REFERENCES
Blonder, B. (2019). hypervolume: high dimensional geometry and set operations using kernel density estimation, support vector machines, and convex hulls. R package version 2.0.12.
Blonder, B., Lamanna, C., Violle, C., & Enquist, B. J. (2014). The n-dimensional hypervolume. Glob. Ecol. Biogeogr., 23, 595-609.
Burt, W. H. (1943). Territoriality and home range concepts as applied to mammals. J. Mammal., 24, 346-352.
Chamberlain, S., Barve, V., Mcglinn, D., Oldoni, D., Desmet, P., Geffert, L., & Ram, K. (2020). rgbif: interface to the Global Biodiversity Information Facility API . R package version 3.2.0.
Foltête, J.-C., Savary, P., Clauzel, C., Bourgeois, M., Girardet, X., Sahraoui, Y. et al. (2020). Coupling landscape graph modeling and biological data: a review. Landscape Ecol., 35, 1035-1052.
Foote, M. (1991). Morphologic patterns of diversification: examples from trilobites. Palaeontology, 34, 461-485.
Foote, M., Crampton, J. S., Beu, A. G., & Cooper, R. A. (2008). On the bidirectional relationship between geographic range and taxonomic duration. Paleobiology, 34, 421-433.
Hartley, S., & Kunin, W. E. (2003). Scale dependency of rarity, extinction risk, and conservation priority. Conserv. Biol., 17, 1559-1570.
He, F. (2012). Area-based assessment of extinction risk. Ecology,93, 974-980.
IUCN Standards and Petitions Committee (2019). Guidelines for using the IUCN Red List categories and criteria. Version 14. Prepared by the Standards and Petitions Committee. Downloadable from http://www.iucnredlist.org/documents/RedListGuidelines.pdf.
Jarvis, S. G., Henrys, P. A., Keith, A. M., Mackay, E., Ward, S. E., & Smart, S. M. (2019). Model-based hypervolumes for complex ecological data. Ecology, 100, e02676.
Junker, R. B., Kuppler, J., Bathke, A. C., Schreyer, M. L., & Trutschnig, W. (2016). Dynamic range boxes – a robust nonparametric approach to quantify size and overlap of n ‐dimensional hypervolumes. Meth. Ecol. Evol., 7, 1503-1513.
Keith, J. M., Spring, D., & Kompas, T. (2019). Delimiting a species’ geographic range using posterior sampling and computational geometry.Sci. Rep., 9, 8938.
Kelt, D. A., & Van Vuren, D. H. (2001). The ecology and macroecology of mammalian home range area. Am. Nat., 157, 637-645.
Kie, J. G., Matthiopoulos, J., Fieberg, J., Powell, R. A., Cagnacci, F., Mitchell, M. S. et al. (2010). The home-range concept: are traditional estimators still relevant with modern telemetry technology?Phil. Trans. R. Soc. Lond. B Biol. Sci., 365, 2221-2231.
Kreft, H., & Jetz., W. (2010). A framework for delineating biogeographical regions based on species distributions. J. Biogeogr., 37, 2029-2053.
Kruskal, J. B. (1956). On the shortest spanning subtree of a graph and the travelling salesman problem. Proc. Am. Math. Soc., 7, 48-50
Lawrence, E. R., & Fraser, D. J. (2020). Latitudinal biodiversity gradients at three levels: linking species richness, population richness and genetic diversity. Glob. Ecol. Biogeogr., 29, 770-788.
Lichti, N. I., & Swihart, R. K. (2011). Estimating utilization distributions with kernel versus local convex hull methods. J. Wildl. Manage., 75, 413-422.
Maréchaux, I., Rodrigues, A. S. L., & Charpentier, A. (2016). The value of coarse species range maps to inform local biodiversity conservation in a global context. Ecography, 40, 1166-1176.
Noonan, M. J., Tucker, M. A., Fleming, C. H., Akre, T. S., Alberts, S. C., Ali, A. H. et al. (2019). Analysis of autocorrelation and bias in home range estimation. Ecol. Monogr., 89, e01344.
Pebesma, E. (2018). Simple features for R: standardized support for spatial vector data. R Journal 10, 439-446.
Qiao, H., Escobar, L. E., Saupe, E. E., Ji, L., & Soberón, J. (2016). A cautionary note on the use of hypervolume kernel density estimators in ecological niche modelling. Glob. Ecol. Biogeogr., 26, 1066-1070.
Powell, R. A., & Mitchell, M. S. (2012). What is a home range? J. Mammal. , 93, 948-958.
R Core Team (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
Seaman, D. E., Millspaugh, J. J., Kernohan, B. J., Brundige, G. C., Raedeke, K. J., & Gitzen, R. A. (1999). Effects of sample size on KERNEL home range estimates. J. Wildl. Manage., 63, 739-747.
Simpson, G. G. (1964). Species density of North American Recent mammals.Syst. Zool., 13, 57-73.
Smith, J. A., Benson, A. L., Chen, Y., Yamada, S. A., & Mims, M. C. (2020). The power, potential, and pitfalls of open access biodiversity data in range size assessments: lessons from the fishes. Ecol. Ind. , 110, 105896.
Venables, W. N., & Ripley, B. D. (2002). Modern Applied Statistics with S. Fourth Edition. Springer, New York.
Walter, W. D., Onorato, D. P., & Fischer, J. W. (2015). Is there a single best estimator? Selection of home range estimators using area-under-the-curve. Movement Ecol., 3, 10.
Worton, B. J. (1989). Kernel methods for estimating the utilization distribution in home-range studies. Ecology, 70, 164-168.
Zizka, A., Silvestro, D., Andermann, T., Azevedo, J., Duarte Ritter, C., Edler, D. et al. (2019). CoordinateCleaner: standardized cleaning of occurrence records from biological collection databases. Meth. Ecol. Evol., 10, 1-7.