References
1- WHO. (2020). WHO Coronavirus Disease (COVID-19) Dashboard. Available
at: https://covid19.who.int/. Accessed on 3 Jul 2020.
2- Ahmad, S., Hafeez, A., Siddqui, S.A., Ahmad, M., and Mishra, S., A
Review of COVID-19 (Coronavirus Disease-2019)Diagnosis, Treatments and
Prevention., EJMO., 2020, vol. 4 (2), pp. 116–125.
3- Velavan, T.P., and Meyer, C.G., The COVID-19 epidemic., Trop Med Int
Health., 2020, vol. 25 (3), pp. 278–280.
4- Shereen, M.A., and Khan, S., COVID-19 infection: origin,
transmission, and characteristics of human coronaviruses., J. Adv. Res.,
2020, vol. 24, pp. 91–98.
5- Cheng, V.C.C., Wong, S.C., Chen, J.H.K., Yip, C.C.Y., Chuang, V.W.M.,
Tsang, O.T.Y., Sridhar, S., Chan, J.F.W., Ho, P., and Yuen, K.,
Escalating infection control response to the rapidly evolving
epidemiology of the coronavirus disease 2019 (COVID-19) due to
SARS-CoV-2 in Hong Kong., Infect Control Hosp Epidemiol., 2020, vol. 41
(5), pp. 493–498.
6- Ong, S.W.X., Tan, Y.K., Chia, PY., Lee T.H., Ng, O.T., Wong, M.S.Y.,
and Marimuthu, K., Air, Surface Environmental, and Personal Protective
Equipment Contamination by Severe Acute Respiratory Syndrome Coronavirus
2 (SARS-CoV-2) From a Symptomatic Patient., JAMA., 2020, vol. 323 (16),
pp. 1610–1612.
7- Liu, Y., Zhi, Z., Chen, Y., Guo, M., Liu, Y., Gali, N.K., Sun, L.,
Duan, Y., Cai, J., Westerdahl, D., Liu, X., Xu, K., Ho, K., Kan, H., Fu,
Q., and Lan, K., Aerodynamic analysis of SARS-CoV-2 in two Wuhan
hospitals., Nature., 2020, vol. 582, pp. 557–560.
8- van Doremalen, N., Bushmaker, T., Morris, D.H., Holbrook, M.G.,
Gamble, A., Williamson, B.N., Tamin, A., Harcourt, J.L., Thornburg,
N.J., Gerber, S.I., Lloyd-Smith, J.O., de Wit, E., and Munster, V.J.,
Aerosol and Surface Stability of SARS-CoV-2 as Compared with
SARS-CoV-1., N Engl J Med., 2020, vol. 382, pp. 1564–1567.
9- International Committee on Taxonomy of Viruses (ICTV). March 2020.
ICTV 2019 Master Species List (MSL35). Available at:
https://talk.ictvonline.org/files/master-species-lists/m/msl/9601.
10- Zhou, P., Yang, X.L., Wang, X.G., Hu, B., Zhang, L., Zhang, W., Si,
H.R., Zhu, Y., Li, B., Huang, C.L., Chen, H.D., Chen, J., Luo, Y., Guo,
H., Jiang, R.D., Liu, M.Q., Chen, Y., Shen, X.R., Wang, X., Zheng, X.S.,
Zhao, K., Chen, Q.J., Deng, F., Liu, L.L., Yan, B., Zhan, F.X., Wang,
Y.Y., Xiao, G.F., and Shi, Z.L., A pneumonia outbreak associated with a
new coronavirus of probable bat origin. Nature., 2020, vol. 579, pp.
270–273.
11- Perlman, S., and Netland, J., Coronaviruses post-SARS: update on
replication and pathogenesis., Nat Rev Microbiol., 2009, vol. 7, pp.
439–450.
12- Yoshimoto, F.K., The Proteins of Severe Acute Respiratory Syndrome
Coronavirus-2 (SARS CoV-2 or n-COV19), the Cause of COVID-19., Protein
J., 2020, vol.39, pp. 198–216.
13- Wang, C., Liu, Z., Chen, Z., Huang, X., Xu, M., He, T., and Zhang,
Z., The establishment of reference sequence for SARS-CoV-2 and variation
analysis., J Med Virol., 2020, vol. 92, pp. 667–674.
14- Khailany, R.A., Safdar, M., and Ozaslan, M., Genomic
characterization of a novel SARS-CoV-2., Gene Rep., 2020, vol. 19,
100682.
15- Wong, G., Bi, Y.H., Wang, Q.H., Chen, X.W., Zhang, Z.G., and Yao,
Y.G., Zoonotic origins of human coronavirus 2019 (HCoV-19 / SARS-CoV-2):
why is this work important?., Zool Res., 2020, vol. 41 (3), pp. 213-219.
16- GenBank: MN996532.1. Bat coronavirus RaTG13, complete genome.
Available at: https://www.ncbi.nlm.nih.gov/nuccore/MN996532. Last
updated on 24 March 2020. Accessed on 4 Jul 2020.
17- Fahmi, M., and Kubota, Y., Ito M., Nonstructural proteins NS7b and
NS8 are likely to be phylogenetically associated with evolution of
2019-nCoV., Infect Genet Evol., 2020, vol. 81, 104272.
18- Tang, X., Wu, C., Li, X., Song, Y., Yao, X., Wu, X., Duan, Y.,
Zhang, H., Wang, Y., Qian, Z., Cui, J., and Lu, J., On the origin and
continuing evolution of SARS-CoV-2., NATL SCI REV., 2020, vol. 7 (6),
pp. 1012–1023.
19- Li, Y., Yang, X., Wang, N., Wang, H., Yin, B., Yang, X., and Jiang,
W., The divergence between SARS-CoV-2 and RaTG13 might be overestimated
due to the extensive RNA modification., Future Virol., 2020.
https://doi.org/10.2217/fvl-2020-0066.
20- Snijder, E.J., Decroly, E., and Ziebuhr, J., The Nonstructural
Proteins Directing Coronavirus RNA Synthesis and Processing., Adv Virus
Res., 2016, vol. 96, pp. 59–126.
21- Li, F., Structure, Function, and Evolution of Coronavirus Spike
Proteins., Annu Rev Virol., 2016, vol. 3 (1), pp. 237–261.
22- Bosch, B.J., van der Zee, R., de Haan, C.A., and Rottier, P.J., The
coronavirus spike protein is a class I virus fusion protein: structural
and functional characterization of the fusion core complex., J Virol.,
2003, vol. 77 (16), pp. 8801–8811.
23- Walls, A.C., Park, Y., Tortorici, M.A., Wall, A., McGuire, A.T., and
Veesler, D., Structure, Function, and Antigenicity of the SARS-CoV-2
Spike Glycoprotein., Cell., 2020, vol. 181 (2), pp. 281–292.
24- von Brunn, A., Teepe, C., Simpson, J.C., Pepperkok, R., Friedel,
C.C., Zimmer, R., Roberts, R., Baric, R., and Haas, J., Analysis of
intraviral protein-protein interactions of the SARS coronavirus
ORFeome., PLoS One., 2007, vol. 2 (5), e459.
25- Zhong, X., Guo, Z., Yang, H., Peng, L., Xie, Y., Wong, T., Lai, S.,
and Guo, Z., Amino terminus of the SARS coronavirus protein 3a elicits
strong, potentially protective humoral responses in infected patients.,
J. Gen. Virol., 2006, vol. 87, pp. 369–373.
26- Zeng, R., Yang, R.F., Shi, M.D., Jiang, M., Xie, Y., Ruan, H.,
Jiang, X., Shi, L., Zhou, H., Zhang, L., Wu, X., Lin, Y., Ji, Y., Xiong,
L., Jin, Y., Dai, E., Wang, X., Si, B., Wang, J., Wang, H., Wang, C.,
Gan, Y., Li, Y., Cao, J., Zuo, J., Shan, S., Xie, E., Chen, S., Jiang,
Z., Zhang, X., Wang, Y., Pei, G., Sun, B., and Wu, J., Characterization
of the 3a protein of SARS-associated coronavirus in infected vero E6
cells and SARS patients., J Mol Biol., 2004, vol. 341 (1), pp. 271–279.
27- Yuan, X., Yao, Z., Wu, J., Zhou, Y., Shan, Y., Dong, B., Zhao, Z.,
Hua, P., Chen, J., and Cong, Y., G1 phase cell cycle arrest induced by
SARS-CoV 3a protein via the cyclin D3/pRb pathway., Am J Respir Cell Mol
Biol., 2007, vol. 37 (1), pp. 9–19.
28- Marra, M.A., Jones, S.J., Astell, C.R., Holt, R.A., Brooks-Wilson,
A., Butterfield, Y.S.N., Khattra, J., Asano, J.K., Barber, S.A., Chan,
S,Y., Cloutier, A., Coughlin, S.M., Freeman, D., Girn, N., Griffith,
O.L., Leach, S.R., Mayo, M., McDonald, H., Montgomery, S.B., Pandoh,
P.K., Petrescu, A.S., Robertson, A.G., Schein, J.E., Siddiqui, A.,
Smailus, D.E., Stott, J.M., Yang, G.S., Plummer, F., Andonov, A.,
Artsob, H., Bastien, N., Bernard, K., Booth, T.F., Bowness, D., Czub,
M., Drebot, M., Fernando, L., Flick, R., Garbutt, M., Gray, M., Grolla,
A., Jones, S., Feldmann, H., Meyers, A., Kabani, A., Li, Y., Normand,
S., Stroher, U., Tipples, G.A., Tyler, S., Vogrig, R., Ward, D., Watson,
B., Brunham, R.C., Krajden, M., Petric, M., Skowronski, D.M., Upton, C.,
and Roper, R.L., The Genome sequence of the SARS-associated
coronavirus., Science., 2003, vol. 300 (5624), pp. 1399–1404.
29- Law, P.T.W., Wong, C.H., Au, T.C.C., Chuck, C., Kong, S., Chan,
P.K.S., To, K., Lo, A.W.I., Chan, J.Y.W., Suen, Y., Chan, H.Y.E., Fung,
K., Waye, M.M.Y., Sung, J.J.Y., Lo, Y.M.D., and Tsui, S.K.W., The 3a
protein of severe acute respiratory syndrome-associated coronavirus
induces apoptosis in Vero E6 cells., J Gen Virol., 2005, vol. 86 (Pt 7),
pp. 1921–1930.
30- Schoeman, D., and Fielding, B.C., Coronavirus envelope protein:
current Knowledge., Virol. J., 2019, vol. 16, 69.
31- Nieto-Torres, J.L., DeDiego, M.L., Álvarez, E., Jiménez-Guardeño,
J.M., Regla-Nava, J.A., Llorente, M., Kremer, L., Shuo, S., and
Enjuanes, L., Subcellular location and topology of severe acute
respiratory syndrome coronavirus envelope protein., Virology., 2011,
vol. 415 (2), pp. 69–82.
32- Álvarez, E., DeDiego, M.L., Nieto-Torres, J.L., Jiménez-Guardeño,
J.M., Marcos-Villar, L., and Enjuanes, L., The envelope protein of
severe acute respiratory syndrome coronavirus interacts with the
non-structural protein 3 and is ubiquitinated., Virology., 2010, vol.
402 (2), pp. 281–291.
33- Corse, E., and Machamer, C.E., The cytoplasmic tails of infectious
bronchitis virus E and M proteins mediate their interaction., Virology.,
2003, vol. 312 (1), pp. 25–34.
34- Yuan, Q., Liao, Y., Torres, J., Tam, J.P., and Liu, D.X.,
Biochemical evidence for the presence of mixed membrane topologies of
the severe acute respiratory syndrome coronavirus envelope protein
expressed in mammalian cells., FEBS Lett., 2006, vol. 580 (13), pp.
3192–200.
35- Ruch, T.R., and Machamer, C.E., The coronavirus E protein: assembly
and beyond., Viruses., 2012, vol. 4 (3), pp. 363–382.
36- Neuman, B.W., Kiss, G., Kunding, A.H., Bhella, D., Baksh, M.F.,
Connelly, S., Droese, B., Klaus, J.P., Shinji Makino, S., Sawicki, S.G.,
Siddell, S,G., Dimitrios G.Stamou, D.G., Wilson, I.A., Kuhn, P.,
Buchmeier, M.J., A structural analysis of M protein in coronavirus
assembly and morphology., J Struct Biol., 2010, VOL. 174, PP. 11–22.
37- Ma, H., Fang, C., Hsieh, Y., Chen, S., Li, H., and Lo, S.,
Expression and membrane integration of SARS-CoV M protein., J Biomed
Sci., 2008, vol. 15, pp. 301–310.
38- Siu, Y.L., Teoh, K.T., Lo, J., Chan, C.M., Kien, F., Escriou, N.,
Tsao, S.W., Nicholls, J.M., Altmeyer, R., Peiris, J.S.M., Bruzzone, R.,
and Nal, B., The M, E, and N Structural Proteins of the Severe Acute
Respiratory Syndrome Coronavirus Are Required for Efficient Assembly,
Trafficking, and Release of Virus-Like Particles., J Virol., 2008, vol.
82 (22), pp. 11318–11330.
39- Siu, K., Kok, K., Ng, M.J., Poon, V.K.M., Yuen, K., Zheng, B., and
Jin, D., Severe Acute Respiratory Syndrome Coronavirus M Protein
Inhibits Type I Interferon Production by Impeding the Formation of
TRAF3•TANK•TBK1/IKKϵ Complex., J. Biol. Chem., 2009, vol. 284, pp.
16202–16209.
40- Kumar, P., Gunalan, V., Liu, B., Chow, V.T.K., Druce, J., Birch, C.,
Catton, M., Fielding, B.C., Tan, Y.J., and Lal, S.K., The nonstructural
protein 8 (nsp8) of the SARS coronavirus interacts with its ORF6
accessory protein., Virology., 2007, vol. 366 (2), pp. 293–303.
41- Narayanan, K., Huang, C., and Makino, S., SARS coronavirus accessory
proteins., Virus Res., 2008, vol. 133, pp. 113–121.
42- Gunalan, V., Mirazimi, A., and Tan, Y., A putative diacidic motif in
the SARS-CoV ORF6 protein influences its subcellular localization and
suppression of expression of co-transfected expression constructs., BMC
Res Notes., 2011, vol. 4, 446.
https://doi.org/10.1186/1756-0500-4-446.
43- Liu, D.X., Fung, T.S., Chong, K.K., Shukla, A., and Hilgenfeld, R.,
Accessory proteins of SARS-CoV and other coronaviruses., Antiviral Res.,
2014, vol. 109, pp. 97–109.
44- Tan, Y.J., Lim, S.G., and Hong, W., Understanding the accessory
viral proteins unique to the severe acute respiratory syndrome (SARS)
coronavirus., Antiviral Res., 2006, vol. 72 (2), pp. 78–88.
45- Yount, B., Roberts, R.S., Sims, A.C., Deming, D., Frieman, M.B.,
Sparks, J., Denison, M.R., Davis, N., and Baric, R.S., Severe acute
respiratory syndrome coronavirus group-specific open reading frames
encode nonessential functions for replication in cell cultures and
mice., J Virol., 2005, vol. 79 (23), pp. 14909–14922.
46- Schaecher, S.R., Touchette, E., Schriewer, J., Buller, R.M., and
Pekosz, A., Severe acute respiratory syndrome coronavirus gene 7
products contribute to virus-induced apoptosis., J Virol., 2007, vol. 81
(20), pp. 11054–11068.
47- Guo, J.P., Petric, M., Campbell, W., and McGeer, P.L., SARS corona
virus peptides recognized by antibodies in the sera of convalescent
cases., Virology., 2004, vol. 324 (2), pp. 251–256.
48- Keng, C.T., and Tan, Y.J., Molecular and Biochemical
Characterization of the SARS-CoV Accessory Proteins ORF8a, ORF8b and
ORF8ab., Molecular Biology of the SARS-Coronavirus., 2009, pp. 177–191.
49- Kang, S., Yang, M., Hong, Z., Zhang, L., Huang, Z., Chen, X., He,
S., Zhou, Z., Zhou, Z., Chen, Q., Yan, Y., Zhang, C., Shan, H., and
Chen, S., Crystal structure of SARS-CoV-2 nucleocapsid protein RNA
binding domain reveals potential unique drug targeting sites., Acta
Pharmaceutica Sinica B., 2020,
https://doi.org/10.1016/j.apsb.2020.04.009.
50- Cong, Y.Y., Ulasli, M., Schepers, H., Mauthe, M., V’kovski, P.,
Kriegenburg, F., Thiel, V., de Haan, C.A.M., and Reggiori, F.,
Nucleocapsid protein recruitment to replication-transcription complexes
plays a crucial role in corona viral life cycle., J Virol., 2020, vol.
94 (4), e01925-19.
51- Surjit, M., Liu, B., Chow, V.T., and Lal, SK., The nucleocapsid
protein of severe acute respiratory syndrome-coronavirus inhibits the
activity of cyclin-cyclin-dependent kinase complex and blocks S phase
progression in mammalian cells., J Biol Chem., 2006, vol. 281, pp.
10669–10681.
52- Lin, Y., Shen, X., Yang, R.F., Li, Y.X., Ji, Y.Y., He, Y.Y., Shi,
M.D., Lu, W., Shi, T.L., Wang, J., Wang, H.X., Jiang, H.L., Shen, J.H.,
Xie, Y.H., Wang, Y., Pei, G., Shen, B.F., Wu, J.R., and Sun, B.,
Identification of an epitope of SARS-coronavirus nucleocapsid protein.,
Cell Res., 2003, vol. 13, pp. 141–145.