U10y; 1 — U20y,n, on I'(t),
(pI — pD(a@))n = gnn, on T'(t),
n-V0+ Bif = —1, on (1),

ﬂ|y3:_1 = 0, 9~|y3:_1 = 0, on Fb,

Here, I the 3 x 3 identity matrix, D(@);; = 0;u; + 0;4; the symmetric gradient of @, N the upper
normal vector of the free boundary y3 = n, n = N/|N/| the unit upward vector of the free surface
y3 = n where N = (=811, —dan, 1) is the upward normal vector of the free surface y3 = n and |N| =
V(01m)2 + (92m)2 + 1, Bi > 0 the Biot number. Here div,, V, denote the horizontal differential
operator.(along with writing x, = (z1,x2)).

We will always assume the natural condition that there exists a positive number dy such that
b+mno > dp > 0 on I'(0), which means that the initial free surface is strictly separated from the
bottom. And without loss of generality, we may assume that pp =y =k =a =g = Bi=1, i.e.,
we will consider the equations

Qi+ - Vi + VP — Al — fey, =0, in Qt)

diva = 0, in Q(t)

0 +1-V0—A0=0, in Q(t)

(]5{ - Dﬂ)jl = nn, on T'(t), (1)
VO -n+6=-1, on T'(t),

O + w101 + U209m = Uz, on T'(t),

=0, 0=0, on Ty,

ili—0 = 1o, Oli=0 = 0o, mli=0 = 70,

We assume that the initial surface function 7y satisfies the ”zero average” condition

1
—0. 1.2
Tl /Zno (1.2)

Notice that for sufficiently regular solutions to the periodic problem, the condition ([1.2)) persists in

time since 9y = @ - v4/1 + |V,n|%:

d/n:/ﬁtn:/ a-u:/ diva = 0.
dt Jx by I(t) Q(t)
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1.2. Reformulation of equations

In order to work in a fixed domain, we use a flattening transformation introduce by Beale [1], [2],
also see [7],[8],[9]. We consider the fixed equilibrium domain

Q:={r e xR|-b<z3<0},

for which we will write the coordinates as x € 2. We will think of 3 as the upper boundary of €2,
and we will write ¥ = {x3 = —b} for the lower boundary. We continue to view 1 as a function on
¥ x RT. We then define

7 := Pn = harmonic extension of n into the lower half space,

where P is as defined by
7377($) _ Z 627rin-ac*€27r\n\x3ﬁ(n)’
ne(LT ' Z)x(Ly ' 7)
where we have written

. efQﬂin-x*
i(n) = /E ) e,

L1,
The harmonic extension 77 allows us to flatten the coordinate domain via the mapping
Q> xw (1,22, 23 +7(x,t)(1 + 23/b)) = ®(x,t) = (y1,Y2,y3) € Q(2), (1.3)

Note that ®(X,t) = {y3 = n(y1,y2.t)} = ®(¢) and @(-,t)|s, = Idy,, i.e. ® maps X to the free
surface and keeps the lower surface fixed. We have

1 00 10 —AK
V=10 1 0| and A:=Ve"H"=[01 —BK
A B J 00 K

for
A = 0y7jb — (x3m01b) /b2, B = Oamb — (w3702b) /b2,
J=14n/b+0smb, K =J1,
b= (1+z3/b).

Here J = detV® is the Jacobian of the coordinate transformation.
Now we define the transformed quantities as

u(t,z) == a(t, ®(t, z)), plt,x) :=pt, &t x)), Ot x):=0(t (t x)).

In the new coordinates we rewrite (1.1]) as

.

O — OMbK O3+ 1 - Vau + Voap — Aqu — OV 4y3 = 0, in €

divgqu =0, in Q

0,0 — ObK D30 +u- V40 — A0 =0, in Q

(pI = Dgu)N =nN, on X, (1.4)
Va0 - N +0O0N|=—|N|, on X,

O + u101m + usdom = us, on 3,

[ u=0, 0 =0, on X,




B.Q.Xie,L.Zeng

Here we have written the differential operators V 4, div 4, and A4 with their actions given by
(Vaf)i = A0 f, divaX = A;;0;X;, and A f = divaV 4 f for approximate f and X; for u-V 4u
we mean (u -V u); := ujA;jp0ku;. We have also written (Dqu)i; = >4 (AikOkuj + AjrOku;). Also,
N = (=V,n,1) denotes the non-unit normal on I'(¢).

The Bénard convection problem was firstly observed from the experiments by Bénard [3]. Later
on, Rayleigh [5] gives the linearized stability of the Bénard convection model in the fixed slab
{0 < z3 < 1}. For the viscous surface wave problem with surface tension case, the existence and
decay of global in time solutions with free boundary surface was proved by T.Nishida, Y.Teramoto
and H.Yoshihara[IT]. For small Rayleigh and Marangoni numbers, T.Ioraha [10] proved the existence
of exponentially decaying solutions in the class of small initial data. For these similar results can
be seen in [12],[13],[I4]. They all utilized the framework of [I], [2] in the Lagrangian coordinates.
In T.Ioraha’ result and our previous paper [6], we can see that the surface tension appears as the
requirement that the solutions would be exponential decay. Now we will consider the case when the
surface tension is absent, by using the flattening coordinate [7] and high regularity framework [9],
we prove almost exponential decay of solutions for the Bénard convection problem.

The paper is organized as follows. In section 2 we define the energy and dissipations, we also
state our main result. In section 3 we develop basic energy-dissipative estimates. In section 4 we
provide the estimates for the nonlinearities. In section 5 we enhanced the estimates by the elliptic
estimates. In section 6 we complete our a priori estimates and prove our main results.

In the following, some notation were introduced. When using space-time differential multi-
indices, we will use N'*™ = {a = (ag, a1, ..., )} to emphasize that the O-index term is related
to temporal derivatives. For just spatial derivatives we write N™. For o € N+ we write 0% =
07007 ...0%m. We define the parabolic counting of such multi-indices by writing |a| = 2ag + o1 +
oo+ ayy,. We will also write V, f for the horizontal gradient of f, that is V. f = 01 fe1 + o fea, while
V f will denote the usual full gradient.

For a given norm || - || and an integer k£ > 0, we introduce the following notation for sums of
spatial derivatives:

IVEFIZ = D0 10°F17 and IVFfIP= D0 [19°F)7 (1.5)

aeN? |a|<k a€NS |a|<k

The convention we adopt in this notation is that V, refers to only horizontal spatial derivatives,
while V refers to full spatial derivatives. For space-time derivatives we ass bars to our notation:

IVEFIZ = >0 10°F1? and IVRFIP= 0 Y0 1100 (1.6)

aeNIt2 |o|<k aeNIt3 o<k
Here the spaces H® denote the usual L?— based Sobolev spaces of order s. For simplicity, we
will write || - ||s for H*(2) norm and || - ||x; s for H*(X) norms.
2 Main results

In order to state our main results we first define the energy and dissipation functionals that we shall
use in our analysis. We will consider energies and dissipates at both the N + 2 and 2N levels. For
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any N > 3, we define the high energy via

n n—1
En = Z(Hagu”%nf% + Hatjeuganj + Hé‘inH%nfzj) + Z Hang%anjfl- (2.1)
j=0 i=0

and define the corresponding dissipation as

n n—1
Dy, = Z(Haguugn—zjﬂ + ||ag9‘|§n—2j+1) + Z ||agp“§n—2j
j=0 Jj=0
n+1 ] (2'2)
+ ||77”%n—1/2 + Hat77\|§n—1/2 + Z ||ag77||gn—2j+5/2'
=2
We write the high-order spatial derivatives of n as
Fon = HUH?LNJ,-I/T (2.3)
and specialized term as
2
K = [VulZe + 1V2ul 2 + 3 1Dl s s (2.4)
i=1
Finally, we define the total energy as
! 4N-8 Fan(r)
Gon := sup En(r)+ [ Don(r)dr+ sup (1 +7r) Enya(r) + sup , (2.5)
0<r<t 0 0<r< o<r<t (L+7)

We now state our a priori estimates for solution to (1.4)).

Theorem 2.1. Suppose that (u, P,n, M) solves (1.4]) on the temporal interval [0,T]. There exists
a universal constant 0 < 0, < 1(independent of T ) such that if Gon(T') < 04, then

Gon < 0(52]\7(0) + ]:2]\/(0)) (2.6)
for allt € [0,T], where C is a universal constant.

In order to prove the existence of almost exponential decaying solutions, we couple a priori
estimates with a local existence result. In [I5] Zheng has been constructed local-in-time solutions
of the form ([1.4)) without surface tension. We will simply state the result that one can prove by [15]
in straightforward ways.

To state the local result we will need to define Hy := {u € H'(Q)|u|y, = 0} and

Xr = {u € L*([0,T; H1)|div 4pyu(t) =0 for a.e. t}.

The compatibility conditions for the initial data are natural ones that would be satisfied for solutions
in our framework. They are cumbersome to write, so we shall not record them here. We refer the
reader to [I5] for their precise definition.

Now we can state the local existence result.
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Theorem 2.2. Let N > 3 be an integer. Assume that ng +b > 6 > 0, and that the initial data
(uo, 00,m0) satisfies the bounds |[uo||3an + |00l Fan + 170]|54n11/2 < 00 as well as the appropriate
compatibility conditions. Let € > 0, there exists a 09 = 0 > 0, then there exists a dg = dp(g) > 0

and a

1
To = C(e) min{l, ——} >0 (2.7)
H770H4N+1/2

so that if 0 < T < Ty and |luol|3y + 160ll3y + [[molliy < do. then there exists a unique solution

(u,p,0,m) to (1.4) on the interval [0,T] that achieves the initial data. The solution obeys the
estimate

T T
OzlgTSzN(t)Jr/o DzN(t)dt+/o 02N ull aepys + 10EV 10 2y + 1107V p(2)[15) dt

S Cl(”u0||§.[4N + ||90||?{4N + T||770||§[4N+1/2)7

(2.8)

and

> Fan(t) < CrllluolFran + 100[13an + (1 + T) |70l 3ans1/2)5 (2.9)
0<t<T

The solution is unique among functions that achieve the initial data and for which the left-hand side
of is finite. Moreover, 0 is such that the mapping ®(-,t), defined by (1.3)), is a C diffeomorphism
for each t € [0,T7].

Coupled a priori estimates Theorem 2.1 with local existence Theorem 2.2, we may deduce a
global existence and almost exponential decay result.

Theorem 2.3. Suppose the initial data (ug, 0o, Mo) satisfying the compatibility conditions of Theorem
2.1, and assume that 19 satisfy the zero average condition . Let N > 3 be an integer. There
exists a 0 < k = k() so that if Ean(0) + Fan(0) < K, then there exists a unique solution (u,p,n)
on the interval [0,00) that achieves the initial data. The solution obeys the estimate

ggN(OO) < C(EQN(O) "‘}_ZN(O)) < Ck, (2.10)

where C > 0 is a universal constant.

3 Energy-dissipation equations

In this section we show two forms of the energy-dissipation for solutions to (|1.4). The one form is the
geometric form which is ideal for estimating temporal derivatives. The other form is the perturbed
linear form which is ideal for estimating horizonal spatial derivatives and for elliptic regularity.

3.1. Geometric form

In controlling the interaction between highest time derivative pressure and velocity, the perturbed
linear form wound be failed. Thus, we adopt the geometric form which is a linear formulation of
(1.4). We assume that w and 7 are given and that A, N, 7, etc. are given in terms of n as in ([1.4]).
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Consider the following system for (v, q,(, h):

8tv—OtﬁgK03v+u~VAU+VAq—AAU—19VAy3:Fl, in

divav = F2, in Q

09 — K O30 + u- V49 — Aqd = F3, in Q

(qI —=Dgv)N =CN +F*, on X, (3.1)
VA9 -N+IN|=F° on,

X —v-N=F° on¥x,

v=9=0 on X,

We now record the energy-dissipation equality associated to solutions to (3.1))

Proposition 3.1. Let u and n be given and solve (1.4)). If (v,q,(,3) solve (3.1]) then

d |U‘2 \C|2 |]D)AU\2 / 1 2
J J = . F ) J
dt(/g 2 +/2 2”/9 2 e

p— . 4 6 .
+/z( v-F*+ (F )+/919VAy3 v, (3:2)

and

2
g [vaops+ [ opn = [o-rs [oor (33)
dt QO 2 Q = Q P

Proof. We take the product of the first equation in (3.1) with Jv and integrate over €2 to find that
[+ 11 =1III,

for

I= / o Ju; — 6@5831),-01- + UjAjkakviJU,‘,
Q

II:/AjkaSij(v,q)Jvi, III:/FI-UJ.
Q Q

A simple computation shows that

d 2
_ A e
t Jo 2

To handle the term I we first integrate

H:/ —Aijz‘j(U,Q)Jakar/ J A;j35ij (v, q)vi
Q b))

D 4v]?
2

= / —qukc‘)kviJ +J + / Sij(va Q)/\/jvi
Q P
D 2
:/—qJF2+J|AU‘+/§N-U—|—F4-v
Q 2 s
For the fourth equation in (3.1)) we may compute

/zCN'v:/EC(atC_FG):i/EK;_/E<F6~

7
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Similarly, multiplying the third equation in (3.1) with J¢ and integrating over 2, we have
IV4+V=VI
for

IV = / O0JV — 80390 + uj Ak Ok 9TV,
Q

V——/AAﬁJﬁ, VI—/F379J.
Q Q

d [ |9
== 12
Vgl 2

To handle the term V we first integrate

A simple computation shows that

V:/ |VA19\2J—/V,419-N'19
Q b
—/ yvAﬁ\2J+/ [9]2|N| — F>9,
Q P
O

We will employ the form to study the temporal derivative of solutions to (1.4). That
is, we will employ 9, to to deduce that (v,q,(,¥) = (Oqu, 0ap, Dun, 0ab) satisfy for
certain terms F* for 9% = af® with oy < 2N. Below we record the form of these forcing terms
Fi i=1,2,3,4,5,6 for this particular problem.

We have that F' = Y2°_ | F% for

FiLl — Z Caﬁﬁﬁ(atﬁi)ff)aafﬁ(%ui‘i‘ Z Ca,gaafﬁatﬁaﬁ(i)l{)&aw

0<B<a 0<B<a
F? == Y Cop(0°(ujAjr) 0" Ohu; + 0° A0 P Op)
0<B<La
F = 3" Copd® A0 PO AimOmu; + [$0mus)
0<B<a
=N CopAinOi(03Aa0a—piu; + 0° Aj0° P opu;)
0<B<a
Fi1,5 = 8°8,77Kdyu; and Fil’ﬁ = A0k (0% Ay Oju; + 0% Aj10u;)
FPTi= )" Cogd* P00° (Audiys), &4
0<pB<a
F2hi= = Y Copd®Ai0° P0pu;, and F>? = —0“A;j0u,. (3.5)
0<fB<a

P31 = " Copd®(0mbK)0* Posu; + > Copd* P0ym0° (bK)dsu;
0<f<a 0< <L
F3’2 == Z Caﬂaﬁ(ujftjk)&"_ﬁake

0<B<a
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33 = Z Ci,30° A0 P 0L A O
0<fB<La
F3’4 = Z Caﬁ.Ajkakag.Ajlaa_gal@
0<B<a
F35 .= 09mbK 050 and F>% := A;,0,0%A;0,0.

F* = 4! 4 42 where for i = 1,2,3 we have

Fti=—( ) Capd’Dn(0° Py — 0" Pp)

7

0<p<La
F?i= %" Cap(0(NjAin) O™ PO + 0% (N Ajm) Do sOmus),
0<p<La
Fo == Y Capld® (A Nj)BOYP0 — 0°P00° N ] — 0° |\,
0< <
Fb .= — Z C’aﬁﬁﬁDn L9 Py,

0<B<La

3.2. Perturbed Linear form

(3.6)

Next, we consider an alternate way of linearizing (|1.4)) that eliminates the A coefficients in favor for

constant coefficients. This is advantageous for applying elliptic regularity results and is the context

in which we will derive estimates horizontal spatial derivatives. We may rewrite (1.4]) as

o+ Vp — Au — fes = G, in Q
divu = G%, in Q
20— A0 =G3, inQ

(pI —Du —nl)e3 =G*, on %,
VO-e5+60=G" on¥,
8t77—U3:G6, on X,

\

(3.10)

Here we have written the nonlinear terms G* for i = 1, ..., 5 as follows. We write G := GU1 + G2 +

G113 + G4 4 G5 + Gl,ﬁ7 for

Gyt = (615 — A)O;

(2

1,2 _
G, = uj A Ogu;,

GL3 = [K2(1 + A2 + BQ) — 1]8331” — QAKalgui — 2BK823ul-,

7

(2

G}° = 9y7i(1 + x3/b) K dsu;,

GZ-1’6 = 0V qy3 — Oes,

G? := AKd3uy + BKd3us + (1 — K)d3us,
G3 — G3,1 + G3,2 + G3’3, for

G?”l = Uj.AjkakQ,

(]

Gt = [ K3(1 4+ A% + B%)03J + AK?(01J + 835A) + BK?(85J + 93B)]03ui,

(3.11)

(3.12)
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G?’Q = [K2(1 + A? + B2) — 1]833(9 — 2AK013u; — 2BK 0930,
G = [-K3(1 + A% + BY)03J + AK?(01J + 03A) + BK*(92J + 33B)])050,  (3.13)

p—n-— 2(81u1 — AK33U1)
Gt .= o — Ooup — Ohug + BKO3uq1 + AKO3us
— O1uz — KO3uy + AKO3ug

— Oou1 — O1us + BKO3uy + AKO3us (K — 1)832“ + AK0O3us
+82n p—n— 2(8271,2 — BKa?,UQ) + (K — 1)63U2 + BK@gUg s (3.14)
— Oouz — KO3ug + BKO3us3 2(K — 1)33’&3
G® = —|N| = (VA0 - N +0IN|)+ V0 -e3 + 0, (3.15)
GS:=Dn-u, (3.16)

Next we consider the energy-dissipation evolution equation for solutions to problem of the form
(13-10)).

Proposition 3.2. Suppose (v, q,(, V) solve

O +Vqg— Av—1es =, inQ
divo = ®%, in Q
o0 — AV =B, in Q
(qI —Dv —(I)es = d*, on X, (3.17)
Vi -e3+19 =3 on X,
¢ —v3 =35 on 3,
Lv=0=0, on X,

Then
d 2 2 D 2
(JLE [P, [ind
dt"Jq 2 5 2 Q 2
:/v-<I)1—|—q-<I>2+/(—v-CI)4—|—C<I>6)+/1963-2), (3.18)
Q ) Q
and
i @ 2 2 _ . H3 L HD
+ |VI|* + W= [ ¥-®°+ [ 9 -D°, (3.19)
dt Jo 2 Q > Q >

Proof. From the first equation in (3.17) we compute
O; + 0;q — Av; — Jeg — 8iCI)2 = (I)} — 81»(1)2,

By the usual energy estimates we may compute

d 2 Do|?

— ‘U‘+/’U’+/v3§:/v-‘1>1+q‘1>2—v-vfl>4+/1963'1),

dt Jo 2 o 2 > 0 Q

—
I

10
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We compute I by integrating by parts and using (3.17)):

_ Cae_ 4 [ICP 6
1—/2@4 o' =2 [ /E@,

Similarly, from the third equation in (3.17)) and usual energy estimates, we compute

d/ \19|2+/ |v19|2+/ |19|2:/<1>319+/19q>5,
dt Jq Q ) Q )

4 Estimates of the nonlinearities

In this section, we record estimates for the nonlinearities that appear in and . Throughout
this section we will repeatedly use the estimates of Lemmas B.1 and B.2 in [16] to estimates 7, as
well as Lemma B.3 in [16] to estimate various nonlinearities. Before doing these, we firstly give a
lemma for moving the appearance of J and A factors.

4.1. Useful L estimates

Lemma 4.1. There ezists a universal 0 < § < 1 so that if ”77”3/2 < 6, then the following hold.
(1) We have the estimate

1 = Uz + Al + 1Bl < 5, and [|K|7 + M7~ S 1, (4.1)

~

N | —

(2) The map © defined by (1.3) is a diffeomorphism.
(3) There exists a universal constant C > 0 such that for all v € H*(Q) such that v =0 on ¥}, we

have
/|Dv2§/J\DAv12+Cf5/ | Dvl?, (4.2)
Q Q Q

Proof. The proof of this lemma can be founded in [9] O

4.2. Nonlinearities in ({3.1))

Our goal now is to estimate the nonlinear terms F* for i = 1,...,6, as defined in ([3.6)-(3.9). These
estimates will be used principally to estimates the interaction terms on the right side of (3.2)) and

(3-3)-

Theorem 4.2. Let 9% = 9{° and let F',...,F® de defined in (3.6)-(3.9). Then the following
estimates hold. For 0 < ag < 2N, we have

IEHE + 10:(TE2)IE + 1F21 + IF4NE + 1E]E + (1715 < E2nDan, (4.3)

and
IF?(|5 < E3, (4.4)

11
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For 0 <ag <N+ 2, we have
IEYE + 10:(TE)E + IF2 15+ 1 FIS + 1215 + +I1FII§ S EanDive, (4.5)

Also,
IF2([5 < EanEnya, (4.6)

Proof. The proof is similar to the estimates in Theorem 4.1-4.2 of [15].

O
4.3. Nonlinearities in (3.10))
Now we turn our attention to the nonlinear terms G for i = 1, ...,6, as defined in (3.11))-(3.16].
Theorem 4.3. Let G1,...,G% de defined in (3.11)-(3.16). Then, the following estimates hold:
IV GG+ V2GR + IV 2GRS + VY 2G0T (47)

[ VIN2GE|2 4 VAN 2602, < €1,

and
IVNZ2EN[G + IV 2GP G + IV 2GR + VY 2GHE ) + IV 2GR
+ V2G5 + IV P0G G + IV 20.GR G + IV 20,60 (4.8)
HIVETPAGH ), + VTGN o + [V 20GOIR < EinDoan,
and ) ) B )
IVAIGHE + IV TGRS+ IV TG + VN TRGA (49)
+ (| VINTIGRN Yy S E7Don + K Faw,
and
= — = — = — —2(N+2)—2
[VENFD=2GL|2 4 || PN =222 | GANFD 2682 | GIV T2 2 (4.10)
+ [VEVEZ2G0| 2, + | VEVTG0)3 , < ElvEnaa
and
= — = — = — —2(N+2)—1
[VENFDTIGL|Z 4 | GANFD-LG2 2 4 | GAVFDLGE|2 4 | GIVER T g2 (4.11)
—2(N+2)—1 —2(N+2)—1 —2(N+2)—-2 :
+ VDTG R, 4 [VEVEDTG R 4 [V T20,601R S En Do,
Proof. Here the term G, ..., G% terms are estimated similar as [16], so we omit it. O

5 A priori estimates

In this section we combine energy-dissipation estimates with various elliptic estimates and estimate
the nonlinearities in order to deduce a system of a priori estimates.

12



Almost exponential decay of Bénard convection problem without surface tension

5.1. Energy-dissipation estimates

In order to state our energy-dissipation estimates. First, we define the energy and dissipation
involving only temporal derivatives by

En = (IVJIAullg + IV I06II5 + 10{nllf) and Dp == (IDo]ull§ + [VO/6IF).  (5.1)
=0 j=0

Then define the horizontal energies and dissipations

F = IVET R IVl VMG

_ _ _ (5.2)
+ IVLVTIMG + IV lg + V.V )13,
and
Dt =V D) lg + IV VI D(w) g + IV VOl5 + |V V1 VO[5 (5.3)
We will also need to use the functional
H = / N TIpF2 (5.4)
Q
and
£, =&+ & and  Dn=D°+Dr. (5.5)
First, we present the temporal derivatives for solutions.
Theorem 5.1. In the case 0 < oy < 2N, There exist a + > 0 so that
t
Eon(t) / D < Eanl0) + (Eax (6)2 + [ (Ean)'Da, (5.6)
0
In the case 0 < ag < N + 2, we have
d -
%(5242 2H) + Do S VENDn 2, (5.7)

Proof. We write N = {0,1,2, ...} for the collection of non-negative integers. When using space-time
differential multi-indices, we will write N'*™ = {a = (ag, a1, ..., ) } to emphasize that the 0-index
term is related to temporal derivatives. For just spatial derivatives, we write N™. For o € NI+
we write 0% = 9;°07"...05™. We apply 0% to to derive an equation for (0%u,d“p, 9%n, 0*0).
We will consider the form of this equation in different ways depending on «.

Suppose that 0% = 9;"° with 0 < a9 < 2N. Then v = 9;°u, ¢ = 9;°p, ¢ = 9;°n, ¥ = 9;°0 satisty
with F'!, ..., F% as given in —. According to Proposition 3.1 we then have that

d, [ 107 u® 107°n]? 10700/ D407 ul®
dt(/Q 2 ‘]JF/E 2 +/Q 2 ‘])Jr/ﬂz‘]

+/ \VAaf‘OH\QJJr/ 10200 N | :/(a,?ou-Fl+afOpF2+a§“09-F3)J
Q % Q

+ / (=00 - FY 4 9f°0F5 + 0fonF°) + / IOV qys - OX0u, (5.8)
by Q
We now estimate the in the right side hand of (5.8). We divide into two cases.

13
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In the case 0 < ag < 2N, for the pressure term in the right side hand of (5.8), we then write

t t
[ovnrrr = [ [ ¥ tar + [ @ i
0 0 JQ Q

- /Q (@2N I F)(0).

It is easy to verify that

/(afN_lszJ)(t) - / O 'pF?T)(0) < Ean(0) + (Ean ()P,
Q Q
Hence,
T T
/ / 8752NpF2J§SQN(O)—F(gQN(t))S/Q—F/ \/82ND2N, (5.9)
0 Q 0

Next, we estimate all of the remaining terms on the right side of (5.7)). In dealing with these
terms, acoording to the estimates (4.3))-(4.4)) in Theorem 4.2 we may bound

/(&f“ou-Fl +6§‘00-F3)J+/(—Bf‘ou-F4+Of°9F5+6f°nF6)
Q P

T
+ / OV ays - O "uld < / VEnDan, (5.10)
Q 0

Furthermore, by lemma 4.1 we can deduce that

Daao 2 D aao 2 T
/|t2u|<]§/ |A2tu|J+/ vV EnNDan, (5.11)
Q Q 0

Therefore we complete the first claim of the Theorem 5.1.
On the other hand, in the case 0 < ag < N + 2, as for the pressure term, we have the estimate

d
/atN”pF?J: dt/agVHpF?J—/agV“pat(F?J),
Q Q Q

hence,

d
/QatN”pFQJ = dt/g@fv“pFQJJr VENDN 2, (5.12)

Similarly, we may argue as in to show that we may bound

/Q(afou FU 40700 - FP)J + / (=07 %u - F* + 9f°0F° + 0p°nF°)

>
T
+ [ 0oV ags - opous 5 [ VEnDsa, (5.13)
Q 0
and 2 2 T

Doxo D 4070

/MQMJS/ |J42tuj+/ vV ENDN 42, (5.14)
Q Q 0

Then the second claim is completed. Thus the theorem 5.1 follows.

14



Almost exponential decay of Bénard convection problem without surface tension

Theorem 5.2. Let o € N2, In the case 0 < g < 2N — 1 and |o| < 4N, There exist a 1 > 0 so

that
t
En () / Dyy < En(0) + / (é2n)'Dan + / DanKFan (5.15)
0 :
+ Doy 4 e SN1DY .

In the case 0 < g < N + 1 and |a| < 2(N + 2), we have

d o

a — & o+ DYy S ESNDN42 + Do+ NV IDY L. (5.16)

Proof. Now we view (u, p,n,8) in terms of (3.10]), which then means that (v, ¢, ¢, ?) = (0%u, d%p, 0%n, 0“0)
satisfy (3.17) with ®' = 9%G® for i = 1,...,5, where the nonlinearities G* are as defined in ([3.11))-
(3.16)), then apply Proposition 3.2 to see that

d |9%u|? |0°n|? /|5a¢9|2 /|]D)3°‘U|2 / 2 / 2
— 0 “0
dt(/ﬂ . +/E S [0+ [ B [ verer+ [ ool

= /(8O‘u SOG4+ 0°pI*G? + 0“0 - 9“G> + 0%fes - 0™u) (5.17)
Q

+ / (—0%u - 9*G* + 90 - 9°G®) + d“nd“G°,
P

We will estimate the right hand side of ((5.17)). In the case 0 < ap < 2N —1 and |a| < 4N. Assume
initially that |o| < 4N — 1, then by the estimate (4.7])-(4.11]) in Theorem 4.3 we have

/ (0% - DG + 9%pd*G? 4 9°6 - 9°G?)

Q

< 110%ullo 0G0 + 10°Pllo| 0G0 + 10°6]l00“CG?||o (5.18)
+ 10%0)|0]|0%u]j0 < /Dan/EDan + KFan,

and

/Qf)aﬂeg - 0% S ||0%8][0||0%ul|o

< || VaN=2209%04 |0 /Dan S /Dan |00l 4n 200

We estimate the 4N — 2a norm with standard Sobolev interpolation:

(5.19)

107 ullav—2a0 < 107 ulF 107 ullin" sy 41 S (DIN)2 (Do) 7072, (5.20)
where x = (4N — 2ag +1)~! € (0,1). Then Young’s inequality allows us to further bound

VDan||08°u]|an—200 S V/Dan (DIn )X/ (Do) 1 70/2

_ _ (5.21)
Se(l- g)DQN + ga(xﬂ)/XDgN < eDyy + e 3NTIDY

where in the last inequality we have used the fact that (2 —x)/x = 8N —4ag + 1 to find the largest
power of 1/¢ when 0 < ap < 2N.
Again by the estimate (4.7))-(4.11) in Theorem 4.3, together with the trace theorem, we have

/(—Gau S9°G* + 0%0 - 0°GP) + 9°nd*GS

by

S N10%u||5,010°GH o + 1100|5010 G |0 (5.22)
+10°n]l0]|0°G®lo £ V/Dan v/ EDan + KFon,

15
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Now we assume that |a| = 4N. Since ap < 2N — 1, we have a; + a > 2, then we can integrate
by parts on the horizontal directions. We write 9 = 9%97 so that |y| = 4N — 1. So by integrating
by parts in the G' terms in ((5.17)) and using the estimates the estimate (4.7)-(4.11) in Theorem 4.3,

we obtain
RHS of (5.10) = / (=0 Pu - VGt + 0°pd*G? + 3P0 . 0GP + 9%0e3 - 0%u)
Q
+/(—8‘“u L 0°GH+ 070 - 0°G®) < [10°Pull0)|07GMlo + 10%pllol|0* G lo (5.23)
. .

+10%0]010“G?[|o + 10“0llo]|0%ullo + |0%ulls,010*G* |0 + 10“0/l0/|0“G® |l
< VDanV/EDan + KFon,

For the G® term we split into two cases: a9 > 1 and a9 = 0. In the former case, we have
10°nll1/2 < v/Dan, and hence

/EaanaaGG 5 |/Eaa+ﬁnaa—ﬁG6| S Haa—l—ﬁnn_l/zuaa—ﬂGG||1/2
SN0 nll10ll0° PGy < 10Nl 2llO° GO o (5.24)

< VDanV/E Doy + KFon,

In the latter case, 9 only involves spatial derivatives, we may use Lemma 5.1 of [9] to bound

/ 9°nd*G® < \/Dan\/EDan + KFan, (5.25)
¥

Consequently, in light of (5.17)-(5.25)), the first claim in the theorem follows. Similarly, we follow
the steps of the first claim, we can conclude the second claim. Thus Theorem 5.2 follows. O

5.2. Enhanced energy estimates

From the energy-dissipative estimates of Theorem 5.1 and Theorem 5.2 we have control of &, and
D,,. Our goal now is to show that these can be used to control &, and D,, up to some error terms
that we will be able to guarantee are small, for both n = 2N and n = N + 2. We begin with the
energy estimate.

Theorem 5.3. There exists a v > 0 so that
Eon S Eon + 521?\7, (5.26)

and
Ent2 S Ent2 + EnEN+2, (5.27)

Proof. We first let n denote either 2N or N + 2 throughout the proof, and we compactly write

n—1
Wi =Y 18]G 30-2j-2 + 10/ G* 3021 + 1] G5, 2530 (5.28)
=0
and
n—1 ) )
Zn = Z Hat]G?)H%n—Qj—Q + ||6gG5||gn—2j—3/2‘ (5.29)

<
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Almost exponential decay of Bénard convection problem without surface tension

According to the definitions of £0 and &, we have

n
1O ull§ + 107013 + D 18/0130—2; < . (5.30)
j=0

For estimating u and p we recall the standard Stokes estimates: for r > 0,

lully + 1pllr—1 S H@llr—2 + 19 llr—1 + llells s, (5.31)

— Au+Vp=¢ec H Q)
dive =+ € H1(Q)
(pI —Du)es = o € H'™2(%)

u|§;b = 0,

Now we let j = 0,...,n — 1 and then apply 9/ to the equations to find
— A@gu—i— V@gp = —8g+1u+8fG1
divdlu = 8! G?
. ) . - (5.32)
(01pI — D(O}w))es = dfnles — O1G
8§u =0, on Xy,

and hence we may apply (b.11)) and the estimate (4.4) of Theorem 4.3 to see that

. . - ) )

Hat]“H%n—Qj + ||agp||gn—2j—1 < 119y u||gn—2j—2 + |\8§G1|]%n_2j_2 + Hat]GQH%n—Qj—Q
i 2 492

10/ n0ll50-0j-3/2 + 1G 120232 (5.33)

i1 B
5 ||azz+ u||§n—2(j+1) + g’n + Wn

Similarly, for estimating 6, we have
— A0 = —0,0]0 + 0 G*
V&0 -e3+ 00 =0/G
8{9 =0, on Xy,

and hence we deduce that
1070113—25 S 10770113, ——2 + 10 G* 13022
+ ‘|8g0”§n—2j—3/2 + ”G5||gn—2j—3/2 (5.34)
07013, a 1) + En + Zn.

We claim that
En S &+ Wy + 2. (5.35)

We prove the claim by a finite induction based on the estimate. For j = n — 1, we obtain
107~ a3 + 107~ plIT + (107013
S 07 ull§ + 1070113 + En + Wi + 2,
SEp 4+ Wy + Z,.

(5.36)
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Now suppose that the following holds for 1 <! <n—1
167~ ull3 + 107" pIIT + 10710113 S En + Wa + Zi. (5.37)
We apply (5.31]) with j =n — (I + 1) and use the induction hypothesis (5.37)) to find

—(+1 —(+1 —(+1
107 Dl gy + 18 Iy + 107 V603 4
S 107 ull3y + 1076113, + En + Wa + Zn (5.38)
< En+ Wy + Z,.
Hence by finite induction, the bound holds for all [ = 1,...,n — 1. Summing (5.36|) and (5.37)) over
l=1,...,n—1 and changing the index, we then have

n—1

Z HGZUI@HJ + ”8tjp||%n—2j—1 + ||af‘9||§n—2j SEn+ Wi+ Z,. (5.39)
=0

We then conclude the claim (5.35)) by summing (5.31)) and (5.39).
Finally, setting n = 2N in (5.35), and using Theorem 4.3 to bound Way + Z, < (Son)'H,
we obtain ([5.26)); setting n = N + 2 in (j5.35)), and using Theorem 4.3 to bound Wni2 + 2, S

(Ean)"EN+2, we obtain (5.27));

O
5.3. Enhanced dissipate estimates.
We now complete Theorem 5.2 by proving a corresponding result for the dissipation.
Theorem 5.4. There exists a v > 0 so that
Doy < Doy + KFan + X5, (5.40)
and
Dny2 S Dy + EnDnya, (5.41)
Proof. We again let n denote either 2N or N + 2 and compactly write
Yo = VLG + (VG2 4 VTG G+ VTG
=2n—1 52 52n—1 6|2 S2n—14 6|2 (5.42)
VTG VI TG + VI 0G0
First, by the definition of D%, D and Korn’s inequality, we obtain
IV [ + VLVt + [V + VAV S Dy (5.43)
and
n . n . _
Do llofullf+ > 197613 < D, (5.44)
j=0 §=0
Summing these estimates (5.42) and ((5.43]), we find that
IV ull} < D, (5.45)

18
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Notice that we have not yet derived an estimate of n in terms of dissipation, so we can not use
previous boundary condition. Instead, we can apply the definition of Sobolev norm on 72 and the
trace theorem to see from ([5.44) that

||8fu||§{2n_2j+1/2(2) S ||(9tju||%2(2) + HVf”_ij?ZUIléuz(g)

: o _ (5.46)
SN0 ullt oy + IV 0] ullf ) S Das
Let 5 =0,...,n — 1, and observe that (E)fu, 8§p) solve the problem
— AP u+Vdlp=—-0"Tu+0G" inQ
divélu = &G in Q (5.47)

du=0u onS
Gguzo on Xy,

We apply the Stokes estimate with » = 2n — 25 + 1 to the problem (5.46|) using the estimates and
summing up, we find

A ‘ -
Haqu?{znfsz + !\Vaiplléznfzjfl < ||ag+ U”?{zn—mfl

j+1 ; <
+ 107 Gl G221 + 110] G? || Fan—2; + ||5fu||f{zn—zj+1/z(g) (5.48)
S ||ag+1u||?{2n*2jfl + yn + ﬁna

Similarly, for the 6 dissipative estimate, we directly use the Stokes elliptic estimates to following

equations ‘ . '
—ANY O =00+ 8 G

V0 -es+ 060 =0]G
8{9 =0, on Xy,
and hence we derive that
10800221 S 195 01 n2so + (5GP sy
+ ||859H12L12n72j+1/2(2) + "3gG5”§{2n72j+1/2(2) (5.49)
S 07T 0120251 + Y + Do,

We now claim that

n n—1 n
D N ullzon-2ier + >N VDl 2i1 + D 1076017202541 S Vi + Day (5.50)
7=0 7=0 7=0

We prove this claim by a finite induction. For j =n — 1, we obtain

n
167 ull3gs + IVOP V3 + Y 107 017 S 107Ul + Yo+ D S Y + D, (5.51)
§=0
Now we suppose that the following holds for 1 <1 <n — 1:

n
107wl Gt + VOV pl 3+ D 10701 o041 S Yo+ D, (5.52)
j=0
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We apply with j =n — (I 4+ 1) and use the induction hypothesis (5.52)) to find

l+1 l+1 l+l
187 )2 e+ IV D)2 i+ 107012 000

S 107 ull3ps + 107613211 + Vo + D (5.53)
< Yo+ Dy,

Hence the bound holds for all [ = 1,...,n. We then conclude the claim by summing
this over [ =1, ...,n, adding and changing the index.

Now that we have obtained , we estimate the remaining parts in D,,. We will turn to the
boundary conditions in (3.10]). First we derive estimates for n. For the term 85 n for 7 > 2 we use
the boundary condition

om=u3+G°% on X, (5.54)
Indeed, for j = 2,...,n + 1 we apply 85_1 to (5.54) to see that
j i—1 -1
||af77|’§n—2j+5/2 <o u3||§{2n—2j+5/2(2) + |97 G6||§{2n—2j+5/2(g)

—1 j—1
5 ||ag u3||§{2n—2(]’—1)+1 + ”85 G6||§{2n—2(]’—1)+1/2 (555)
< 2y + D,

For the term 0y, we again use (5.54), (5.50) and (5.42)) to find

1
||aj77||2n 1/2r§ ||u3HH2n 1/2(5 + ||a] G6||H2n 1/2(x)
SmﬂmeW]Gwmwm (5.56)
5 Z'I’L +@n,

For the remaining 7 term, that is those without temporal derivatives, we use the boundary conditions
n=p-—dsus+G* (5.57)

Notice that at this point we do not have any bound on p on the boundary 3, but we have bounded
Vp in Q. Applying 01,02 to (5.56|) and (5.57)), respectively, by (5.50) and ([5.42), we obtain

||V*77H2n 3/2 ~ ||V*pHH2n 3/2(3 + [V« 83“3||H2n 3/2( )‘1‘ |V« G6||H2n 3/2(x%)
S IVplFza + Hu3HH2"+1 +11GF2nmy2 (5.58)
S Vn + D,

Since [r» 1 =0, we may then use Poincare inequality on ¥ to obtain from (5.58) that
1130172 S 10113 + IV nl3_3/2 S UVsll30—3/2 S Yn + D, (5.59)

Summing (5.55)), (5.56]) and ((5.59)), we complete the estimate for n:

n—1

H77||§n—1/2 + ||at77||§n—1/2 + Z ||a£7l”§n—2j+5/2 < Yo+ D, (5.60)
=0
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It remains to bound H@ngo. Applying (9tj,j =0,...,n—1to (5.47) and employing ([5.50)),(5.60))
and (5.42)), we find

107pl 225y S 1070725y + 10507 usl 2wy + 18] GO

< 7 nl12 12 j 62 < A (5.61)
S 10¢nllz2 sy + 10/ usllzz + 1 GPllo < Yn + D,
This, and (5.44) and (5.42)), and (5.60) allow us improve ([5.50) to

D, < Z, + D, (5.62)

Setting n = 2N in (5.62)) and using the estimates (4.7)-(4.11)) in Theorem 4.3 to estimate Zon <
(Ean)'Dan + KFon. On the other hand, we may set n = N + 2 to bound Zy19 < (Ean) Dy to.

O
6 Proof of main results
6.1. FEstimates involving Fon and K
We first need to control Foy. This is achieved by the following proposition.
Proposition 6.1. There exists a universal constant 0 < § < 1 so that if Gony < 0§, then
t
sup Fan(r) < Fan(0) —|—t/ Don, forall0<t<T. (6.1)
0<r<t 0

Proof. Based on the transport estimate on the kinematic boundary condition, we may show as in
Lemma 7.1 of [9] that

t
sup Fon(r) < e$p(C'/0 VK(r)dr)

0<r<t
t t
% [Fan(0) + / (14 Ean(r)) Doy (r)dr + ( / VKO Fan())2):
0 0
The Sobolev and trace embeddings allow us to estimate K < En42, and hence
t t t
1
/ JE@dr < / Vo mydr < V3 / SN (6.3)
0 0 o (1+7)
Since ¢ < 1, this implies that for any constant C' > 0,
t
exp(C’/ VE(r)dr) < 1. (6.4)
0
Then by (6.3) and (6.4), we deduce from (6.2)) that

sup Fon(r) < Fan(0) +t/0t Don(r)dr + sup ng(r)(/ot VK(r)dr)?

0<r<t 0<r<t

t (6.5)
< Fan(0) 4+ t/ Don(r)dr 4+ 6 sup Fon(r)
0 0<r<t
By taking § small enough, we get (6.1]) . O
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This bound on F5x allows us to estimate the integral of K Fon and /Doy Fon as in Corollary
7.3 of [9].

Corollary 6.2. There exists 0 < § < 1 so that if Goy < 9, then

t t
/ VDonKFox < Fan(0) + V3 / Doy (r)dr, (6.6)
0 0
and . .
L/Kﬁmﬁ&ﬁmm+§/Dmﬁﬂﬁ (6.7)
0 0

Now we show the boundness of the high-order terms.
Proposition 6.3. There exists 0 < § < 1 so that if Goy < 6, then

t

Fon(r)
sup &n(r)+ | Dan + sup
0<r<t (r) 0 o<r<t (1+7)

S Eanv(0) + Fon(0),  forall 0 <t <T. (6.8)

Proof. Note first that since Ean(t) < Goy < 4§, by taking § small, from Theorem 5.3 and Theorem
5.4 we know that

En SN SEny2, and Doy S Doy S Doy + KFon. (6.9)

Now we multiplying (5.6) by a constant 1+ C, (with precise value to be choose later) and add this
to ((5.15) find that

E0)+E (0 + [ 1+ 9Dy + D
S (14 B)&an(0) + E5y (0) + (1 + B)(Ean () + /Ot(l + B)&nDan (6.10)
+ [ VDK Fax + <Daw + 0Dl

Then we may improve

t t
z@«ﬂ+/2hN5a+5wmm»+u+5x&Nmﬂﬂ+/Xz+m%N%N
0 . 0 (6.11)
+ / V/DaonKFon + KFon + Doy + C(e)DYy.
0

We plug the estimates and (6.7) into (6.10)), then take e sufficiently small first, 5 sufficiently
large second, and ¢ sufficiently small third; we may then conclude

t
mm&mw+/pms&mm+amm (6.12)
0

0<r<t

It remains to show the decay estimates of Enyo.
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Proposition 6.4. There exists 0 < d < 1 so that if Goy < 6, then

(1+t*N "8 Ena(t) < En(0) + Fon(0) for all 0 << T. (6.13)
Proof. Since En(t) S Gan(T), by taking ¢ small, from Theorem 5.3 and 5.4 we know that

Enyo SEnto SENnt2, and Dyio SDyio < Dyyo. (6.14)

By these estimates and the smallness of §, from Theorem 5.1 and 5.2 we may deduce that there
exists an instantaneous energy, which is equivalent to Ey49, such that

d
a5N+2 +Dn+2 S 0. (6.15)

On the other hand, based on the Sobolev interpolation inequality we can prove

Ent2 S Dy i2EoN's where 1 = i% : i (6.16)
Now since we know that the boundness of high energy estimate Proposition 6.3, we get
AN — 8
osglql};t Ean(r) S Ean(0) + Fon(0) := My, where o = AN =7 (6.17)
we obtain form that
Enta S MDY L. (6.18)
Hence by and , there exists some constant C; > 0 such that
%EN-M + /611185]1\7?2 S0, where s = % -1= 4N1— 3 (6.19)
Solving this differential inequality directly, we obtain
Eneall) 3 (M§ + sCy g]\?ﬂ(()))st)l/s En+2(0), (6.20)
Using that En42(0) < My and the fact 1/s = 4n — 8 > 1, we obtain that
Enealt) S T S T S T (621
This implies (6.13)). O
Now we combine proposition to arrive at our ultimate a priori estimates for Gop .
Theorem 6.5. There exists a universal 0 < 0 < 1 so that if Gan(T) < 6, then
Gon (t) < Co(Ean(0) + Fan(0)) for all 0 <t <T. (6.22)
Proof. The conclusion follows directly from the definition of Goy and Propositions. O

In order to combine the local existence result with the a priori estimates, we must be able to
estimate Gon in terms of the right and side. This is achieved by the following proposition 6.3 and
6.4.
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Proposition 6.6. There exists a universal constant C3 > 0 so that the following hold. If 0 < T,
then we have the estimate

Ts
ggN(t) < sup gQN(t) + DQN(t)dt
Ost=T 0 (6.23)
+ sup Fon(t) + C3(1 4+ )N 8 sup En(t).
0<t<T 0<t<T
If 0 < Ty <T,, then we have
Ts
Gon(T) < C3Gon(Th) + sup  Eon(t) + Doy (t)dt
TlStSTQ Ty (6 24)
1 .
+——— sup Fon(t)+C3(Tp —T1)*(1+T)*N =8 sup En(t).
(1+T) n<i<m 0<t<T
Proof. The proof is same as Proposition 9.1 of [9]. O

6.2. Global well-posedness

Now we turn to the completion of the proof of our main theorem.

Proof of Theorem 2.1. let 0 < § < 1 and Cy > 0 be the constants in Theorem 6.5, C7 > 0 be
the constant in () and C; > 0 be the constant in . By the local existence result, Theorem 2.2,
for any € > 0 there exists dp(¢) < 1 and 0 < T" < 1 so that if K < dp, then there is a unique solution
of on [0,T] satisfying the estimates

T T
sup Eav(t)+ [ Dan()d+ [ (108l + R p(0]R)de < = (6.25)
0<t<T 0 0
and
sup Faon(t) < C1Fan(0) +e. (6.26)

0<t<T

Hence if we choose € = 6/(4 4+ C32*¥~7) and then choose x < §/(2C1), we may use the estimate of
Proposition to see that
Gon(T) < Crk +e(2+C32*N %) < 6. (6.27)

Now we define
T, (k) =sup{ for every choice of initial data satisfying the compatibility
conditions and Eyn(0) + Fan(0) < K, there exists a unique (6.28)

solution of (L.3)) on [0,T] satisfying Gon(T) < 0}.

By the above analysis, Tk (k) is well-defined and satisfies Tx(x) > 0 if & is small enough, that is there
is a k1 > 0 so that Ty : (0,k1] — (0,00]. It is easy to verify that T, is non-increasing on (0, k1].
Now we set

(6.29)

and then define kg € (0, k1] by

1) 50(5)
302(03 + 201)’ Cy

K1} (6.30)

Ko = min{
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We claim that Ty (k) = co. Once the claim is established, the proof the theorem is complete since
then Ty (k) = oo for all 0 < Kk < K.

We prove the claim by contradiction. Suppose that Ty (ko) < oo. By the definition of Ty (ko),
for any 0 < T1 < Ty (ko) and for any choice of data satisfying the compatibility conditions and the
bound & (0)+Fan(0) < Ko, there exists a unique solution of on [0, T1] satisfying Gon (T1) < .
Then by Theorem 6.5, we have

ggN(Tl) < 02(52]\[(0) —+ fQN(O)) < Coykyg. (6.31)

In particular (6.31)), (6.30]) imply

f
Ean(Th) + — 2 <« Cyrg < So(e), ¥V < Ty < T(ko). (6.32)
(1+T)
We can view (u(71),p(T1),n(T1)) as initial data for a new problem; they satisfy the compatibility
conditions as initial data since they are already solutions on [0,7}]. Since En < dp(€), we may use

Theorem to extend the solution to [17,T»], where T3 is any time satisfying
0<Ty—Ti <Tp:=C(c)min{l, Fon(T1) '} (6.33)

By (6.31]), we have
1

do(1 + T (ko))
Note that T depends on € and T (ko) but does depend on Tj. Let

T := C(¢) min{1, } < To. (6.34)

1

= min{T, T, 6.35
Y mln{ ’ *(50)7 (1—|—2T*(I€0))2N_4}’ ( )

and then choose T1 = Ty (ko) — /2 and To = Ty (ko) + /2. We have
0< Ty <Tu(ko) <To<2Ti(ko) and 0<~y=To —T) <T < Ty, (6.36)

By the above argument, we have extended the solution to [0,7%] and on the extended time interval
[T1, T>] we have

T Ty
sup Ean(t)+ | Daw(t)dt+ / (N 1ull2, + 12Vt < (637)
TIStSTZ T T
and
sup  Fan(t) < C1Fan(0) +e. (6.38)
T1<t<T>

We now combine the estimates (6.37))-(6.38)), (6.31))-(6.33]) and (6.24)) with the definitions (6.29)),
(6.30]), and (6.37)) to see that

Clczlio(l + T1> +e

ggN(Tg) < CyC3kg + € + + ECg(TQ — T1)2(1 + T2)4N_8

(1 —|—T1)
10C(Cs + C1) + 26 4 eC3v2(1 + 2T (1)) N8 (6.39)
é + § + é — 5
37373
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Hence Gon < 0, which contradicts the definition of T% (ko). Therefore, we have Ty (kp) = oco. This
proves the claim and complete the proof Theorem 2.1.
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