REFERENCES
Andrews S. (2010). FastQC: A quality control tool for high throughput
sequence data.
Bahi, A., and Dreyer, J.L. (2005). Cocaine-induced expression changes of
axon guidance molecules in the adult rat brain. Mol. Cell. Neurosci.28 : 275–291.
Bisagno, V., González, B., and Urbano, F.J. (2016). Cognitive enhancers
versus addictive psychostimulants: The good and bad side of dopamine on
prefrontal cortical circuits. Pharmacol. Res. 109 : 108–118.
Borgkvist, A., and Fisone, G. (2007). Psychoactive drugs and regulation
of the cAMP/PKA/DARPP-32 cascade in striatal medium spiny neurons.
Neurosci. Biobehav. Rev. 31 : 79–88.
Buchta, W.C., Moutal, A., Hines, B., Garcia-Keller, C., Smith, A.C.W.,
Kalivas, P., et al. (2020). Dynamic CRMP2 Regulation of CaV2.2 in the
Prefrontal Cortex Contributes to the Reinstatement of Cocaine Seeking.
Mol. Neurobiol. 57 : 346–357.
Bura, S.A., Burokas, A., Martin-Garcia, E., and Maldonado, R. (2010).
Effects of chronic nicotine on food intake and anxiety-like behaviour in
CB(1) knockout mice. Eur Neuropsychopharmacol. 20 : 369–378.
Cabana-Domínguez, J., Roncero, C., Pineda-Cirera, L., Palma-Álvarez,
R.F., Ros-Cucurull, E., Grau-López, L., et al. (2017). Association of
the PLCB1 gene with drug dependence. Sci. Rep. 7 : 1–8.
Castilla-Ortega, E., Ladrón de Guevara-Miranda, D., Serrano, A., Pavón,
F.J., Suárez, J., Rodríguez de Fonseca, F., et al. (2017). The impact of
cocaine on adult hippocampal neurogenesis: Potential neurobiological
mechanisms and contributions to maladaptive cognition in cocaine
addiction disorder. Biochem. Pharmacol. 141 : 100–117.
Castilla-Ortega, E., Serrano, A., Blanco, E., Araos, P., Suárez, J.,
Pavón, F.J., et al. (2016). A place for the hippocampus in the cocaine
addiction circuit: Potential roles for adult hippocampal neurogenesis.
Neurosci. Biobehav. Rev. 66 : 15–32.
Chang, M., Zhang, L., Tam, J.P., and Sanders-Bush, E. (2000). Dissecting
G protein-coupled receptor signaling pathways with membrane- permeable
blocking peptides. Endogenous 5-HT(2C) receptors in choroid plexus
epithelial cells. J. Biol. Chem. 275 : 7021–7029.
Conn, P.J., and Pin, J.P. (1997). Pharmacology and functions of
metabotropic glutamate receptors. Annu. Rev. Pharmacol. Toxicol.37 : 205–237.
Cooper, S., Robison, A.J., and Mazei-Robison, M.S. (2017). Reward
Circuitry in Addiction. Neurotherapeutics 14 : 687–697.
Dobin, A., Davis, C.A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha,
S., et al. (2013). STAR: Ultrafast universal RNA-seq aligner.
Bioinformatics 29 : 15–21.
Domingo-Rodriguez, L., Ruiz de Azua, I., Dominguez, E., Senabre, E.,
Serra, I., Kummer, S., et al. (2020). A specific prelimbic-nucleus
accumbens pathway controls resilience versus vulnerability to food
addiction. Nat. Commun. 11 :.
Dong, Y., Taylor, J.R., Wolf, M.E., and Shaham, Y. (2017). Circuit and
synaptic plasticity mechanisms of drug relapse. J. Neurosci. 37 :
10867–10876.
Drgon, T., Johnson, C., Nino, M., Drgonova, J., Walther, D., and Uhl,
G.R. (2012). ‘Replicated’ genome wide association for dependence on
illegal substances: genomic regions identified by overlapping clusters
of nominally positive SNPs. 156(2) : 125–138.
Eipper-Mains, J.E., Kiraly, D.D., Duff, M.O., Horowitz, M.J., Mcmanus,
C.J., Eipper, B.A., et al. (2013). Effects of cocaine and withdrawal on
the mouse nucleus accumbens transcriptome. Genes, Brain Behav.12 : 21–33.
Filis, P., Lannagan, T., Thomson, A., Murray, A.A., Kind, P.C., and
Spears, N. (2009). Phospholipase C-β1 signaling affects reproductive
behavior, ovulation, and implantation. Endocrinology 150 :
3259–3266.
Frishman, W.H. (2007). Smoking Cessation Pharmacotherapy — Nicotine
and Non-Nicotine Preparations. 10–22.
García-Pardo, M.P., Roger-Sanchez, C., Rodríguez-Arias, M., Miñarro, J.,
and Aguilar, M.A. (2016). Pharmacological modulation of protein kinases
as a new approach to treat addiction to cocaine and opiates. Eur. J.
Pharmacol. 781 : 10–24.
Gómez-Grau, M., Albaigès, J., Casas, J., Auladell, C., Dierssen, M.,
Vilageliu, L., et al. (2017). New murine Niemann-Pick type C models
bearing a pseudoexon-generating mutation recapitulate the main
neurobehavioural and molecular features of the disease. Sci. Rep.7 :.
Goodman, J., and Packard, M.G. (2016). Memory systems and the addicted
brain. Front. Psychiatry 7 : 24.
Gutierrez-Cuesta, J., Burokas, A., Mancino, S., Kummer, S.,
Martin-Garcia, E., and Maldonado, R. (2014). Effects of genetic deletion
of endogenous opioid system components on the reinstatement of
cocaine-seeking behavior in mice. Neuropsychopharmacology. 39 :
2974–2988.
Hagberg, G.-B., Blomstrand, F., Nilsson, M., Tamir, H., and Hansson, E.
(1998). Stimulation of 5-HT2A receptors on astrocytes in primary culture
opens voltage-independent Ca channels. Neurochem. Int. 32 :
153–162.
Hall, F.S., Drgonova, J., Jain, S., and Uhl, G.R. (2013). Implications
of genome wide association studies for addiction: Are our a priori
assumptions all wrong? Pharmacol. Ther. 140 : 267–279.
Hannan, A.J., Blakemore, C., Katsnelson, A., Vitalis, T., Huber, K.M.,
Bear, M., et al. (2001). PLC-β1, activated via mGluRs, mediates
activity-dependent differentiation in cerebral cortex. Nat. Neurosci.4 : 282–288.
Howell, L.L., and Negus, S.S. (2014). Monoamine transporter inhibitors
and substrates as treatments for stimulant abuse. In Advances in
Pharmacology, (NIH Public Access), pp 129–176.
Huang, C.C., Lin, H.J., and Hsu, K. Sen (2007). Repeated cocaine
administration promotes long-term potentiation induction in rat medial
prefrontal cortex. Cereb. Cortex 17 : 1877–1888.
Jasinska, A.J., Chen, B.T., Bonci, A., and Stein, E.A. (2015). Dorsal
MPFC circuitry in rodent models of cocaine use: Implications for
drug-addiction therapies. Addict. Biol. 20 : 215.
Jiao, X., Sherman, B.T., Huang, D.W., Stephens, R., Baseler, M.W., Lane,
H.C., et al. (2012). DAVID-WS: A stateful web service to facilitate
gene/protein list analysis. Bioinformatics 28 : 1805–1806.
Kampangkaew, J.P., Spellicy, C.J., Nielsen, E.M., Harding, M.J., Ye, A.,
Hamon, S.C., et al. (2019). Pharmacogenetic role of dopamine transporter
(SLC6A3) variation on response to disulfiram treatment for cocaine
addiction. Am. J. Addict. 28 : 311–317.
Kampman, K.M. (2019). The treatment of cocaine use disorder. 1–8.
Kendler, K.S., Karkowski, L.M., Neale, M.C., and Prescott, C.A. (2000).
Illicit Psychoactive Substance Use, Heavy Use, Abuse, and Dependence in
a US Population-Based Sample of Male Twins. Arch. Gen. Psychiatry57 : 261–269.
Kendler, K.S., and Prescott, C.A. (1998). Cocaine use, abuse and
dependence in a population-based sample of female twins. Br. J.
Psychiatry 173 : 345–350.
Keralapurath, M.M., Briggs, S.B., and Wagner, J.J. (2017). Cocaine
self-administration induces changes in synaptic transmission and
plasticity in ventral hippocampus. Addict. Biol. 22 : 446–456.
Kim, D., Jun, K.S., Lee, S.B., Kang, N.G., Min, D.S., Kim, Y.H., et al.
(1997). Phospholipase C isozymes selectively couple to specific
neurotransmitter receptors. Nature 389 : 290–293.
Kim, S.-W., Seo, M., Kim, D.-S., Kang, M., Kim, Y.-S., Koh, H.-Y., et
al. (2015). Knockdown of phospholipase C-β1 in the medial prefrontal
cortex of male mice impairs working memory among multiple schizophrenia
endophenotypes. J. Psychiatry Neurosci. 40 : 78.
Krämer, A., Green, J., Pollard, J., and Tugendreich, S. (2014). Causal
analysis approaches in ingenuity pathway analysis. Bioinformatics30 : 523–530.
Kutlu, M.G., and Gould, T.J. (2016). Effects of drugs of abuse on
hippocampal plasticity and hippocampus-dependent learning and memory:
contributions to development and maintenance of addiction. Learn. Mem.23 : 515–533.
Lee, S.P., So, C.H., Rashid, A.J., Varghese, G., Cheng, R., Lança, A.J.,
et al. (2004). Dopamine D1 and D2 receptor co-activation generates a
novel phospholipase C-mediated calcium signal. J. Biol. Chem.279 : 35671–35678.
Li, X., and Wolf, M.E. (2015). Multiple faces of BDNF in cocaine
addiction. Behav. Brain Res. 279 : 240–254.
Liao, Y., Wang, J., Jaehnig, E.J., Shi, Z., and Zhang, B. (2019).
WebGestalt 2019: gene set analysis toolkit with revamped UIs and APIs.
Nucleic Acids Res. 47 : W199–W205.
Love, M.I., Huber, W., and Anders, S. (2014a). Moderated estimation of
fold change and dispersion for RNA-seq data with DESeq2. Genome Biol.15 : 550.
Love, M.I., Huber, W., and Anders, S. (2014b). Moderated estimation of
fold change and dispersion for RNA-seq data with DESeq2. Genome Biol.15 : 550.
Lu, H., Cheng, P., Lim, B.K., Khoshnevisrad, N., and Poo, M. (2010).
Elevated BDNF after Cocaine Withdrawal Facilitates LTP in Medial
Prefrontal Cortex by Suppressing GABA Inhibition. Neuron 67 :
821–833.
Lüscher, C., and Malenka, R.C. (2011). Drug-Evoked Synaptic Plasticity
in Addiction: From Molecular Changes to Circuit Remodeling. Neuron69 : 650–663.
Lüscher, C., Robbins, T.W., and Everitt, B.J. (2020). The transition to
compulsion in addiction. Nat. Rev. Neurosci. 21 : 247–263.
Lutz, B., Marsicano, G., Maldonado, R., and Hillard, C.J. (2015). The
endocannabinoid system in guarding against fear, anxiety and stress.
Nat. Rev. Neurosci. 16 : 705–718.
Mantsch, J.R., Baker, D.A., Funk, D., Lê, A.D., and Shaham, Y. (2016).
Stress-induced reinstatement of drug seeking: 20 years of progress.
Neuropsychopharmacology 41 : 335–356.
Martín-García, E., Bourgoin, L., Cathala, A., Kasanetz, F., Mondesir,
M., Gutiérrez-Rodriguez, A., et al. (2015a). Differential Control of
Cocaine Self-Administration by GABAergic and Glutamatergic CB1
Cannabinoid Receptors. Neuropsychopharmacology 1–14.
Martín-García, E., Fernández-Castillo, N., Burokas, A.,
Gutiérrez-Cuesta, J., Sánchez-Mora, C., Casas, M., et al. (2015b).
Frustrated expected reward induces differential transcriptional changes
in the mouse brain. Addict. Biol. 20 : 22–37.
Martin-Garcia, E., Mannara, F., Gutierrez-Cuesta, J., Sabater, L.,
Dalmau, J., Maldonado, R., et al. (2013). Intrathecal injection of P/Q
type voltage-gated calcium channel antibodies from paraneoplastic
cerebellar degeneration cause ataxia in mice. J.Neuroimmunol.261 : 53–59.
Martin, M. (2011). Cutadapt removes adapter sequences from
high-throughput sequencing reads. EMBnet.Journal 17 : 10.
Moorman, D.E., James, M.H., McGlinchey, E.M., and Aston-Jones, G.
(2015). Differential roles of medial prefrontal subregions in the
regulation of drug seeking. Brain Res. 1628 : 130–146.
Moretti, J., Poh, E.Z., and Rodger, J. (2020). rTMS-Induced Changes in
Glutamatergic and Dopaminergic Systems: Relevance to Cocaine and
Methamphetamine Use Disorders. Front. Neurosci. 14 : 137.
Nishi, A., and Shuto, T. (2017). Potential for targeting
dopamine/DARPP-32 signaling in neuropsychiatric and neurodegenerative
disorders. Expert Opin. Ther. Targets 21 : 259–272.
O’Brien, C.P. (2009). Neuroplasticity in addictive disorders. Dialogues
Clin. Neurosci. 11 : 350–353.
O’Brien, M.S., and Anthony, J.C. (2005). Risk of Becoming Cocaine
Dependent: Epidemiological Estimates for the United States, 2000–2001.
Neuropsychopharmacology 30 : 1006–1018.
Pierce, R.C., Fant, B., Swinford-Jackson, S.E., Heller, E.A.,
Berrettini, W.H., and Wimmer, M.E. (2018). Environmental, genetic and
epigenetic contributions to cocaine addiction. Neuropsychopharmacology43 : 1471–1480.
Pitts, E.G., Taylor, J.R., and Gourley, S.L. (2016). Prefrontal cortical
BDNF: A regulatory key in cocaine- and food-reinforced behaviors.
Neurobiol. Dis. 91 : 326–335.
Placzek, A.N., Prisco, G.V. Di, Khatiwada, S., Sgritta, M., Huang, W.,
Krnjević, K., et al. (2016). EIF2α-mediated translational control
regulates the persistence of cocaine-induced LTP in midbrain dopamine
neurons. Elife 5 :.
Planaguma, J., Leypoldt, F., Mannara, F., Gutierrez-Cuesta, J.,
Martin-Garcia, E., Aguilar, E., et al. (2015). Human N-methyl
D-aspartate receptor antibodies alter memory and behaviour in mice.
Brain. 138 : 94–109.
Preston, C.J., Brown, K.A., and Wagner, J.J. (2019). Cocaine
conditioning induces persisting changes in ventral hippocampus synaptic
transmission, long-term potentiation, and radial arm maze performance in
the mouse. Neuropharmacology 150 : 27–37.
Rashid, A.J., So, C.H., Kong, M.M.C., Furtak, T., El-Ghundi, M., Cheng,
R., et al. (2007). D1-D2 dopamine receptor heterooligomers with unique
pharmacology are coupled to rapid activation of Gq/11 in the striatum.
Proc. Natl. Acad. Sci. U. S. A. 104 : 654–659.
Shin, J., Gireesh, G., Kim, S.W., Kim, D.S., Lee, S., Kim, Y.S., et al.
(2009). Phospholipase C β4 in the medial septum controls cholinergic
theta oscillations and anxiety behaviors. J. Neurosci. 29 :
15375–15385.
Thomas, M.J., Kalivas, P.W., and Shaham, Y. (2008). Neuroplasticity in
the mesolimbic dopamine system and cocaine addiction. Br. J. Pharmacol.154 : 327–342.
Torregrossa, M.M., Corlett, P.R., and Taylor, J.R. (2011). Aberrant
learning and memory in addiction. Neurobiol. Learn. Mem. 96 :
609–623.
UNODC (2019). World Drug Report 2019.
Winters, B.D., Forwood, S.E., Cowell, R.A., Saksida, L.M., and Bussey,
T.J. (2004). Double dissociation between the effects of peri-postrhinal
cortex and hippocampal lesions on tests of object recognition and
spatial memory: Heterogeneity of function within the temporal lobe. J.
Neurosci. 24 : 5901–5908.
Wise, R.A., and Robble, M.A. (2020). Dopamine and addiction. Annu. Rev.
Psychol. 71 : 79–106.
Yang, Y.R., Kang, D.S., Lee, C., Seok, H., Follo, M.Y., Cocco, L., et
al. (2016). Primary phospholipase C and brain disorders. Adv. Biol.
Regul. 61 : 80–85.