References
1- WHO. (2020). WHO Coronavirus Disease (COVID-19) Dashboard. Available at: https://covid19.who.int/. Accessed on 3 Jul 2020.
2- Ahmad, S., Hafeez, A., Siddqui, S.A., Ahmad, M., and Mishra, S., A Review of COVID-19 (Coronavirus Disease-2019)Diagnosis, Treatments and Prevention., EJMO., 2020, vol. 4 (2), pp. 116–125.
3- Velavan, T.P., and Meyer, C.G., The COVID-19 epidemic., Trop Med Int Health., 2020, vol. 25 (3), pp. 278–280.
4- Shereen, M.A., and Khan, S., COVID-19 infection: origin, transmission, and characteristics of human coronaviruses., J. Adv. Res., 2020, vol. 24, pp. 91–98.
5- Cheng, V.C.C., Wong, S.C., Chen, J.H.K., Yip, C.C.Y., Chuang, V.W.M., Tsang, O.T.Y., Sridhar, S., Chan, J.F.W., Ho, P., and Yuen, K., Escalating infection control response to the rapidly evolving epidemiology of the coronavirus disease 2019 (COVID-19) due to SARS-CoV-2 in Hong Kong., Infect Control Hosp Epidemiol., 2020, vol. 41 (5), pp. 493–498.
6- Ong, S.W.X., Tan, Y.K., Chia, PY., Lee T.H., Ng, O.T., Wong, M.S.Y., and Marimuthu, K., Air, Surface Environmental, and Personal Protective Equipment Contamination by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) From a Symptomatic Patient., JAMA., 2020, vol. 323 (16), pp. 1610–1612.
7- Liu, Y., Zhi, Z., Chen, Y., Guo, M., Liu, Y., Gali, N.K., Sun, L., Duan, Y., Cai, J., Westerdahl, D., Liu, X., Xu, K., Ho, K., Kan, H., Fu, Q., and Lan, K., Aerodynamic analysis of SARS-CoV-2 in two Wuhan hospitals., Nature., 2020, vol. 582, pp. 557–560.
8- van Doremalen, N., Bushmaker, T., Morris, D.H., Holbrook, M.G., Gamble, A., Williamson, B.N., Tamin, A., Harcourt, J.L., Thornburg, N.J., Gerber, S.I., Lloyd-Smith, J.O., de Wit, E., and Munster, V.J., Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1., N Engl J Med., 2020, vol. 382, pp. 1564–1567.
9- International Committee on Taxonomy of Viruses (ICTV). March 2020. ICTV 2019 Master Species List (MSL35). Available at: https://talk.ictvonline.org/files/master-species-lists/m/msl/9601.
10- Zhou, P., Yang, X.L., Wang, X.G., Hu, B., Zhang, L., Zhang, W., Si, H.R., Zhu, Y., Li, B., Huang, C.L., Chen, H.D., Chen, J., Luo, Y., Guo, H., Jiang, R.D., Liu, M.Q., Chen, Y., Shen, X.R., Wang, X., Zheng, X.S., Zhao, K., Chen, Q.J., Deng, F., Liu, L.L., Yan, B., Zhan, F.X., Wang, Y.Y., Xiao, G.F., and Shi, Z.L., A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature., 2020, vol. 579, pp. 270–273.
11- Perlman, S., and Netland, J., Coronaviruses post-SARS: update on replication and pathogenesis., Nat Rev Microbiol., 2009, vol. 7, pp. 439–450.
12- Yoshimoto, F.K., The Proteins of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS CoV-2 or n-COV19), the Cause of COVID-19., Protein J., 2020, vol.39, pp. 198–216.
13- Wang, C., Liu, Z., Chen, Z., Huang, X., Xu, M., He, T., and Zhang, Z., The establishment of reference sequence for SARS-CoV-2 and variation analysis., J Med Virol., 2020, vol. 92, pp. 667–674.
14- Khailany, R.A., Safdar, M., and Ozaslan, M., Genomic characterization of a novel SARS-CoV-2., Gene Rep., 2020, vol. 19, 100682.
15- Wong, G., Bi, Y.H., Wang, Q.H., Chen, X.W., Zhang, Z.G., and Yao, Y.G., Zoonotic origins of human coronavirus 2019 (HCoV-19 / SARS-CoV-2): why is this work important?., Zool Res., 2020, vol. 41 (3), pp. 213-219.
16- GenBank: MN996532.1. Bat coronavirus RaTG13, complete genome. Available at: https://www.ncbi.nlm.nih.gov/nuccore/MN996532. Last updated on 24 March 2020. Accessed on 4 Jul 2020.
17- Fahmi, M., and Kubota, Y., Ito M., Nonstructural proteins NS7b and NS8 are likely to be phylogenetically associated with evolution of 2019-nCoV., Infect Genet Evol., 2020, vol. 81, 104272.
18- Tang, X., Wu, C., Li, X., Song, Y., Yao, X., Wu, X., Duan, Y., Zhang, H., Wang, Y., Qian, Z., Cui, J., and Lu, J., On the origin and continuing evolution of SARS-CoV-2., NATL SCI REV., 2020, vol. 7 (6), pp. 1012–1023.
19- Li, Y., Yang, X., Wang, N., Wang, H., Yin, B., Yang, X., and Jiang, W., The divergence between SARS-CoV-2 and RaTG13 might be overestimated due to the extensive RNA modification., Future Virol., 2020. https://doi.org/10.2217/fvl-2020-0066.
20- Snijder, E.J., Decroly, E., and Ziebuhr, J., The Nonstructural Proteins Directing Coronavirus RNA Synthesis and Processing., Adv Virus Res., 2016, vol. 96, pp. 59–126.
21- Li, F., Structure, Function, and Evolution of Coronavirus Spike Proteins., Annu Rev Virol., 2016, vol. 3 (1), pp. 237–261.
22- Bosch, B.J., van der Zee, R., de Haan, C.A., and Rottier, P.J., The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex., J Virol., 2003, vol. 77 (16), pp. 8801–8811.
23- Walls, A.C., Park, Y., Tortorici, M.A., Wall, A., McGuire, A.T., and Veesler, D., Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein., Cell., 2020, vol. 181 (2), pp. 281–292.
24- von Brunn, A., Teepe, C., Simpson, J.C., Pepperkok, R., Friedel, C.C., Zimmer, R., Roberts, R., Baric, R., and Haas, J., Analysis of intraviral protein-protein interactions of the SARS coronavirus ORFeome., PLoS One., 2007, vol. 2 (5), e459.
25- Zhong, X., Guo, Z., Yang, H., Peng, L., Xie, Y., Wong, T., Lai, S., and Guo, Z., Amino terminus of the SARS coronavirus protein 3a elicits strong, potentially protective humoral responses in infected patients., J. Gen. Virol., 2006, vol. 87, pp. 369–373.
26- Zeng, R., Yang, R.F., Shi, M.D., Jiang, M., Xie, Y., Ruan, H., Jiang, X., Shi, L., Zhou, H., Zhang, L., Wu, X., Lin, Y., Ji, Y., Xiong, L., Jin, Y., Dai, E., Wang, X., Si, B., Wang, J., Wang, H., Wang, C., Gan, Y., Li, Y., Cao, J., Zuo, J., Shan, S., Xie, E., Chen, S., Jiang, Z., Zhang, X., Wang, Y., Pei, G., Sun, B., and Wu, J., Characterization of the 3a protein of SARS-associated coronavirus in infected vero E6 cells and SARS patients., J Mol Biol., 2004, vol. 341 (1), pp. 271–279.
27- Yuan, X., Yao, Z., Wu, J., Zhou, Y., Shan, Y., Dong, B., Zhao, Z., Hua, P., Chen, J., and Cong, Y., G1 phase cell cycle arrest induced by SARS-CoV 3a protein via the cyclin D3/pRb pathway., Am J Respir Cell Mol Biol., 2007, vol. 37 (1), pp. 9–19.
28- Marra, M.A., Jones, S.J., Astell, C.R., Holt, R.A., Brooks-Wilson, A., Butterfield, Y.S.N., Khattra, J., Asano, J.K., Barber, S.A., Chan, S,Y., Cloutier, A., Coughlin, S.M., Freeman, D., Girn, N., Griffith, O.L., Leach, S.R., Mayo, M., McDonald, H., Montgomery, S.B., Pandoh, P.K., Petrescu, A.S., Robertson, A.G., Schein, J.E., Siddiqui, A., Smailus, D.E., Stott, J.M., Yang, G.S., Plummer, F., Andonov, A., Artsob, H., Bastien, N., Bernard, K., Booth, T.F., Bowness, D., Czub, M., Drebot, M., Fernando, L., Flick, R., Garbutt, M., Gray, M., Grolla, A., Jones, S., Feldmann, H., Meyers, A., Kabani, A., Li, Y., Normand, S., Stroher, U., Tipples, G.A., Tyler, S., Vogrig, R., Ward, D., Watson, B., Brunham, R.C., Krajden, M., Petric, M., Skowronski, D.M., Upton, C., and Roper, R.L., The Genome sequence of the SARS-associated coronavirus., Science., 2003, vol. 300 (5624), pp. 1399–1404.
29- Law, P.T.W., Wong, C.H., Au, T.C.C., Chuck, C., Kong, S., Chan, P.K.S., To, K., Lo, A.W.I., Chan, J.Y.W., Suen, Y., Chan, H.Y.E., Fung, K., Waye, M.M.Y., Sung, J.J.Y., Lo, Y.M.D., and Tsui, S.K.W., The 3a protein of severe acute respiratory syndrome-associated coronavirus induces apoptosis in Vero E6 cells., J Gen Virol., 2005, vol. 86 (Pt 7), pp. 1921–1930.
30- Schoeman, D., and Fielding, B.C., Coronavirus envelope protein: current Knowledge., Virol. J., 2019, vol. 16, 69.
31- Nieto-Torres, J.L., DeDiego, M.L., Álvarez, E., Jiménez-Guardeño, J.M., Regla-Nava, J.A., Llorente, M., Kremer, L., Shuo, S., and Enjuanes, L., Subcellular location and topology of severe acute respiratory syndrome coronavirus envelope protein., Virology., 2011, vol. 415 (2), pp. 69–82.
32- Álvarez, E., DeDiego, M.L., Nieto-Torres, J.L., Jiménez-Guardeño, J.M., Marcos-Villar, L., and Enjuanes, L., The envelope protein of severe acute respiratory syndrome coronavirus interacts with the non-structural protein 3 and is ubiquitinated., Virology., 2010, vol. 402 (2), pp. 281–291.
33- Corse, E., and Machamer, C.E., The cytoplasmic tails of infectious bronchitis virus E and M proteins mediate their interaction., Virology., 2003, vol. 312 (1), pp. 25–34.
34- Yuan, Q., Liao, Y., Torres, J., Tam, J.P., and Liu, D.X., Biochemical evidence for the presence of mixed membrane topologies of the severe acute respiratory syndrome coronavirus envelope protein expressed in mammalian cells., FEBS Lett., 2006, vol. 580 (13), pp. 3192–200.
35- Ruch, T.R., and Machamer, C.E., The coronavirus E protein: assembly and beyond., Viruses., 2012, vol. 4 (3), pp. 363–382.
36- Neuman, B.W., Kiss, G., Kunding, A.H., Bhella, D., Baksh, M.F., Connelly, S., Droese, B., Klaus, J.P., Shinji Makino, S., Sawicki, S.G., Siddell, S,G., Dimitrios G.Stamou, D.G., Wilson, I.A., Kuhn, P., Buchmeier, M.J., A structural analysis of M protein in coronavirus assembly and morphology., J Struct Biol., 2010, VOL. 174, PP. 11–22.
37- Ma, H., Fang, C., Hsieh, Y., Chen, S., Li, H., and Lo, S., Expression and membrane integration of SARS-CoV M protein., J Biomed Sci., 2008, vol. 15, pp. 301–310.
38- Siu, Y.L., Teoh, K.T., Lo, J., Chan, C.M., Kien, F., Escriou, N., Tsao, S.W., Nicholls, J.M., Altmeyer, R., Peiris, J.S.M., Bruzzone, R., and Nal, B., The M, E, and N Structural Proteins of the Severe Acute Respiratory Syndrome Coronavirus Are Required for Efficient Assembly, Trafficking, and Release of Virus-Like Particles., J Virol., 2008, vol. 82 (22), pp. 11318–11330.
39- Siu, K., Kok, K., Ng, M.J., Poon, V.K.M., Yuen, K., Zheng, B., and Jin, D., Severe Acute Respiratory Syndrome Coronavirus M Protein Inhibits Type I Interferon Production by Impeding the Formation of TRAF3•TANK•TBK1/IKKϵ Complex., J. Biol. Chem., 2009, vol. 284, pp. 16202–16209.
40- Kumar, P., Gunalan, V., Liu, B., Chow, V.T.K., Druce, J., Birch, C., Catton, M., Fielding, B.C., Tan, Y.J., and Lal, S.K., The nonstructural protein 8 (nsp8) of the SARS coronavirus interacts with its ORF6 accessory protein., Virology., 2007, vol. 366 (2), pp. 293–303.
41- Narayanan, K., Huang, C., and Makino, S., SARS coronavirus accessory proteins., Virus Res., 2008, vol. 133, pp. 113–121.
42- Gunalan, V., Mirazimi, A., and Tan, Y., A putative diacidic motif in the SARS-CoV ORF6 protein influences its subcellular localization and suppression of expression of co-transfected expression constructs., BMC Res Notes., 2011, vol. 4, 446. https://doi.org/10.1186/1756-0500-4-446.
43- Liu, D.X., Fung, T.S., Chong, K.K., Shukla, A., and Hilgenfeld, R., Accessory proteins of SARS-CoV and other coronaviruses., Antiviral Res., 2014, vol. 109, pp. 97–109.
44- Tan, Y.J., Lim, S.G., and Hong, W., Understanding the accessory viral proteins unique to the severe acute respiratory syndrome (SARS) coronavirus., Antiviral Res., 2006, vol. 72 (2), pp. 78–88.
45- Yount, B., Roberts, R.S., Sims, A.C., Deming, D., Frieman, M.B., Sparks, J., Denison, M.R., Davis, N., and Baric, R.S., Severe acute respiratory syndrome coronavirus group-specific open reading frames encode nonessential functions for replication in cell cultures and mice., J Virol., 2005, vol. 79 (23), pp. 14909–14922.
46- Schaecher, S.R., Touchette, E., Schriewer, J., Buller, R.M., and Pekosz, A., Severe acute respiratory syndrome coronavirus gene 7 products contribute to virus-induced apoptosis., J Virol., 2007, vol. 81 (20), pp. 11054–11068.
47- Guo, J.P., Petric, M., Campbell, W., and McGeer, P.L., SARS corona virus peptides recognized by antibodies in the sera of convalescent cases., Virology., 2004, vol. 324 (2), pp. 251–256.
48- Keng, C.T., and Tan, Y.J., Molecular and Biochemical Characterization of the SARS-CoV Accessory Proteins ORF8a, ORF8b and ORF8ab., Molecular Biology of the SARS-Coronavirus., 2009, pp. 177–191.
49- Kang, S., Yang, M., Hong, Z., Zhang, L., Huang, Z., Chen, X., He, S., Zhou, Z., Zhou, Z., Chen, Q., Yan, Y., Zhang, C., Shan, H., and Chen, S., Crystal structure of SARS-CoV-2 nucleocapsid protein RNA binding domain reveals potential unique drug targeting sites., Acta Pharmaceutica Sinica B., 2020, https://doi.org/10.1016/j.apsb.2020.04.009.
50- Cong, Y.Y., Ulasli, M., Schepers, H., Mauthe, M., V’kovski, P., Kriegenburg, F., Thiel, V., de Haan, C.A.M., and Reggiori, F., Nucleocapsid protein recruitment to replication-transcription complexes plays a crucial role in corona viral life cycle., J Virol., 2020, vol. 94 (4), e01925-19.
51- Surjit, M., Liu, B., Chow, V.T., and Lal, SK., The nucleocapsid protein of severe acute respiratory syndrome-coronavirus inhibits the activity of cyclin-cyclin-dependent kinase complex and blocks S phase progression in mammalian cells., J Biol Chem., 2006, vol. 281, pp. 10669–10681.
52- Lin, Y., Shen, X., Yang, R.F., Li, Y.X., Ji, Y.Y., He, Y.Y., Shi, M.D., Lu, W., Shi, T.L., Wang, J., Wang, H.X., Jiang, H.L., Shen, J.H., Xie, Y.H., Wang, Y., Pei, G., Shen, B.F., Wu, J.R., and Sun, B., Identification of an epitope of SARS-coronavirus nucleocapsid protein., Cell Res., 2003, vol. 13, pp. 141–145.