References
Barbour M.M. (2007) Stable oxygen isotope composition of plant tissue: a review. Functional Plant Biology , 34 , 83-94.
Barbour M.M. & Farquhar G.D. (2000) Relative humidity‐and ABA‐induced variation in carbon and oxygen isotope ratios of cotton leaves. Plant, Cell & Environment , 23 , 473-485.
Barbour M.M. & Farquhar G.D. (2004) Do pathways of water movement and leaf anatomical dimensions allow development of gradients in H218O between veins and the sites of evaporation within leaves? Plant, Cell & Environment , 27 , 107-121.
Barbour M.M., Farquhar G.D. & Buckley T. (2017a) Leaf water stable isotopes and water transport outside the xylem. Plant, Cell & Environment , 40 , 914-920.
Barbour M.M., Fischer R.A., Sayre K.D. & Farquhar G.D. (2000a) Oxygen isotope ratio of leaf and grain material correlates with stomatal conductance and grain yield in irrigated wheat.Functional Plant Biology , 27 , 625-637.
Barbour M.M., Roden J.S., Farquhar G.D. & Ehleringer J.R. (2004) Expressing leaf water and cellulose oxygen isotope ratios as enrichment above source water reveals evidence of a Péclet effect. Oecologia , 138 , 426-435.
Barbour M.M., Ryazanova S. & Tcherkez G. (2017b) Respiratory effects on the carbon isotope discrimination near the compensation point. In: Plant respiration: metabolic fluxes and carbon balance (eds G. Tcherkez & J. Ghashghaie), pp. 143-160. Springer International Publishing, Cham.
Barbour M.M., Schurr U., Henry B.K., Wong S.C. & Farquhar G.D. (2000b) Variation in the oxygen isotope ratio of phloem sap sucrose from castor bean. Evidence in support of the Péclet effect. Plant Physiology , 123 , 671-680.
Botha C., Evert R., Cross R. & Marshall D. (1982) The suberin lamella, a possible barrier to water movement from the veins to the mesophyll of Themeda triandraForsk. Protoplasma , 112 , 1-8.
Brenna J.T., Corso T.N., Tobias H.J. & Caimi R.J. (1997) High‐precision continuous‐flow isotope ratio mass spectrometry. Mass Spectrometry Reviews , 16 , 227-258.
Cernusak L.A., Barbour M.M., Arndt S.K., Cheesman A.W., English N.B., Feild T.S., Helliker B.R., Holloway‐Phillips M.M., Holtum J.A.M., Kahmen A., McInerney F.A., Munksgaard N.C., Simonin K.A., Song X., Stuart-Williams H., West J.B. & Farquhar G.D. (2016) Stable isotopes in leaf water of terrestrial plants. Plant, Cell & Environment , 39 , 1087-1102.
Cernusak L.A. & Kahmen A. (2013) The multifaceted relationship between leaf water 18O enrichment and transpiration rate. Plant, Cell & Environment ,36 , 1239-1241.
Cernusak L.A., Wong S.C. & Farquhar G.D. (2003) Oxygen isotope composition of phloem sap in relation to leaf water in Ricinus communis . Functional Plant Biology ,30 , 1059-1070.
Craig H. & Gordon L.I. (1965)Deuterium and oxygen−18 variations in the ocean and the marine atmosphere . Paper presented at the Proceedings of a conference on stable isotopes in oceanographic studies and paleotemperatures, Spoleto, Italy.
Cuntz M., Ogee J., Farquhar G.D., Peylin P. & Cernusak L.A. (2007) Modelling advection and diffusion of water isotopologues in leaves. Plant, Cell & Environment ,30 , 892-909.
Dawson T.E. & Ehleringer J.R. (1991) Streamside trees that do not use stream water. Nature ,350 , 335-337.
Dongmann G., Nürnberg H.W., Förstel H. & Wagener K. (1974) On the enrichment of H218O in the leaves of transpiring plants. Radiation and Environmental Biophysics , 11 , 41-52.
Ellsworth P.V., Ellsworth P.Z., Koteyeva N. & Cousins A. (2018) Cell wall properties in Oryza sativa influence mesophyll CO2 conductance. New Phytologist , 219 , 66-76.
Ellsworth P.Z. & Sternberg L.S.L. (2014) Seasonal water use by deciduous and evergreen woody species in a scrub community is based on water availability and root distribution.Ecohydrology , 8 , 538-551.
Farquhar G., Hubick K., Condon A. & Richards R. (1989) Carbon isotope discrimination and plant water-use efficiency. In: Stable isotopes in ecological research (eds P.W. Rundel, J.R. Ehleinger, & K.A. Nagy), pp. 21-46. Springer-Verlag, New York, USA. .
Farquhar G.D., Barbour M.M. & Henry B.K. (1998) Interpretation of oxygen isotope composition of leaf material. In: Stable isotopes: integration of biological, ecological, and geochemical processes , pp. 27-48. BIOS Scientific Publishers Ltd.
Farquhar G.D. & Gan K.S. (2003) On the progressive enrichment of the oxygen isotopic composition of water along a leaf. Plant, Cell & Environment , 26 , 1579-1597.
Farquhar G.D. & Lloyd J. (1993) Carbon and oxygen isotope effects in the exchange of carbon dioxide between terrestrial plants and the atmosphere. In: Stable Isotopes and Plant Carbon–Water Relations (eds J.R. Ehleringer, A.E. Hall, & G.D. Farquhar), pp. 47-70. Academic Press, San Diego, CA, USA.
Flanagan L.B., Comstock J.P. & Ehleringer J.R. (1991) Comparison of modeled and observed environmental influences on the stable oxygen and hydrogen isotope composition of leaf water in Phaseolus vulgaris L. Plant Physiology ,96 , 588-596.
Gan K.S., Wong S.C., Yong J.W.H. & Farquhar G.D. (2002) 18O spatial patterns of vein xylem water, leaf water, and dry matter in cotton leaves. Plant Physiology , 130 , 1008-1021.
Gan K.S., Wong S.C., Yong J.W.H. & Farquhar G.D. (2003) Evaluation of models of leaf water18O enrichment using measurements of spatial patterns of vein xylem water, leaf water and dry matter in maize leaves.Plant, Cell & Environment , 26 , 1479-1495.
Gat J.R. & Bowser C. (1991) The heavy isotope enrichment of water in coupled evaporative systems. In:Stable Isotope Geochemistry: A Tribute to Samuel Epstein (eds H.P.J. Taylor, J.R. O’Neil, & I.R. Kaplan), pp. 159-168. Geochemical Society, St. Louis.
Helliker B.R. & Ehleringer J.R. (2000) Establishing a grassland signature in veins:18O in the leaf water of C3 and C4 grasses. Proceedings of the National Academy of Sciences , 97 , 7894-7898.
Hirl R.T., Schnyder H., Ostler U., Schäufele R., Schleip I., Vetter S.H., Auerswald K., Baca Cabrera J.C., Wingate L. & Barbour M.M. (2019) The 18O ecohydrology of a grassland ecosystem–predictions and observations. Hydrology and Earth System Sciences , 23 , 2581-2600.
Holloway-Phillips M., Cernusak L.A., Barbour M., Song X., Cheesman A., Munksgaard N., Stuart-Williams H. & Farquhar G.D. (2016) Leaf vein fraction influences the Péclet effect and 18O enrichment in leaf water. Plant, Cell & Environment ,39 , 2414-2427.
Kocacinar F. & Sage R.F. (2003) Photosynthetic pathway alters xylem structure and hydraulic function in herbaceous plants. Plant, Cell and Environment , 26 , 2015-2026.
Larcher L., Hara‐Nishimura I. & Sternberg L. (2015) Effects of stomatal density and leaf water content on the 18O enrichment of leaf water. New Phytologist , 206 , 141-151.
Liang J., Wright J.S., Cui X., Sternberg L., Gan W. & Lin G. (2018) Leaf anatomical traits determine the 18O enrichment of leaf water in coastal halophytes. Plant, Cell & Environment , 41 , 2744-2757.
Loucos K.E., Simonin K.A., Song X. & Barbour M.M. (2015) Observed relationships between leaf H218O Péclet effective length and leaf hydraulic conductance reflect assumptions in Craig-Gordon model calculations. Tree Physiology , 35 , 16-26.
Majoube M. (1971) Fractionnement en oxygene-18 et en deuterium entre l’eau et sa vapeur. J.Chim.phys ,68 , 1423-1436.
Martínez-García P.J., Parfitt D.E., Ogundiwin E.A., Fass J., Chan H.M., Ahmad R., Lurie S., Dandekar A., Gradziel T.M. & Crisosto C.H. (2013) High density SNP mapping and QTL analysis for fruit quality characteristics in peach (Prunus persica L.). Tree Genetics & Genomes , 9 , 19-36.
Mertz R.A. & Brutnell T.P. (2014) Bundle sheath suberization in grass leaves: multiple barriers to characterization. Journal of Experimental Botany , 65 , 3371-3380.
Mertz R.A., Ellsworth P.Z., Ellsworth P.V., Tausta S.L., Caemmerer S.v., Berg R.H., Nelson T., Carpita N.C., Brutnell T.P. & Cousins A.B. (In review) The maize Aliphatic Suberin Feruloyl Transferase genes affect leaf water movement but are dispensable for bundle sheath CO2 concentration.Biorxiv .
Qi H., Coplen T.B., Geilmann H., Brand W.A. & Böhlke J.K. (2003) Two new organic reference materials for δ13C and δ15N measurements and a new value for the δ13C of NBS 22 oil. Rapid Communications in Mass Spectrometry , 17 , 2483-2487.
Roden J., Kahmen A., Buchmann N. & Siegwolf R. (2015) The enigma of effective path length for18O enrichment in leaf water of conifers. Plant, Cell & Environment , 38 , 2551-2565.
Roden J.S. & Ehleringer J.R. (1999) Observations of hydrogen and oxygen isotopes in leaf water confirm the Craig-Gordon model under wide-ranging environmental conditions.Plant Physiology , 120 , 1165-1174.
Rosado B.H., Mattos E.A. & Sternberg L.D.S. (2013) Are leaf physiological traits related to leaf water isotopic enrichment in restinga woody species? Anais da Academia Brasileira de Ciências , 85 , 1035-1046.
Schneider C.A.R., W.S.; Eliceiri, K.W.; (2012) NIH image to ImageJ: 25 years of image analysis.Nature methods , 9 , 671-675.
Schönherr J. (1982) Resistance of plant surfaces to water loss: transport properties of cutin, suberin and associated lipids. In: Physiological Plant Ecology II (eds O. Lange, P. Nobel, C. Osmond, & H. Ziegler), pp. 153-179. Springer, Berlin.
Schreiber L. (2010) Transport barriers made of cutin, suberin and associated waxes. Trends in Plant Science , 15 , 546-553.
Smith-Moritz A.M., Hao Z., Fernández-Niño S.G., Fangel J.U., Verhertbruggen Y., Holman H.-Y.N., Willats W.G., Ronald P.C., Scheller H.V., Heazlewood J.L. & Vega-Sánchez M.E. (2015) Structural characterization of a mixed-linkage glucan deficient mutant reveals alteration in cellulose microfibril orientation in rice coleoptile mesophyll cell walls. Frontiers in Plant Science , 6 , 628.
Song X., Barbour M.M., Farquhar G.D., Vann D.R. & Helliker B.R. (2013) Transpiration rate relates to within‐and across‐species variations in effective path length in a leaf water model of oxygen isotope enrichment. Plant, Cell & Environment , 36 , 1338-1351.
Song X., Loucos K.E., Simonin K.A., Farquhar G.D. & Barbour M.M. (2015) Measurements of transpiration isotopologues and leaf water to assess enrichment models in cotton.New Phytologist , 206 , 637-646.
Sternberg L.d.S.L. & Manganiello L.M. (2014) Stomatal pore size and density in mangrove leaves and artificial leaves: effects on leaf water isotopic enrichment during transpiration. Functional Plant Biology , 41 , 648-658.
Upadhyaya N.M., Zhu Q.-H., Zhou X.-R., Eamens A.L., Hoque M.S., Ramm K., Shivakkumar R., Smith K.F., Pan S.-T. & Li S. (2006) Dissociation (Ds) constructs, mapped Ds launch pads and a transiently-expressed transposase system suitable for localized insertional mutagenesis in rice. Theoretical and Applied Genetics , 112 , 1326-1341.
Vega-Sánchez M.E., Verhertbruggen Y., Christensen U., Chen X., Sharma V., Varanasi P., Jobling S.A., Talbot M., White R.G. & Joo M. (2012) Loss of cellulose synthase-like F6 function affects mixed-linkage glucan deposition, cell wall mechanical properties, and defense responses in vegetative tissues of rice.Plant Physiology , 159 , 56-69.
Vendramini P.F. & Sternberg Lda S. (2007) A faster plant stem-water extraction method. Rapid communications in mass spectrometry : RCM , 21 , 164-168.
Vishwanath S.J., Delude C., Domergue F. & Rowland O. (2015) Suberin: biosynthesis, regulation, and polymer assembly of a protective extracellular barrier. Plant Cell Reports , 34 , 573-586.
Yakir D. (1998) Oxygen-18 of leaf water: a crossroad for plant-associated isotopic signals. In:Stable isotopes: integration of biological, ecological and geochemical processes (ed H. Griffiths), pp. 147-168. BIOS Scientific Publishers, Newcastle, UK.
Table 1 . Leaf water isotope parameters for Zea mays wildtype and Zmasft double mutants (aliphatic suberin feruloyl transferase), grown under 300 or 1200 photosynthetic active photon flux density (PAR; μmol photons m-2 s-1) and either 50 or 80 % relative humidity (RH). Stomatal measurements were on plants grown at 80 % RH. Results of the main effects of a three-way ANOVA are included, except the stomatal traits. Stomatal traits were analyzed using a two-way ANOVA because they were only measured in plants grown under 80 % RH. Significance was shown as ns, *, **, and *** for not significant, P < 0.05, P < 0.01, and P < 0.001, respectively. The only interactions where P < 0.05 for at least one trait were RH x PAR and Genotype x PAR (Table S1).