REFERENCES
Andrews S. (2010). FastQC: A quality control tool for high throughput sequence data.
Bahi, A., and Dreyer, J.L. (2005). Cocaine-induced expression changes of axon guidance molecules in the adult rat brain. Mol. Cell. Neurosci.28 : 275–291.
Bisagno, V., González, B., and Urbano, F.J. (2016). Cognitive enhancers versus addictive psychostimulants: The good and bad side of dopamine on prefrontal cortical circuits. Pharmacol. Res. 109 : 108–118.
Borgkvist, A., and Fisone, G. (2007). Psychoactive drugs and regulation of the cAMP/PKA/DARPP-32 cascade in striatal medium spiny neurons. Neurosci. Biobehav. Rev. 31 : 79–88.
Buchta, W.C., Moutal, A., Hines, B., Garcia-Keller, C., Smith, A.C.W., Kalivas, P., et al. (2020). Dynamic CRMP2 Regulation of CaV2.2 in the Prefrontal Cortex Contributes to the Reinstatement of Cocaine Seeking. Mol. Neurobiol. 57 : 346–357.
Bura, S.A., Burokas, A., Martin-Garcia, E., and Maldonado, R. (2010). Effects of chronic nicotine on food intake and anxiety-like behaviour in CB(1) knockout mice. Eur Neuropsychopharmacol. 20 : 369–378.
Cabana-Domínguez, J., Roncero, C., Pineda-Cirera, L., Palma-Álvarez, R.F., Ros-Cucurull, E., Grau-López, L., et al. (2017). Association of the PLCB1 gene with drug dependence. Sci. Rep. 7 : 1–8.
Castilla-Ortega, E., Ladrón de Guevara-Miranda, D., Serrano, A., Pavón, F.J., Suárez, J., Rodríguez de Fonseca, F., et al. (2017). The impact of cocaine on adult hippocampal neurogenesis: Potential neurobiological mechanisms and contributions to maladaptive cognition in cocaine addiction disorder. Biochem. Pharmacol. 141 : 100–117.
Castilla-Ortega, E., Serrano, A., Blanco, E., Araos, P., Suárez, J., Pavón, F.J., et al. (2016). A place for the hippocampus in the cocaine addiction circuit: Potential roles for adult hippocampal neurogenesis. Neurosci. Biobehav. Rev. 66 : 15–32.
Chang, M., Zhang, L., Tam, J.P., and Sanders-Bush, E. (2000). Dissecting G protein-coupled receptor signaling pathways with membrane- permeable blocking peptides. Endogenous 5-HT(2C) receptors in choroid plexus epithelial cells. J. Biol. Chem. 275 : 7021–7029.
Conn, P.J., and Pin, J.P. (1997). Pharmacology and functions of metabotropic glutamate receptors. Annu. Rev. Pharmacol. Toxicol.37 : 205–237.
Cooper, S., Robison, A.J., and Mazei-Robison, M.S. (2017). Reward Circuitry in Addiction. Neurotherapeutics 14 : 687–697.
Dobin, A., Davis, C.A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., et al. (2013). STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 29 : 15–21.
Domingo-Rodriguez, L., Ruiz de Azua, I., Dominguez, E., Senabre, E., Serra, I., Kummer, S., et al. (2020). A specific prelimbic-nucleus accumbens pathway controls resilience versus vulnerability to food addiction. Nat. Commun. 11 :.
Dong, Y., Taylor, J.R., Wolf, M.E., and Shaham, Y. (2017). Circuit and synaptic plasticity mechanisms of drug relapse. J. Neurosci. 37 : 10867–10876.
Drgon, T., Johnson, C., Nino, M., Drgonova, J., Walther, D., and Uhl, G.R. (2012). ‘Replicated’ genome wide association for dependence on illegal substances: genomic regions identified by overlapping clusters of nominally positive SNPs. 156(2) : 125–138.
Eipper-Mains, J.E., Kiraly, D.D., Duff, M.O., Horowitz, M.J., Mcmanus, C.J., Eipper, B.A., et al. (2013). Effects of cocaine and withdrawal on the mouse nucleus accumbens transcriptome. Genes, Brain Behav.12 : 21–33.
Filis, P., Lannagan, T., Thomson, A., Murray, A.A., Kind, P.C., and Spears, N. (2009). Phospholipase C-β1 signaling affects reproductive behavior, ovulation, and implantation. Endocrinology 150 : 3259–3266.
Frishman, W.H. (2007). Smoking Cessation Pharmacotherapy — Nicotine and Non-Nicotine Preparations. 10–22.
García-Pardo, M.P., Roger-Sanchez, C., Rodríguez-Arias, M., Miñarro, J., and Aguilar, M.A. (2016). Pharmacological modulation of protein kinases as a new approach to treat addiction to cocaine and opiates. Eur. J. Pharmacol. 781 : 10–24.
Gómez-Grau, M., Albaigès, J., Casas, J., Auladell, C., Dierssen, M., Vilageliu, L., et al. (2017). New murine Niemann-Pick type C models bearing a pseudoexon-generating mutation recapitulate the main neurobehavioural and molecular features of the disease. Sci. Rep.7 :.
Goodman, J., and Packard, M.G. (2016). Memory systems and the addicted brain. Front. Psychiatry 7 : 24.
Gutierrez-Cuesta, J., Burokas, A., Mancino, S., Kummer, S., Martin-Garcia, E., and Maldonado, R. (2014). Effects of genetic deletion of endogenous opioid system components on the reinstatement of cocaine-seeking behavior in mice. Neuropsychopharmacology. 39 : 2974–2988.
Hagberg, G.-B., Blomstrand, F., Nilsson, M., Tamir, H., and Hansson, E. (1998). Stimulation of 5-HT2A receptors on astrocytes in primary culture opens voltage-independent Ca channels. Neurochem. Int. 32 : 153–162.
Hall, F.S., Drgonova, J., Jain, S., and Uhl, G.R. (2013). Implications of genome wide association studies for addiction: Are our a priori assumptions all wrong? Pharmacol. Ther. 140 : 267–279.
Hannan, A.J., Blakemore, C., Katsnelson, A., Vitalis, T., Huber, K.M., Bear, M., et al. (2001). PLC-β1, activated via mGluRs, mediates activity-dependent differentiation in cerebral cortex. Nat. Neurosci.4 : 282–288.
Howell, L.L., and Negus, S.S. (2014). Monoamine transporter inhibitors and substrates as treatments for stimulant abuse. In Advances in Pharmacology, (NIH Public Access), pp 129–176.
Huang, C.C., Lin, H.J., and Hsu, K. Sen (2007). Repeated cocaine administration promotes long-term potentiation induction in rat medial prefrontal cortex. Cereb. Cortex 17 : 1877–1888.
Jasinska, A.J., Chen, B.T., Bonci, A., and Stein, E.A. (2015). Dorsal MPFC circuitry in rodent models of cocaine use: Implications for drug-addiction therapies. Addict. Biol. 20 : 215.
Jiao, X., Sherman, B.T., Huang, D.W., Stephens, R., Baseler, M.W., Lane, H.C., et al. (2012). DAVID-WS: A stateful web service to facilitate gene/protein list analysis. Bioinformatics 28 : 1805–1806.
Kampangkaew, J.P., Spellicy, C.J., Nielsen, E.M., Harding, M.J., Ye, A., Hamon, S.C., et al. (2019). Pharmacogenetic role of dopamine transporter (SLC6A3) variation on response to disulfiram treatment for cocaine addiction. Am. J. Addict. 28 : 311–317.
Kampman, K.M. (2019). The treatment of cocaine use disorder. 1–8.
Kendler, K.S., Karkowski, L.M., Neale, M.C., and Prescott, C.A. (2000). Illicit Psychoactive Substance Use, Heavy Use, Abuse, and Dependence in a US Population-Based Sample of Male Twins. Arch. Gen. Psychiatry57 : 261–269.
Kendler, K.S., and Prescott, C.A. (1998). Cocaine use, abuse and dependence in a population-based sample of female twins. Br. J. Psychiatry 173 : 345–350.
Keralapurath, M.M., Briggs, S.B., and Wagner, J.J. (2017). Cocaine self-administration induces changes in synaptic transmission and plasticity in ventral hippocampus. Addict. Biol. 22 : 446–456.
Kim, D., Jun, K.S., Lee, S.B., Kang, N.G., Min, D.S., Kim, Y.H., et al. (1997). Phospholipase C isozymes selectively couple to specific neurotransmitter receptors. Nature 389 : 290–293.
Kim, S.-W., Seo, M., Kim, D.-S., Kang, M., Kim, Y.-S., Koh, H.-Y., et al. (2015). Knockdown of phospholipase C-β1 in the medial prefrontal cortex of male mice impairs working memory among multiple schizophrenia endophenotypes. J. Psychiatry Neurosci. 40 : 78.
Krämer, A., Green, J., Pollard, J., and Tugendreich, S. (2014). Causal analysis approaches in ingenuity pathway analysis. Bioinformatics30 : 523–530.
Kutlu, M.G., and Gould, T.J. (2016). Effects of drugs of abuse on hippocampal plasticity and hippocampus-dependent learning and memory: contributions to development and maintenance of addiction. Learn. Mem.23 : 515–533.
Lee, S.P., So, C.H., Rashid, A.J., Varghese, G., Cheng, R., Lança, A.J., et al. (2004). Dopamine D1 and D2 receptor co-activation generates a novel phospholipase C-mediated calcium signal. J. Biol. Chem.279 : 35671–35678.
Li, X., and Wolf, M.E. (2015). Multiple faces of BDNF in cocaine addiction. Behav. Brain Res. 279 : 240–254.
Liao, Y., Wang, J., Jaehnig, E.J., Shi, Z., and Zhang, B. (2019). WebGestalt 2019: gene set analysis toolkit with revamped UIs and APIs. Nucleic Acids Res. 47 : W199–W205.
Love, M.I., Huber, W., and Anders, S. (2014a). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol.15 : 550.
Love, M.I., Huber, W., and Anders, S. (2014b). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol.15 : 550.
Lu, H., Cheng, P., Lim, B.K., Khoshnevisrad, N., and Poo, M. (2010). Elevated BDNF after Cocaine Withdrawal Facilitates LTP in Medial Prefrontal Cortex by Suppressing GABA Inhibition. Neuron 67 : 821–833.
Lüscher, C., and Malenka, R.C. (2011). Drug-Evoked Synaptic Plasticity in Addiction: From Molecular Changes to Circuit Remodeling. Neuron69 : 650–663.
Lüscher, C., Robbins, T.W., and Everitt, B.J. (2020). The transition to compulsion in addiction. Nat. Rev. Neurosci. 21 : 247–263.
Lutz, B., Marsicano, G., Maldonado, R., and Hillard, C.J. (2015). The endocannabinoid system in guarding against fear, anxiety and stress. Nat. Rev. Neurosci. 16 : 705–718.
Mantsch, J.R., Baker, D.A., Funk, D., Lê, A.D., and Shaham, Y. (2016). Stress-induced reinstatement of drug seeking: 20 years of progress. Neuropsychopharmacology 41 : 335–356.
Martín-García, E., Bourgoin, L., Cathala, A., Kasanetz, F., Mondesir, M., Gutiérrez-Rodriguez, A., et al. (2015a). Differential Control of Cocaine Self-Administration by GABAergic and Glutamatergic CB1 Cannabinoid Receptors. Neuropsychopharmacology 1–14.
Martín-García, E., Fernández-Castillo, N., Burokas, A., Gutiérrez-Cuesta, J., Sánchez-Mora, C., Casas, M., et al. (2015b). Frustrated expected reward induces differential transcriptional changes in the mouse brain. Addict. Biol. 20 : 22–37.
Martin-Garcia, E., Mannara, F., Gutierrez-Cuesta, J., Sabater, L., Dalmau, J., Maldonado, R., et al. (2013). Intrathecal injection of P/Q type voltage-gated calcium channel antibodies from paraneoplastic cerebellar degeneration cause ataxia in mice. J.Neuroimmunol.261 : 53–59.
Martin, M. (2011). Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.Journal 17 : 10.
Moorman, D.E., James, M.H., McGlinchey, E.M., and Aston-Jones, G. (2015). Differential roles of medial prefrontal subregions in the regulation of drug seeking. Brain Res. 1628 : 130–146.
Moretti, J., Poh, E.Z., and Rodger, J. (2020). rTMS-Induced Changes in Glutamatergic and Dopaminergic Systems: Relevance to Cocaine and Methamphetamine Use Disorders. Front. Neurosci. 14 : 137.
Nishi, A., and Shuto, T. (2017). Potential for targeting dopamine/DARPP-32 signaling in neuropsychiatric and neurodegenerative disorders. Expert Opin. Ther. Targets 21 : 259–272.
O’Brien, C.P. (2009). Neuroplasticity in addictive disorders. Dialogues Clin. Neurosci. 11 : 350–353.
O’Brien, M.S., and Anthony, J.C. (2005). Risk of Becoming Cocaine Dependent: Epidemiological Estimates for the United States, 2000–2001. Neuropsychopharmacology 30 : 1006–1018.
Pierce, R.C., Fant, B., Swinford-Jackson, S.E., Heller, E.A., Berrettini, W.H., and Wimmer, M.E. (2018). Environmental, genetic and epigenetic contributions to cocaine addiction. Neuropsychopharmacology43 : 1471–1480.
Pitts, E.G., Taylor, J.R., and Gourley, S.L. (2016). Prefrontal cortical BDNF: A regulatory key in cocaine- and food-reinforced behaviors. Neurobiol. Dis. 91 : 326–335.
Placzek, A.N., Prisco, G.V. Di, Khatiwada, S., Sgritta, M., Huang, W., Krnjević, K., et al. (2016). EIF2α-mediated translational control regulates the persistence of cocaine-induced LTP in midbrain dopamine neurons. Elife 5 :.
Planaguma, J., Leypoldt, F., Mannara, F., Gutierrez-Cuesta, J., Martin-Garcia, E., Aguilar, E., et al. (2015). Human N-methyl D-aspartate receptor antibodies alter memory and behaviour in mice. Brain. 138 : 94–109.
Preston, C.J., Brown, K.A., and Wagner, J.J. (2019). Cocaine conditioning induces persisting changes in ventral hippocampus synaptic transmission, long-term potentiation, and radial arm maze performance in the mouse. Neuropharmacology 150 : 27–37.
Rashid, A.J., So, C.H., Kong, M.M.C., Furtak, T., El-Ghundi, M., Cheng, R., et al. (2007). D1-D2 dopamine receptor heterooligomers with unique pharmacology are coupled to rapid activation of Gq/11 in the striatum. Proc. Natl. Acad. Sci. U. S. A. 104 : 654–659.
Shin, J., Gireesh, G., Kim, S.W., Kim, D.S., Lee, S., Kim, Y.S., et al. (2009). Phospholipase C β4 in the medial septum controls cholinergic theta oscillations and anxiety behaviors. J. Neurosci. 29 : 15375–15385.
Thomas, M.J., Kalivas, P.W., and Shaham, Y. (2008). Neuroplasticity in the mesolimbic dopamine system and cocaine addiction. Br. J. Pharmacol.154 : 327–342.
Torregrossa, M.M., Corlett, P.R., and Taylor, J.R. (2011). Aberrant learning and memory in addiction. Neurobiol. Learn. Mem. 96 : 609–623.
UNODC (2019). World Drug Report 2019.
Winters, B.D., Forwood, S.E., Cowell, R.A., Saksida, L.M., and Bussey, T.J. (2004). Double dissociation between the effects of peri-postrhinal cortex and hippocampal lesions on tests of object recognition and spatial memory: Heterogeneity of function within the temporal lobe. J. Neurosci. 24 : 5901–5908.
Wise, R.A., and Robble, M.A. (2020). Dopamine and addiction. Annu. Rev. Psychol. 71 : 79–106.
Yang, Y.R., Kang, D.S., Lee, C., Seok, H., Follo, M.Y., Cocco, L., et al. (2016). Primary phospholipase C and brain disorders. Adv. Biol. Regul. 61 : 80–85.