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Abstract

In this work, we aim to obtain the existence and finite time blow up of weak solutions
of a p(x) -Laplacian pseudo-parabolic equation with memory term and logarithmic
nonlinearity. Moreover, we extract an upper bound for the blow up time by applying
the concavity method and a lower bound using the differential inequality technique.
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1 INTRODUCTION

This work is to study a p(x)- Laplacian pseudo parabolic equation. Here, we mainly deal with the existence and finite time blow
up of solutions of the problem proposed below,

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

zt − �Δzt − Δz − �∇(|∇z|p(x)−2∇z) +

t

∫
0

ℎ(t − �)Δz(x, �)d� = |z|q−2zlog|z|, x ∈ Ω, t ≥ 0

z(x, t) = 0, x ∈ )Ω, t ≥ 0

z(x, 0) = z0(x), x ∈ Ω

(1)

where Ω ⊂ ℝN , (N ≥ 1) is a bounded domain with smooth boundary )Ω. �, � ≥ 0 are constants. The variable exponents
p(x) ∶ Ω ←→ [1,∞) is log-Holder continuous and

p− = ess infx∈Ω p(x), p+ = ess supx∈Ω p(x)

Here, we call the nonlinear term ∇(|∇z|p(x)−2∇z), the p(x)−Laplacian operator. We hypothesize the following,

H1) 2 < p− ≤ p(x) ≤ p+ < q < p∗, p∗ is given in lemma 2.

H2) ℎ ∶ ℝ+ ←→ ℝ+ is a bounded C1 function such that

ℎ(�) ≥ 0, ℎ′(�) ≤ 0, 1 −

t

∫
0

ℎ(�)d� = l > 0.

H3) E(0) > 0, is the energy functional defined by (36).
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The integrodifferential equation is a significant area of naturally emerging nonlinear problems. For example, they appear in the
fields of heat conduction and viscous flow in materials with memory. Hence the study has a great history too. Existence and
regularity results for the following integrodifferential equation

z′(t) = Az(t) +

t

∫
0

K(t − �)z(�)d� + f (t),

where A and K are linear operators in a complex Banach space X, was obtained by Prato and Ianelli20. They used the Laplace
transform approach in order to establish the existence results. The existence and blow-up of solutions of a parabolic equation
with nonlinear memory were studied by Bellout2. He proved existence using a fixed point method and, after obtaining results
on finite time blow up established estimates on the rate of blow up and results concerning the blow up set. The problem

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

zt − Δz +

t

∫
0

g(t − �)Δz(x, �)d� = f (z), x ∈ Ω, t > 0

z(x, t) = 0, x ∈ )Ω, t > 0

z(x, 0) = z0(x), x ∈ Ω

(2)

was then studied by many authors for different source terms. In 2004, Messaoudi15 considered the problem with the source
given by |z|p−2z and derived blow-up results for positive initial energy solutions under suitable conditions on p and g. He then
improved the results and obtained finite time blow up for negative or vanishing initial energy too16. For the same problem,
in 2017, Tian21 obtained a new criterion for finite time blow up and established an upper bound for the blow up time. Also
obtained a lower bound employing differential inequality technique. For f (z) ∈ C(ℝ) the nonexistence of global solution with
positive initial energy of (2) was established by Fang and Sun8. Blow up of solutions for a semilinear heat equation with a
viscoelastic term was studied in [11] for nonlinear flux on the boundary. The authors obtained blow up results for negative
initial energy by employing the concavity method. Li then improved these results, and Han13 for positive initial energy with
the support of potential well method. In 2012, Liu and Chen14 established the blow-up results of the viscoelastic quasilinear
parabolic equation with negative energy and positive initial energy. They proved a general decay of the energy functional for the
global solution. Global existence and decay were also studied by Fang and Qiu9 for a semilinear parabolic equation with mixed
boundary conditions and memory term. A Robin boundary value problem associated with the equation

zt −
)
)x

(

�(x, t)zx
)

+

t

∫
0

g(t − �) )
)x

[

�(x, �)zx
]

d� = f (z) + f1(x, t),

was analyzed by Ngoc et. al.18 The authors proved existence, uniqueness, and regularity results for weak solutions using the
Faedo-Galerkin method and compactness arguments. They showed the existence of finite time blow up of solutions with initial
negative energy. Moreover, established a sufficient condition to ensure the global existence of weak solutions. Antontsev and
Shmarev1 examined an initial boundary value problem associated with

zt − Δpz =

t

∫
0

g(t − s)Δpz(x, s)ds + Θ(x, t, z) + f (x, t), (3)

Moreover, they established the existence and non-existence of global solutions of the problem without more restrictive assump-
tions on Θ. The existence of solutions for a pseudo-parabolic equation with memory was deduced by Di and Shang4 using the
Galerkin method and potential well theory. By making a slight change in the source term, Sun et al.22 studied the problem and
came up with existence and finite time blow up results using Galerkin method, concavity argument, and potential well theory.
They derived an upper bound for the blow-up time and obtained solutions that blow up in finite time with arbitrary initial energy
conditions. In 2019, Messaoudi and Talahmeh17 studied a semilinear viscoelastic pseudo-parabolic problem with variable expo-
nent and prove that any weak solution initial data at arbitrary energy level blows up in finite time. Furthermore, they obtained
an upper bound for the blow up time using the concavity method. Recently Di et. al.5 analyzed blow-up solutions of a nonlinear
pseudo parabolic equation with memory and derived upper and lower bounds for the blow up time. Results on the non-existence
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of global solutions of the following problem

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

)tz − Δq(x)z − Δx
⎛

⎜

⎜

⎝

)tz − �(t)

t

∫
0

g(t − s)zds
⎞

⎟

⎟

⎠

= |z|p(x)−2z, in Ω × (0, T )

z = 0, on )Ω × (0, T )

z(x, 0) = z0(x), in Ω

(4)

where Ω ⊂ ℝn(n ≥ 2) is an open bounded domain and � ∈ C1(ℝ+), was published by Zennir and Miyasita23,by obtaining a
relation between the relaxation function and p(x). In 2020, Lakshmipriya and Gnananvel19 studied a p(x)− Laplacian parabolic
problem with memory under Dirichlet boundary conditions and established existence and blow up results. Moreover, upper and
lower bounds for finite time of blow up were also derived.
All these former works urged us to deal with the problem (1). In this paper, the sections are organized as follows: We call

up essential preliminaries in Section 2. We carry on the existence of solutions to the problem(1) in Section 3. In this section,
in order to make the calculations more straightforward, we take �, � = 1. In the absence of the term involving �, actually, the
pseudo-parabolic problem turns into a parabolic problem for which the same procedure holds to establish the existence result,
with necessary modifications due to the equation. Existence of finite time blow up and an upper bound for blow up time of the
solutions for this case, that is when � = 0 is established in section 4. Lower bound for blow up time is calculated in section 5.
In this paper we use C as a generic constant.

2 PRELIMINARIES

This section is devoted to call back some essential preliminaries to go forward with the problem (1). However, for more
information, one can refer6,3. Here, we let p, q ∶ Ω ←→ [1,∞) be measurable functions, where Ω is a bounded domain in ℝN .
Definition 1. 6 The variable exponent Lebesgue space with exponent p(x) is defined by

Lp(x)(Ω) ∶= {z ∶ Ω ←→ ℝ|�p(x)(�z) <∞, for some � > 0},

where,

�p(x)(z) = ∫
Ω

|z(x)|p(x)dx.

Theorem 1. 6 The space Lp(x)(Ω) set up with the Luxembourg norm

‖z‖p(x) = inf{� > 0|�p(x)
(z
�

)

≤ 1},

is a Banach space and

min{‖z‖p−p(x), ‖z‖
p+
p(x)} ≤ ∫

Ω

|z|p(x)dx ≤ max{‖z‖p−p(x), ‖z‖
p+
p(x)}. (5)

Remark 1. 6 Lp′(x)(Ω) stands for the dual space of Lp(x)(Ω) , such that 1
p(x)

+ 1
p′(x)

= 1.
Definition 2. 6 The variable exponent Sobolev space is defined as

W k,p(x)(Ω) = {z ∈ Lp(x)(Ω)|D�z ∈ Lp(x)(Ω), |�| ≤ k},

where k ≥ 1, D�z is the �tℎ weak partial derivative with � = (�1, �2, ..., �N ) a multi-index, |�| =
N
∑

j=1
�j .

Theorem 2. 6 The spaceW k,p(x)(Ω) set up with the norm
‖z‖k,p(x) ∶=

∑

|�|≤k ‖D�z‖p(x) is a Banach space.

We denote the closure of C∞0 (Ω) inW
k,p(x)(Ω) byW k,p(x)

0 (Ω).
Definition 3. 3 Let X be a Banach space. Then, Lq(0, T ;X) is defined as the set of measurable functions z ∶ [0, T ] ←→ X such
that
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if 1 ≤ q <∞,

‖z‖Lq(0,T ;X) =
⎛

⎜

⎜

⎝

T

∫
0

‖z(t)‖qXdt
⎞

⎟

⎟

⎠

1
q

<∞,

if q = ∞,
‖z‖L∞(0,T ;X) = ess sup

0≤t≤T
‖z(t)‖X <∞.

Remark 2. For 1 ≤ q ≤∞, Lq(0, T ;X) endued with the above norms is a Banach space.
Definition 4. 17 The exponent p(x) is said to be log-Holder continuous on Ω if there exists a constant D > 0 such that

|p(x) − p(y)| ≤ − D
log|x − y|

, for x, y ∈ Ω, with |x − y| < �, 0 < � < 1.

Lemma 1. 6 If p(x), q(x) are variable exponents satisfying p(x) ≤ q(x) a.e. in Ω, then there is a continuous embedding from
Lq(x)(Ω) → Lp(x)(Ω).
Lemma 2. 6 Let the variable exponents p(x) ∈ C(Ω), b ∶ Ω ←→ [1,∞) be a measurable function and satisfy

ess inf
x∈Ω

(p∗(x) − q(x)) > 0, where p∗ =

{

Np(x)
N−p(x)

, if p(x) < N,
∞, if p(x) ≥ N.

Then the Sobolev embeddingW 1,p(x)
0 (Ω) → Lq(x)(Ω) is continuous and compact.

Lemma 3. 10 Let � be a positive number. Then the following inequality

zqlogz ≤ (e�)−1zq+� ,

holds for all z ∈ [1,∞).

Here we define a functional, which will be used in the further calculations,

J (z) = 1
2

⎛

⎜

⎜

⎝

1 −

t

∫
0

ℎ(�)d�
⎞

⎟

⎟

⎠

‖∇z‖22 + ∫
Ω

|∇z|p(x)

p(x)
dx + 1

q2
‖z‖qq

−1
q ∫
Ω

|z|qlog|z|dx + 1
2

t

∫
0

ℎ(t − �)‖∇z(x, �) − ∇z(x, t)‖22d�, (6)

3 WEAK SOLUTIONS

In this section, we discuss about the existence of weak solutions for the problem (1), by using the well known Faedo - Galerkin
approximation method. Here we assume � = � = 1.

Definition 5. A function z(x, t) is said to be a weak solution of the problem(1) if
z(x, t) ∈ L2(0, T ;W 1,p(x)

0 (Ω) ∩ Lq(Ω)) ∩ L2(0, T ;H1
0 (Ω)) ∩ C(0, T ;H

1
0 (Ω)), zt(x, t) ∈ L2(0, T ;H1

0 (Ω)) and z(x, 0) = z0(x)
satisfies the following condition

T

∫
0

∫
Ω

zt�dxdt +

T

∫
0

∫
Ω

∇zt∇�dxdt +

T

∫
0

∫
Ω

∇z∇�dxdt +

T

∫
0

∫
Ω

|∇z|p(x)−2∇z∇�dxdt

−

T

∫
0

t

∫
0

ℎ(t − �)∫
Ω

∇z(x, �)∇�dxd�dt =

T

∫
0

∫
Ω

|z|q−2zlog|z|�dxdt, (7)

for all � ∈ C∞(0, T ;C∞0 (Ω)), [0, T ] is the maximal interval of existence.

Theorem 3. Assume that z0 ∈ W 1,p(x)
0 (Ω) ∩ Lq(Ω)∖{0}, then the problem (1) admits a weak solution z(x, t) in the sense of

definition(5), t ∈ [0, T ].
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Proof. Let {�i}∞i=1 be a sequence of eigenfunctions of −Δ corresponding to the eigenvalues {�i}∞i=1, comprising an orthogonal
basis ofH1

0 (Ω) and an orthonormal basis of L2(Ω). Forthwith, we seek for finite dimensional approximation solutions of (1) as
{zn} defined by

zn(x, t) =
n
∑

i=1
ani(t)�i(x), (8)

satisfying

∫
Ω

z′n�idx +∫
Ω

∇z′n∇�idx + ∫
Ω

∇zn∇�idx + ∫
Ω

|∇zn|p(x)−2∇zn∇�idx (9)

−

t

∫
0

ℎ(t − �)∫
Ω

∇zn(x, �)∇�idxd� = ∫
Ω

|zn|
q−2znlog|zn|�idx,

and

zn(x, 0) =
n
∑

i=1
ani(0)�i(x) ←→ z0(x) inW

1,p(x)
0 (Ω) ∩ Lq(Ω)∖{0}. (10)

Now, we need to get the coefficients {ani}ni=1. For m = 1, 2, ...n

a′nm(t) =
1

1 + �m

⎛

⎜

⎜

⎝

−∫
Ω

∇zn∇�mdx − ∫
Ω

|∇zn|p(x)−2∇zn∇�mdx (11)

+

t

∫
0

ℎ(t − �)∫
Ω

∇zn(x, �)∇�mdxd� + ∫
Ω

|zn|
q−2znlog|zn|�mdx

⎞

⎟

⎟

⎠

.

The standard ODE theory gives existence of solution to the problem (11) in a maximal interval [0, T ]. Multiplying equation (9)
by a′ni(t) and summing for i = 1, 2, ...n, to get

∫
Ω

|z′n|
2dx +∫

Ω

∇z′n∇z
′
ndx + ∫

Ω

∇zn∇z′ndx + ∫
Ω

|∇zn|p(x)−2∇zn∇z′ndx

−

t

∫
0

ℎ(t − �)∫
Ω

∇zn(x, �)∇z′ndxd� = ∫
Ω

|zn|
q−2znlog|zn|z

′
ndx.

This gives

∫
Ω

|z′n|
2dx + ∫

Ω

|∇z′n|
2dx − 1

2

t

∫
0

ℎ′(t − �)‖∇zn(x, �) − ∇zn(x, t)‖22d� +
1
2
ℎ(t)‖∇zn‖22 = −

d
dt
J (zn(t)), (12)

Where J is the functional defined by equation (6). From the hypothesis (H2), we get

J ′(zn(t)) = −
⎡

⎢

⎢

⎣

∫
Ω

|z′n|
2dx + ∫

Ω

|∇z′n|
2dx − 1

2

t

∫
0

ℎ′(t − �)‖∇zn(x, �) − ∇zn(x, t)‖22d� +
1
2
ℎ(t)‖∇zn‖22

⎤

⎥

⎥

⎦

≤ 0. (13)

This implies that J (zn) is non-increasing. So J (zn(t)) ≤ J (zn(0)) for all t ∈ [0, T ) and for all n ∈ ℕ. Now, multiply equation
(9) by ani(t) and sum over i, for i = 1, 2, ...n, to get

∫
Ω

z′nzndx ∫
Ω

∇z′n∇zndx + ∫
Ω

|∇zn|2dx + ∫
Ω

|∇zn|p(x)dx −

t

∫
0

ℎ(t − �)∫
Ω

∇zn(x, �)∇zn(x, t)dxd� = ∫
Ω

|zn|
qlog|zn|dx.
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Further, we get

d
dt

⎡

⎢

⎢

⎣

1
2 ∫
Ω

|zn|
2dx + 1

2 ∫
Ω

|∇zn|2dx +

t

∫
0

∫
Ω

|∇zn|2dxd� +

t

∫
0

∫
Ω

|∇zn|p(x)dxd�
⎤

⎥

⎥

⎦

(14)

=

t

∫
0

ℎ(t − �)∫
Ω

∇zn(x, �)∇zn(x, t)dxd� + ∫
Ω

|zn|
qlog|zn|dx.

We call

Hn(t) =
1
2 ∫
Ω

|zn|
2dx + 1

2 ∫
Ω

|∇zn|2dx +

t

∫
0

∫
Ω

|∇zn|2dxd� +

t

∫
0

∫
Ω

|∇zn|p(x)dxd�. (15)

So,

d
dt
Hn(t) =

t

∫
0

ℎ(t − �)∫
Ω

∇zn(x, �)∇zn(x, t)dxd� + ∫
Ω

|zn|
qlog|zn|dx. (16)

To carry forward, we apply Young’s inequality. Hence we get

t

∫
0

ℎ(t − �)∫
Ω

∇zn(x, �)∇zn(x, t)dxd�

=

t

∫
0

ℎ(t − �)∫
Ω

∇zn(x, t)
(

∇zn(x, �) − ∇zn(x, t)
)

dxd� +

t

∫
0

ℎ(t − �)‖∇zn‖22,

≤ 1
2

t

∫
0

ℎ(t − �)‖∇zn(x, �) − ∇zn(x, t)‖22d� +
1
2

t

∫
0

ℎ(t − �)d�‖∇zn‖22 +

t

∫
0

ℎ(t − �)d�‖∇zn‖22,

this gives

t

∫
0

ℎ(t − �)∫
Ω

∇zn(x, �)∇zn(x, t)dxd� ≤
1
2

t

∫
0

ℎ(t − �)‖∇zn(x, �) − ∇zn(x, t)‖22d� +
3
2

t

∫
0

ℎ(t − �)d�‖∇zn‖22. (17)

Hence, by equation (13) and the hypothesis (H2), we obtain

d
dt
Hn(t) ≤ J (zn(t)) −

1
2

⎛

⎜

⎜

⎝

1 −

t

∫
0

ℎ(�)d�
⎞

⎟

⎟

⎠

‖∇zn‖22 − ∫
Ω

|∇zn|p(x)

p(x)
dx − 1

q2
‖zn‖

q
q

+1
q ∫
Ω

|zn|
qlog|zn|dx +

3
2

t

∫
0

ℎ(t − �)d�‖∇zn‖22 + ∫
Ω

|zn|
qlog|zn|dx,

≤ J (zn(t)) −
1
2
‖∇zn‖22 + 2

t

∫
0

ℎ(�)d�‖∇zn‖22 − ∫
Ω

|∇zn|p(x)

p(x)
dx − 1

q2
‖zn‖

q
q +

(

1 + 1
q

)

∫
Ω

|zn|
qlog|zn|dx,

≤ J (zn(0)) + 2(1 − l)‖∇zn‖22 +
(

1 + 1
q

)

∫
Ω

|zn|
qlog|zn|dx. (18)
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Now, the help of lemma (3), we get

∫
Ω

|zn|
qlog|zn|dx ≤ ∫

{x∈Ω∶|zn|≥1}

|zn|
qlog|zn|dx,

≤ (e�)−1 ∫
{x∈Ω∶|zn|≥1}

|zn|
q+�dx,

≤ (e�)−1‖zn‖
q+�
q+� , (19)

where 0 < � < q∗ − q, q∗ = Nq
N−q

. Applying Gagliardo-Nirenberg Interpolation Inequality3, we get

‖zn‖
q+�
q+� ≤ C‖∇zn‖�(q+�)p−

‖zn‖
(1−�)(q+�)
2 , (20)

where � = Np−(q+�−2)
(q+�)(Np−−2N+2p−)

. Now, for � > 0, Young’s inequality with � gives

‖zn‖
q+�
q+� ≤ �‖∇zn‖p−p− + C(�)‖zn‖

p−(1−�)(q+�)
p−−�(q+�)

2 , (21)

Hence, (18) implies

d
dt
Hn(t) ≤ J (zn(0)) + 2(1 − l)‖∇zn‖22 +

(

1 + 1
q

)

(e�)−1
[

�‖∇zn‖p−p− + C(�)‖zn‖
p−(1−�)(q+�)
p−−�(q+�)

2

]

. (22)

Set � = p−(1−�)(q+�)
2(p−−�(q+�))

> 1 and assume min{‖∇zn‖
p−
p(x), ‖∇zn‖

p+
p(x)} = ‖∇zn‖

p−
p(x), then by (5) we get

d
dt
Hn(t) ≤ J (zn(0)) + 2(1 − l)‖∇zn‖22 +

(

1 + 1
q

)

(e�)−1
⎡

⎢

⎢

⎣

� ∫
Ω

|∇zn|p(x)dx + C(�)‖zn‖
2�
2

⎤

⎥

⎥

⎦

,

integrating this inequality from 0 to t, we get

Hn(t) ≤ Hn(0) + J (zn(0))t + 2(1 − l)

t

∫
0

‖∇zn‖22d�

+
(

1 + 1
q

)

(e�)−1
⎡

⎢

⎢

⎣

�

t

∫
0

∫
Ω

|∇zn|p(x)dxd� + 2C(�)

t

∫
0

1
2
‖zn‖

2�
2 d�

⎤

⎥

⎥

⎦

. (23)

We denote the constantHn(0) + J (zn(0))t = c1, which depends on t, t ∈ [0, T ]. Now, we Choose l ≥
3
4
and � = e�q

2(q+1)
, to obtain

Hn(t) ≤ c1(t) +
1
2

t

∫
0

‖∇zn‖22d� +
1
2

t

∫
0

∫
Ω

|∇zn|p(x)dxd� + c2

t

∫
0

1
2
‖zn‖

2�
2 d�,

≤ c1(t) +
1
2
Hn(t) + c2

t

∫
0

H�
nd�,

where c2 = 2C(�)
(

1 + 1
q

)

(e�)−1. Hence we have

Hn(t) ≤ c1(t) + c2

t

∫
0

H�
n (�)d�. (24)

By implementing Gronwall-Bellman-Bihari type inequality, we get

Hn(t) = ∫
Ω

|zn|
2dx + ∫

Ω

|∇zn|2dx +

t

∫
0

∫
Ω

|∇zn|2dxd� +

t

∫
0

∫
Ω

|∇zn|p(x)dxd� ≤ CT , (25)



8 Lakshmipriya ET AL

CT depends on T . Our assumption min{‖∇zn‖
p−
p(x), ‖∇zn‖

p+
p(x)} = ‖∇zn‖

p−
p(x), together with (H1) gives ‖∇zn‖2p(x) ≤ ‖∇zn‖

p−
p(x).

Now, from (5) we get
T

∫
0

‖∇zn‖2p(x)d� ≤

T

∫
0

‖∇zn‖
p−
p(x)d� ≤

T

∫
0

∫
Ω

|∇zn|p(x)dxd� ≤ CT . (26)

Since we have (26) , the Sobolev embedding gives
T

∫
0

‖zn‖
2
qdx ≤ C

T

∫
0

‖∇zn‖2p(x)dx ≤ CT . (27)

continuity of J gives a constant C and since we have zn(x, 0) ←→ z0(x) inW
1,p(x)
0 (Ω) ∩ Lq(Ω),

J (zn(x, 0)) ≤ C, for any n. (28)

Also we have, from equation (12)

∫
Ω

|znt |
2dx ≤ − d

dt
J (zn),

integrating from 0 to t gives
t

∫
0

‖z′n(�)‖
2
2d� + J (zn) ≤ J (zn(x, 0)) ≤ C. (29)

The estimates (25),(26), (27) and (29) together with the standard compactness arguments, will give

zn ←→ z weakly∗ in L∞(0, T ;H1
0 (Ω)), (30)

zn ←→ z weakly in L2
(

0, T ;W 1,p(x)
0 (Ω) ∩ Lq(Ω)

)

∩ L2(0, T ;H1
0 (Ω)), (31)

z′n ←→ z′ weakly in L2(0, T ;H1
0 (Ω)), (32)

|∇zn|p(x)−2∇zn ←→ � weakly in L2(0, T ;Lp′(x)(Ω)). (33)

Now, by making use of Aubin -Lions lemma, we get

zn ←→ z in C(0, T ;H1
0 (Ω)). (34)

We get � = |∇z|p(x)−2∇z, by the monotonicity of |s|p(x)−2s and using Minty-Browder condition. Hence the proof.

4 UPPER BOUND FOR BLOW-UP TIME

Here, the objective is to get an upper bound for the blow-up time of solutions (1). For that we consider the problem (1) for the
case, when � = 0 and � = 1. Existence of solutions can be shown following the same steps as above.

Theorem 4. Assume that (H1), (H2) and (H3) hold and weak solution z(x, t) as defined in (5) exists for the problem (1). Then
the solutions z(x, t) blows up in finite time T ∗. Moreover, there exists an upper bound for the same, given by

T ∗ ≤
(1 + 
)

(

1 + 1
�

)

‖z0‖22
2 
E(0)

, (35)

where  , 
 and � are suitable positive constants given later.

Proof. Multiply the equation(1) by zt and integrating over Ω, will give

∫
Ω

z2t dx = −∫
Ω

∇z∇ztdx − ∫
Ω

|∇z|p(x)−2∇z∇ztdx − ∫
Ω

t

∫
0

ℎ(t − �)Δz(x, �)zt(x, t)d�dx + ∫
Ω

|z|q−2zlog|z|ztdx,
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which implies

∫
Ω

z2t dx −
1
2

t

∫
0

ℎ′(t − �)‖∇z(x, �) − ∇z(x, t)‖22d� +
1
2
ℎ(t)‖∇z‖22

= d
dt

⎡

⎢

⎢

⎣

−1
2
‖∇z‖22 − ∫

Ω

|∇z|p(x)

p(x)
dx − 1

2

t

∫
0

ℎ(t − �)‖∇z(x, �) − ∇z(x, t)‖22d�

+

t

∫
0

ℎ(�)d�‖∇z‖22 −
1
q2
‖z‖qq +

1
q ∫
Ω

|z|qlog|z|dx
⎤

⎥

⎥

⎦

.

Now, we set a functional

E(t) = −1
2

t

∫
0

ℎ(t − �)‖∇z(x, �) − ∇z(x, t)‖22d� −
1
2

⎛

⎜

⎜

⎝

1 −

t

∫
0

ℎ(�)d�
⎞

⎟

⎟

⎠

‖∇z‖22

−∫
Ω

|∇z|p(x)

p(x)
dx + 1

q ∫
Ω

|z|qlog|z|dx − 1
q
‖z‖qq . (36)

Hence, by making use of the hypothesis (H2), we obtain

dE(t)
dt

= ∫
Ω

z2t dx −
1
2

t

∫
0

ℎ′(t − �)‖∇z(x, �) − ∇z(x, t)‖22d� +
1
2
ℎ(t)‖∇z‖22 ≥ 0. (37)

Now, to move forward we define an auxiliary functional

N(t) =

t

∫
0

∫
Ω

z2(x, �)dxd� + A. (38)

Then

N ′(t) = 2∫
Ω

t

∫
0

z(x, �)zt(x, �)d�dx + ∫
Ω

z20(x)dx, (39)

and

N ′′(t) = 2∫
Ω

zztdx,

= 2∫
Ω

z(x, t)
⎡

⎢

⎢

⎣

Δz + ∇
(

|∇z|p(x)−2∇z
)

−

t

∫
0

ℎ(t − �)Δz(x, �)d� + |z|q−2zlog|z|
⎤

⎥

⎥

⎦

dx,

= −2‖∇z‖22 − 2∫
Ω

|∇z|p(x)dx + 2∫
Ω

|z|qlog|z|dx

+2

t

∫
0

ℎ(t − �)∫
Ω

∇z(x, t) (∇z(x, �) − ∇z(x, t)) dxd� + 2

t

∫
0

ℎ(t − �)d�‖∇z‖22.
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Now, choose a constant such that p+ <  < q and  ( − 2) > 1−l
l
. This gives

N ′′(t) = 2 E(t) +  

t

∫
0

ℎ(t − �)‖∇z(x, �) − ∇z(x, t)‖22d�

+ 
⎛

⎜

⎜

⎝

1 −

t

∫
0

ℎ(�)d�
⎞

⎟

⎟

⎠

‖∇z‖22 + 2 ∫
Ω

|∇z|p(x)

p(x)
dx −

2 
q ∫

Ω

|z|qlog|z|dx +
2 
q2

‖z‖qq

−2
⎛

⎜

⎜

⎝

1 −

t

∫
0

ℎ(t − �)d�
⎞

⎟

⎟

⎠

‖∇z‖22 − 2∫
Ω

|∇z|p(x)dx + 2∫
Ω

|z|qlog|z|dx

+2

t

∫
0

ℎ(t − �)∫
Ω

∇z(x, t) (∇z(x, �) − ∇z(x, t)) dxd�,

≥ 2 E(t) +  ∫
Ω

ℎ(t − �)‖∇z(x, �) − ∇z(x, t)‖dxd� +
2 
q2

‖z‖qq + ( − 2)
⎛

⎜

⎜

⎝

1 −

t

∫
0

ℎ(t − �)d�
⎞

⎟

⎟

⎠

‖∇z‖22

+
(

2 
q
− 2

)

∫
Ω

|z|qlog|z|dx +
(

2 
p+

− 2
)

∫
Ω

|∇z|p(x)dx +

t

∫
0

ℎ(t − �)∫
Ω

∇z(x, t) (∇z(x, �) − ∇z(x, t)) dxd�.

By using (H2) and assuming |z| ≥ 1, we gain

N ′′(t) ≥ 2 E(t) +
[

( − 2)l +
(l − 1)
 

]

‖∇z‖22 +
(

2 
p+

− 2
)

∫
Ω

|∇z|p(x)dx +
2 
q2

‖z‖qq + 2
(

1 −
 
q

)

∫
Ω

|z|qlog|z|dx,

≥ 2 E(t).

From (37), we have

E(t) ≥ E(0) +

t

∫
0

∫
Ω

z2t (x, �)dxd�. (40)

Now, for � > 0 consider

N ′(t)2 ≤ 4(1 + �)
⎡

⎢

⎢

⎣

∫
Ω

t

∫
0

z(x, �)zt(x, �)d�dx
⎤

⎥

⎥

⎦

2

+
(

1 + 1
�

)

⎡

⎢

⎢

⎣

∫
Ω

z20(x)dx
⎤

⎥

⎥

⎦

2

.

Then, Holder’s inequality is used to get

N ′2 ≤ 4(1 + �)
⎛

⎜

⎜

⎝

∫
Ω

t

∫
0

z2(x, �)d�dx
⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

∫
Ω

t

∫
0

z2t (x, �)d�dx
⎞

⎟

⎟

⎠

+
(

1 + 1
�

)

⎡

⎢

⎢

⎣

∫
Ω

z20(x)dx
⎤

⎥

⎥

⎦

2

.

Since � > 0 is arbitrary, we choose 
 = � =
√

 
2
− 1 > 0, in order to get

N ′′(t)N(t) − (1 + 
)N ′(t)2 ≥ 2 AE(0) − (1 + 
)
(

1 + 1
�

)

⎡

⎢

⎢

⎣

∫
Ω

z20(x)dx
⎤

⎥

⎥

⎦

2

. (41)

Since we have (40) and E(0) > 0, in equation(41) we choose A > 0 large enough such that

N ′′(t)N(t) − (1 + 
)N ′(t)2 > 0. (42)
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here we conclude that z blows up at a finite time T ⋆ by Levine’s12 concavity method. By choosing A as,

A =

(1 + 
)
(

1 + 1
�

)
⎡

⎢

⎢

⎣

∫
Ω

z20(x)dx
⎤

⎥

⎥

⎦

2

2 E(0)
,

we get an upper bound for the finite time of blow up T ⋆ given by

0 < T ⋆ ≤
(1 + 
)

(

1 + 1
�

)

‖z0‖22
2 
E(0)

. (43)

5 LOWER BOUND FOR BLOW-UP TIME

Now, our goal is to obtain a lower bound for the blow up time of solutions of (1)when � = � = 1, when the solutions blow up
at a finite time T ⋆.

Theorem 5. Let z be a weak solution of (1). If z blows up at finite time T ⋆ then there exists a lower bound for blow up time,
given by

T ⋆ ≥

∞

∫
M(0)

d�
c3 + c4� + c5(�)

q+�
2

, (44)

where the constants c3, c4 and c5 will be specified later.

Proof. We start by defining

M(t) = ∫
Ω

|z(x, t)|2 + |∇z(x, t)|2dx, (45)

which gives

M ′(t) = 2∫
Ω

zztdx + 2∫
Ω

∇z∇ztdx,

= −2∫
Ω

|∇z|2dx − 2∫
Ω

|∇z|p(x)dx + 2

t

∫
0

ℎ(t − �)∫
Ω

∇z(x, �)∇z(x, t)dxd� + 2∫
Ω

|z|qlog|z|dx. (46)

Now define,

J1 = 2

t

∫
0

ℎ(t − �)∫
Ω

∇z(x, �)∇z(x, t)dxd�

= 2

t

∫
0

ℎ(t − �)∫
Ω

∇z(x, t) (∇z(x, �) − ∇z(x, t)) dxd� + 2

t

∫
0

ℎ(t − �)d�‖∇z‖22,

≤ 2l

t

∫
0

ℎ(t − �)d�‖∇z‖22 +
1
2l

t

∫
0

ℎ(t − �)‖∇z(x, �) − ∇z(x, t)‖22d� + 2

t

∫
0

ℎ(t − �)d�‖∇z‖22,

≤ 2l(1 − l)‖∇z‖22 + 2(1 − l)‖∇z‖
2
2 + J2,
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where

J2 =
1
2l

t

∫
0

ℎ(t − �)‖∇z(x, �) − ∇z(x, t)‖22d�,

= 1
l

⎡

⎢

⎢

⎣

J (z(t)) − 1
2

⎛

⎜

⎜

⎝

1 −

t

∫
0

ℎ(�)d�
⎞

⎟

⎟

⎠

‖∇z‖22 − ∫
Ω

|∇z|p(x)

p(x)
dx + 1

q ∫
Ω

|z|qlog|z|dx − 1
q2
‖z‖qq

⎤

⎥

⎥

⎦

,

≤
J (z0)
l

− 1
2
‖∇z‖22 −

1
l ∫
Ω

|∇z|p(x)

p(x)
dx + 1

lq ∫
Ω

|z|qlog|z|dx − 1
lq2

‖z‖qq .

Substituting the bounds for J1 and J2 in (46), we get

M ′(t) ≤ −2‖∇z‖22 − 2∫
Ω

|∇z|p(x)dx + 2∫
Ω

|z|qlog|z|dx + 2l(1 − l)‖∇z‖22 + 2(1 − l)‖∇z‖
2
2 +

J (z0)
l

−1
2
‖∇z‖22 −

1
l ∫
Ω

|∇z|p(x)

p(x)
dx + 1

lq ∫
Ω

|z|qlog|z|dx − 1
lq2

‖z‖22,

≤
(

2 + 1
lq

)

∫
Ω

|z|qlog|z|dx + 2(1 − l2)‖∇z‖22 +
J (z0)
l

. (47)

By the equation(19), we have

∫
Ω

|z|qlog|z|dx ≤ (e�)−1‖z‖q+�q+� .

Now, Sobolev embedding gives

∫
Ω

|z|qlog|z|dx ≤ �1(e�)−1‖∇z‖
q+�
2 ,

where �1 is the embedding constant. Hence we get

M ′(t) ≤
(

2 + 1
lq

)

�1(e�)−1‖∇z‖
q+�
2 + 2(1 − l2)‖∇z‖22 +

J (z0)
l

,

≤ c3 + c4M(t) + c5M(t)
q+�
2 , (48)

where c3 =
J (z0)
l
, c4 = 2(1 − l2) and c5 =

(

2 + 1
lq

)

�1(e�)−1. Integrating the inequality (48) from 0 to t, we get

M(t)

∫
M(0)

d�
c3 + c4� + c5(�)

q+�
2

≤ t. (49)

Finally, this gives, if the solution blows up at a finite time T ⋆ then we get a lower bound for T ⋆ given by

T ⋆ ≥

∞

∫
M(0)

d�
c3 + c4� + c5(�)

q+�
2

. (50)

Hence the proof.

CONCLUSION

We established the existence result for the problem (1) and obtained a lower bound for the blow up time- if the solution blows
up at finite time- using differential inequality technique. Here, we felt difficulty in obtaining the estimates properly to show the
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existence of finite time blow up. However, in the absence of the term involving �, we could show the solutions blow up at finite
time for the parabolic problem so obtained. Moreover, an upper bound for this blow up time is also derived.
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