References
Abegg R. (1899). Untersuchungen über die Chemischen Affinitäten.Abhandlungen aus den Jahren 1864, 1867, 1879. Leipzig: Wilhelm
Engelmann.
Ainsworth E.A. & Bush D.R. (2011) Carbohydrate export from the leaf: A
highly regulated process and target to enhance photosynthesis and
productivity. Plant Physiol. 155, 64–69.
Athanasiou K., Dyson B.C., Webster R.E & Johnson G.N. (2010). Dynamic
acclimation of photosynthesis increases plant fitness in changing
environments. Plant Physiol. 152, 366–373.
Arnold A. & Nikoloski Z. (2014). Bottom-up reconstruction of
Arabidopsis and its application to determining the metabolic costs of
enzyme production. Plant Physiol. 165, 1380–1391.
Arrhenius S.A. (1889). Über die Dissociationswärme und den Einfluß der
Temperatur auf den Dissociationsgrad der Elektrolyte. Physikal.
Chemie 4, 96–116.
Bakera J.W., Schubert M. & Faberb M.H. (2008). On the assessment of
robustness. Structural Safety 30, 253–267.
Beck J.B., Schmuths H. & Schaal B.A. (2008). Native range genetic
variation in Arabidopsis thaliana is strongly geographically structured
and reflects Pleistocene glacial dynamics. Mol. Ecol. 17,
902–915.
Changnon S.A., Pielke R.A.Jr., Changnon D., Sylves R.T. & Pulwarty R.
(2000). Human factors explain the increased losses from weather and
climate extremes. Americ. Meterol. Soc. 81, 437–442.
Chia D.W., Yoder T.J., Reiter W.-D. & Gibson S.I. (2000). Fumaric acid:
an overlooked form of fixed carbon in Arabidopsis. Planta 211,
743–751.
Christensen B. & Nielsen J. (2000). Metabolic network analysis. A
powerful tool in metabolic engineering. Adv. Biochem. Eng.
Biotechnol. 66, 209–231.
Ding Y., Shi Y. & Yang S. (2020). Molecular regulation of plant
responses to environmental temperatures. Mol. Plant. 13, 544-564.
Dyson B.C., Allwood J.W., Feil R., Xu Y., Miller M., Bowsher C.G.,
Goodacre R., Lunn J.E. & Johnson G.N. (2015). Acclimation of metabolism
to light in Arabidopsis thaliana: the glucose 6-phosphate/phosphate
translocator GPT2 directs metabolic acclimation. Plant, Cell &
Environ. 38, 1404–1417.
Dyson B.C., Miller M.A.E., Feil R., Rattray N., Bowsher C.G., Goodacre
R., Lunn J.E. & Johnson G.N. (2016). FUM2, a cytosolic fumarase, is
essential for acclimation to low temperature in Arabidopsis thaliana.
Plant Physiol. 172, 118–127.
Elias M., Wieczorek G., Rosenne S. & Tawfik D.S. (2014). The
universality of enzymatic rate-temperature dependency. Trends
Biochem. Sci. 39, 1–7.
Faust K., Dupont P., Callut J., van Helden J. (2010). Pathway discovery
in metabolic networks by subgraph extraction. Bioinformatics 26,
1211–1218.
Fernie A.R. & Martinoia, E. (2009). Malate Jack of all trades or master
of a few? Phytochem . 70, 828–832.
Frainay C. & Jourdan F. (2017). Computational methods to identify
metabolic sub-networks based on metabolomic profiles. Brief.
Bioinform. 18, 43–56.
Freeman L.C. (1977). A Set of Measures of Centrality Based on
Betweenness. Sociometry 40, 35–41.
Gerstl M.P., Klamt S., Jungreuthmayer C. & Zanghellini J. (2016). Exact
quantification of cellular robustness in genome-scale metabolic
networks. Bioinformatics . 32, 730–737.
Gnan S., Priest A., Kover P.X. (2014). The genetic basis of natural
variation in seed size and seed number and their trade-off using
Arabidopsis thaliana MAGIC lines. Genetics 198, 1751–1758.
Herrmann H.A., Schwartz J.-M. & Johnson G.N. (2019a). Metabolic
acclimation—a key to enhancing photosynthesis in changing
environments? J. of Exp. Bot. 12: 3043–3056.
Herrmann H.A., Schwartz J.-M. & Johnson, G.N. (2019b). From empirical
to theoretical models of light response curves-linking photosynthetic
and metabolic acclimation. Photosynth. Res.doi:10.1007/s11120-019-00681-2.
Herrmann H.A., Dyson B.C., Vass L., Johnson G.N. & Schwartz J.-M.
(2019c). Flux sampling is a powerful tool to study metabolism under
changing environmental conditions. npj Sys. Biol. & App. 3, 32.
Hikosaka K., Ishikawa K., Borhigidai A., Muller O. & Onoda Y. (2006).
Temperature acclimation of photosynthesis: mechanisms involved in the
changes in temperature dependence of photosynthetic rate. J. of
Exp. Bot. 57, 291–302.
Holme P. (2011). Metabolic Robustness and Network Modularity: A Model
Study. PLoS One 6, e16605.
Hooke R. & Jeeves T. (1961) Direct search solutions of numerical and
statistical problems. J. of the Assoc. for Computing Machinery.8, 212-229.
Hurry V., Strand Å., Furbank R. & Stitt M. (2000). The role of
inorganic phosphate in the development of freezing tolerance and the
acclimatization of photosynthesis to low temperature is revealed by the
pho mutants of Arabidopsis thaliana. The Plant J. 24, 383–396.
Jeong H., Tombor B., Albert R., Oltvai Z.N. & Barabasi A.L. (2000). The
large-scale organization of metabolic networks. Nature 407,
651–654.
Jeong H., Mason S.P., Barabasi A.L. & Oltvai Z.N. (2001). Lethality and
centrality in protein networks. Nature 411, 41–42.
Johnson, G.N. & Murchie E. (2011). Gas exchange measurements for
determination of photosynthetic efficiency in Arabidopsis leaves.
Method. in Molec. Biol. 775, 311–326.
Kaplan F., Kopka J., Haskell D.W., Zhao W., Schiller K.C., Gatzke N.,
Sung D.Y. & Guy C.L. (2004). Exploring the temperature-stress
metabolome of Arabidopsis. Plant Physiol. 136, 4159–4168.
King J.P. & Jewett W.S. (2010). Robustness Development and Reliability
Growth: Value Adding Strategies for New Products and Processes. Pearson
Education, Technology & Engineering .
Kitano H. (2002). Systems biology: A brief overview. Science 295,
1662–1664.
Kitano H. (2004). Biological Robustness. Nat. Rev. Genetics 5,
826–837.
Kovermann P., Meyer S., Hortensteiner S., Picco C., Scholz-Starke J.,
Ravera S., Lee Y., Martinoia E. (2007) The Arabidopsis vacuolar malate
channel is a member of the ALMT family. Plant J. 52, 1169-1180.
Lalonde S., Tegeder M., Throne-Holst M., Frommer W.B. & Patrick J.W.
(2003) Phloem loading and unloading of sugars and amino acids.Plant, Cell & Environm. 26, 37–56.
Lazebnik Y. (2003). Can a biologist fix a radio? – Or, what I learned
while studying apoptosis. Cancer Cell 2, 179–182.
Lesk C., Rowhani P. & Ramankutty N. (2016). Framing the way to relate
climate extremes to climate change. Nature 529, 84–87.
Lewis N.E., Nagarajan H. & Palsson B.O. (2012). Constraining the
metabolic genotype-phenotype relationship using a phylogeny of in silico
methods. Nat. Rev. Microbiol. , 10, 291-305.
O’Leary B., Park J. & Plaxton W.C. (2011). The remarkable diversity of
plant PEPC (phosphoenolpyruvate carboxylase): recent insights into the
physiological functions and post-translational controls of
non-photosynthetic PEPCs. Biochem J. 436, 15–34.
Powell J.P. & Reinhard S. (1993). Photosynthesis, photoinhibition and
low temperature acclimation in cold tolerant plants. Photosyn.
Res. 37, 19–39.
Powell J.P. & Reinhard S. (2016). Measuring the effects of extreme
weather events on yields. Weather Clim. Extr. 12, 69–79.
Pracharoenwattana I., Zhou W., Keech O., Francisco P.B., Udomchalothorn
T., Tschoep H., Stitt M., Gibon Y. & Smith S.M. (2010). Arabidopsis has
a cytosolic fumarase required for the massive allocation of
photosynthate into fumaric acid and for rapid plant growth on high
nitrogen. Plant J. 1, 785–795.
Rausanda M. & Øienb K. (1996). The basic concepts of failure analysis.Reliab. Eng. & Sys. Safety 53, 73–83.
Riewe D., Jeon H.-J., Lisec J., Heuermann M.C., Schmeichel J., Seyfarth
M., Meyer R.C., Willmitzer L. & Altmann T. (2016). A naturally
occurring promoter polymorphism of the Arabidopsis FUM2 gene causes
expression variation and is associated with metabolic and growth traits.The Plant J. 88, 826–838.
Saa P.A. & Nielsen L.K. (2017) Formulation, construction and analysis
of kinetic models of metabolism: A review of modelling frameworks.Biotechnol. Adv. 35, 981–1003.
Sadras V.O. (2007). Evolutionary aspects of the trade-off between seed
size and number in crops. Field Crops Research 100, 125–138.
Scott I.M., Ward J.L., Miller S.J. & Beale M.H. (2014). Opposite
variations in fumarate and malate dominate metabolic phenotypes of
Arabidopsis salicylate mutants with abnormal biomass under chilling.Physiol. Plant. 88, 660–674.
Smith A. & Stitt M. (2007). Coordination of carbon supply and plant
growth. Plant, Cell, & Environ. 30, 1126–1149.
Stamatis D.H. (1995). Failure Mode and Effect Analysis: FMEA from Theory
to Execution. ASQC Quality Press 53, Milwaukee, Wisc.
Stitt M. & Hurry V.A. (2002). plant for all seasons: alterations in
photosynthetic carbon metabolism during cold acclimation in Arabidopsis.Curr. Opinion Plant Biol. 5, 199–206.
Strand Å., Foyer C.H., Gustafsson P., Gardeström P. & Hurry V. (2003).
Altering flux through the sucrose biosynthesis pathway in transgenic
Arabidopsis thaliana modifies photosynthetic acclimation at low
temperatures and the development of freezing tolerance. Plant,
Cell, & Env. 26, 523–535.
Streb S. & Zeemana SC. (2012). Starch Metabolism in Arabidopsis.Arabidop. Book 10, e0160.
Timm S., Mielewczick M., Florian A., Frankenback S., Dreissen A., Hocken
N., Fernie A.R., Walter A. & Bauwe H. (2012). High-to-Low
CO2 acclimation reveals plasticity of the
photorespiratory pathway and indicates regulatory links to cellular
metabolism of Arabidopsis. PLoS One 7, e42809.
Trenberth K.E. (2012). Framing the way to relate climate extremes to
climate change. Climatic Change 115, 283–290.
Webber A.N., Nie G.-Y. & Long S.P. (1994). Acclimation of
photosynthetic proteins to rising atmospheric CO2.Photosynth. Res. 39, 413–425.
Weise S.E., Liu T., Childs K.L., Preiser L.P., Katulski H.M.,
Perrin-Prozondek C. & Sharkey T.D. (2019). Transcriptional regulation
of the glucose-6-phosphate/phosphate translocator 2 is related to carbon
exchange across the chloroplast envelope. Front. Plant Sci. 10,
827.
Wilkinson T.L. & Douglas AE. (2003). Phloem amino acids and the host
plant range of the polyphagous aphid, Aphis fabae. Entomol. Exp.
Appl. 106, 103–113.
Yamori W., Hikosaka K. & Way D.A. (2014). Temperature response of
photosynthesis in C3, C4, and CAM plants: temperature acclimation and
temperature adaptation. Photosyn. Res. 119, 101–117.
Yassine A.A. (2007). Investigating product development process
reliability and robustness using simulation. J. of Eng. Design18, 545–561.
Zell M.B., Fahnenstick H., Maier A., Saigo M., Voznesenskaya E.V.,
Edwards G.E., Andreo C., Schleifenbaum F., Zell C., Drincovich M.F. &
Maurino V.G. (2010). Analysis of Arabidopsis with highly reduced levels
of malate and fumarate sheds light on the role of these organic acids as
storage molecules. Plant Physiol. 152, 1251–1562.
Zhang Q., Kong X., Yu Q., Ding Y., Li X. & Yang Y. (2019). Responses of
PYR/PYL/RCAR ABA receptors to contrasting stresses, warm and cold in
Arabidopsis. Plant Signal Behav. 14, 1670596.
Zubimendi J.P., Martinatto A., Valacco M.P., Moreno S., Andreo C.S.,
Drincovich M.F. & Tronconi M.A. (2018). The complex allosteric and
redox regulation of the fumarate hydratase and malate dehydratase
reactions of Arabidopsis thaliana Fumarase 1 and 2 gives clues for
understanding the massive accumulation of fumarate. FEBS J. 285,
2205–2224.