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Abstract

In general, the basic reproduction number (R0) cannot be explicitly calculated for HIV(Human Immunod-

eficiency Virus) infection model with age-structured in a infinite dimensional spaces. To find R0, we need

to transform the HIV model into a finite-dimensional space. In this paper, we are absorbed in numerical

approximation of R0, which is the non-negative dominant eigenvalues of the positive irreducible matrices

whose spectrum radius is defined as the next generation matrix. The linear operators generated by infected

population are discretized into ordinary differential equations in a finite n-dimensional space. Thus, the

abstract problem is transformed to find the positive dominant eigenvalues of the next generation matrix, we

obtain a threshold R0,n. Based on the spectral approximation theory, we show that R0,n → R0 as n→ +∞.

Finally, by virtue of a numerical simulation, we demonstrate the results of the theorem.
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1. Introduction

As far as we know, HIV is a malignant infectious disease with a very high fatality rate, which brings

great harm to human life and health. When the body infected with HIV, the body’s immune cells could be

destroyed and the human immune system can be reduced, causing the infected person to gradually lose the

ability to resist various diseases and eventually lead to death. Generally, HIV can be transmitted through

two fundamental modes, the direct cell-to-cell transmission[1–4] and the classical virus-to-cell infection[5–7].

During both infection modes, the virus-to-cell transmission can occur from infected cells to healthy cells, for

the cell-to-cell transmission, HIV infection be considered as uninfected cells are only infected by the movement

of viruses. To analyze the pathogenesis of HIV infection, some people considered the HIV infection model

with both virus-to-cell and cell-to-cell transmission[8–10], and using R0 to understand threshold dynamics
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of HIV infection model. In[8], on the basics of the basic reproduction number, Yang completed the global

stability analysis of the model. In [9], Wang et al. proved the local stability of HIV infection model. In[10],

Wang showed that the model has a threshold dynamics.

It is worth noting that the article mentioned above are based on the analysis of ordinary differential

equation (ODE) model. In fact, the HIV infection model is also related to age, at the same time, the age

structure makes the biological manifestation of HIV-1 infection more real[11]. Therefore, it is necessary

to study HIV infection model with age structure. The literature [12] explored the effects of two infection

patterns on virus generation and transmission by establishing a hybrid model of age-structure. In [13],

Shen et al. investigated that the basic reproduction number is sensitive to some parameters and the effect

of parameters on infected individuals. In [14], by constructing proper Lyapunov function, the dynamic

properties of age structure model are established. The results show that the global asymptotic stability

depends on the size of the basic reproduction number. Although they gave the expression form of the R0,

which is the non-negative dominant eigenvalues of the positive irreducible matrices whose spectrum radius

is defined as the next generation matrix. On account of the partial differential equation contains the age

structure and the integral terms, for example[14], R0 = ks
∫ a+

0
p(a)σ(a)da/dc, so that it is difficult to give

the numerical solution of R0. Therefore, it is more important to approximate the basic reproduction number

by numerical methods.

In[15, 16], The author investigated the numerical approximation of the basic reproduction number for

SIRS (Susceptible-Infective-Recovered-Susceptible) models. However, there are few studies on the calculation

of the basic reproduction number of the HIV model. Therefore, in order to better understand the numerical

solution of basic reproductive number. In this paper, our main goal is to give the numerical approximation of

the basic reproduction number for an age-structured HIV infection model with both virus-to-cell and cell-to-

cell transmissions, we use the backward Euler method to discretize the HIV model into a finite dimensional

space, so that we can find the non-negative dominant eigenvalues of the positive irreducible matrices whose

spectrum radius is defined as the next generation matrix. Subsequently, based on spectral approximation

theory[17], we provide the next generation operator under relatively weak conditions and obtain the numerical

solution of R0.

The structure of the article is as follows, next, we consider HIV transmission models of the age structure

in virus-to-cell and cell-to-cell in Section 2, by the spectral radius of a linear operator, we obtain R0. In

Section 3, we apply the spectral approximation theory to present the convergence theorem of the basic

reproduction ratio. While, we give an assumption to prove that the generation operator is compact. In

Section 4, numerical simulation is given to prove the theoretical results. In Section 5 concluding remarks are

given .
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2. Model and basic reproduction number

Based on the work of Xu et al.[22], here, we add the effect of age after infection. In view of this, we

consider the following HIV transmission models of the age structure in virus-to-cell and cell-to-cell.

∂U(a, t)

∂t
+
∂U(a, t)

∂a
= −u(a)U(a, t)− β1U(a, t)W (t)− U(a, t)

∫ a†

0

β(a, ς)V (t, ς)dς,

∂V (a, t)

∂t
+
∂V (a, t)

∂a
= U(a, t)

∫ a†

0

β(a, ς)V (t, ς)dς − µ(a)V (a, t),

dW (t)

dt
=

∫ a†

0

l(a)V (a, t)da− cW (t),

(1)

with boundary condition

U(0, t) = s, V (0, t) = β1U(0, t)W (t), t > 0 (2)

and initial condition

H0 := (U(·, 0), V (·, 0),W (0)) = (U0(·), v0(·),W0) ∈ F , (3)

In (1), U(a, t) and V (a, t) represent the concentration of uninfected cells and infected cells of age a at time

t, respectively. W(t) represents the concentration of infectious virus at time t. where F = L1(0, a†) ×

L1(0, a†)× R+, L1(0, a†) is the set of all integrable functions on (0, a†),and R+ = [0,∞). Other parameters

are explained in Table 1.

Table 1: Definitions of all parameters

Parameters Description

s replacement rate of healthy cells

u(a) natural death rate of uninfected cells with age a

β1 transmission rate from infected cells to infected cells

β(a, ς) the age-dependent infection rate of productively infected cells

a† maximum age

µ(a) per capita mortality rate of infected cells with age

l(a) age-dependent viral production rate of infected cell

c the clearance rate of virions

Clearly, system (1) always exists an infection-free steady state E(se−
∫ a
0
u(s)ds, 0, 0). We substitute

U(a, t) = se−
∫ a
0
u(s)ds into the second equation of (1), then we define two linear operators on the space

X := L1(0, a†). 
Aν(a) := − d

da
ν(a)− µ(a)ν(a)

Fν(a) := se−
∫ a
0
u(s)ds

∫ a†

0

β(a, ς)ν(ς)dς,
(4)
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Dom(A) has the following definition

Dom(A) :=
{
ν ∈ X : ν is absolutely continuous on [0, a†],

d

da
ν ∈ X

}
.

Using operators A and F , we obtained the following abstract form of the second equation of system (1)

d

dt
V (t) = AV (t) + FV (t), V (0) = V0. (5)

By the method of variation of constant, we calculated that

−A−1ν(a) :=

∫ a

0

e−
∫ a
ς
µ(η)dην(ς)dς, ν ∈ X,

where A−1 is the inverse of A. Thus, The next generation operator K is defined as follows(see [18, 19])

Kν(a) := F(−A)−1ν(a) = se−
∫ a
0
u(s)ds

∫ a†

0

β(a, ς)

∫ ς

0

e−
∫ ς
ρ
µ(η)dην(ρ)dρdς.

Based on the definition in [20], R0 is defined as r(K), where r(K) is the spectral radius of the operator K.

3. Main result

Since the form of r(K) is abstract, we can not calculate R0 explicitly. To avoid misunderstanding, we

let ∆a := a†/n, am := m∆a, βmj := β(am, aj), um := u(am) and µm := µ(am),m, j = 1, 2, · · ·, n, Hence, we

discretize the following equation

d

dt
V (t) = AnV (t) + FnV (t), V (0) = V0 ∈ Xn (6)

here V (t) and V0 denote n−column vectors, An and Fn are n−square matrices with the following form

An :=


−µ1 − 1

∆a 0 · · · 0

1
∆a −µ2 − 1

∆a · · · 0
...

. . .
. . .

...

0 · · · 1
∆a −µn − 1

∆a


n×n

,

Fn :=


se−u(a1)∆aβ11∆a se−u(a1)∆aβ12∆a · · · se−u(a1)∆aβ1n∆a

se−u(a2)∆aβ21∆a se−u(a2)∆aβ22∆a · · · se−u(a2)∆aβ2n∆a
...

...
. . .

...

se−u(an)∆aβn1∆a se−u(an)∆aβn2∆a · · · se−u(an)∆aβnn∆a


Next, we define the next generation matrix Kn := Fn(−An)−1 and R0,n := r(Kn). While, we noticed that

r(Kn) > 0 with algebraic multiplicity 1 [21](Perron-Frobenius theorem). Pn : X → Xn and Jn : Xn → X
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are two bounded linear operators given as follows
(Pnν)m :=

1

∆a

∫ am+1

am

ν(a)da, m = 1, 2, · · · , n− 1, ν ∈ X,

(Jnψ)(a) :=

n−1∑
m=1

ψkχ(am,am+1](a), ψ = (ψ1, ψ2, · · · , ψn)> ∈ Xn,

(7)

where m is the mth entry of a vector, ψ> is the transpose of matrix ψ, and χ(am,am+1](a) is the indicator

function which implies that

χ(am,am+1](a) =

1, a ∈ (am, am+1],

0, a /∈ (am, am+1].

From Section 4.1 in [23], we know that for all n ∈ N, ‖Pn‖ ≤ 1 and ‖Jn‖ ≤ 1. We denote ‖ · ‖Xn is the norm

in Xn, and

‖ψ‖Xn := ∆a

n∑
m=1

|ψm|, ψ = (ψ1, ψ2, · · · , ψn)> ∈ Xn. (8)

Next, we apply the spectral approximation theory to present the convergence theorem of the basic

reproduction number.

Theorem 3.1. Assuming that K is compact, if for any ν ∈ X, lim
n→+∞

‖JnKnPnν − Kν‖X = 0, then

R0,n → R0 as n→ +∞, preserving algebraic multiplicity 1.

Proof. First, on the basis of [24] (Theorem 3) and [25] (Krein-Rutman theorem), we obtain K is strictly

positive and irreducible. Meanwhile, there is r(K) > 0. By a simple calculation, the inverse matrix of −An
is shown as follows

(−An)−1 =



1
µ1+ 1

∆a

0 · · · 0
1

∆a

(µ1+ 1
∆a )(µ2+ 1

∆a )
1

µ2+ 1
∆a

· · · 0

...
...

. . .
...

( 1
∆a )n−1∏n

k=1(µk+ 1
∆a )

( 1
∆a )n−2∏n

k=2(µk+ 1
∆a )
· · · 1

µn+ 1
∆a


, (9)

then we have

‖Knψ‖Xn = ‖Fn(−An)−1ψ‖Xn ≤ ∆a

n∑
m=1

se−u(a1)∆aβ∆a

µ

m∑
j=1

|ψj | ≤ a†
se−u∆aβ

µ
‖ψ‖Xn

here the upper bound of β is defined as β̄. the lower bounds of u and µ are u and µ, respectively . They are

both finite positive.

In addition, we give a following assumption to make that K is compact.

Assumption 3.2.

lim
g→0

∫ A

0

|π(a+ g)β(a+ g, ς)− π(a)β(a, ς)|da = 0 uniformly for ς ∈ R, (10)

here π0β is defined by π0(a)β(a, ς) = 0 for any a, ν ∈ (−∞, 0) ∪ (A,∞).
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Where

π(a) = e−
∫ a
0
µ(η)dη for a ∈ R†

The above assumption implies that the operator K keep the compactness [[19] Assumption 4.4]. In order to

prove JnKnPn converges to K point by point, we provide the following lemma.

Lemma 3.3. For all ν ∈ X, lim
n→+∞

‖JnKnPnν −Kν‖X = 0.

Proof. For any ν ∈ X, we obtain

‖JnKnPnν −Kν‖X

= ‖JnFn(−An)−1Pnν − F (−A)−1ν‖X

≤ ‖JnFn(−An)−1Pnν − JnFnPn(−A)−1ν‖X + ‖JnFnPn(−A)−1ν − F (−A)−1ν‖X

≤ ‖Jn‖‖Fn‖‖(−An)−1Pnν − Pn(−A)−1ν‖Xn + ‖JnFnPn(−A)−1ν − F (−A)−1ν‖X

≤ a†se−u∆a‖(−An)−1Pnν − Pn(−A)−1ν‖Xn + ‖JnFnPn(−A)−1ν − F (−A)−1ν‖X . (11)

Since ‖Jn‖ ≤ 1, and for any n ∈ N, ‖Fn‖ ≤ a†se
−u∆a, Next we estimate the first item in the right-hand of

(11), then

‖(−An)−1Pnν − (−A)−1Pnν‖Xn =‖(−An)−1Pn(−A)(−A)−1ν − (−An)−1(−An)Pn(−A)−1ν‖Xn

≤ ‖(−An)−1‖‖Pn(−A)(−A)−1ν − (−An)Pn(−A)−1ν‖Xn

≤ a†‖Pn(−A)ϑ− (−An)Pnϑ‖Xn ,

where ϑ := (−A)−1ν ∈ D(A), and for any ψ = (ψ1, ψ2, · · · , ψn)> ∈ Xn,

‖(−An)−1ψ‖Xn ≤ ∆a

n∑
m=1

1

µ+ 1
∆a

m∑
j=1

|ψj | ≤ ∆a

n∑
m=1

∆a

m∑
j=1

|ψj | = a†‖ψ‖Xn ,

we obtain

‖(−An)−1Pnν − (−A)−1Pnν‖Xn

≤a†∆a
n∑

m=1

∣∣∣ 1

∆a

∫ am

am−1

( d
da
ϑ(a) + µ(a)ϑ(a)

)
da−

1
∆a

∫ am
am−1

ϑ(a)da− 1
∆a

∫ am−1

am−2
ϑ(a)da

∆a
− µm

∆a

∫ am

am−1

ϑ(a)da
∣∣∣,

where a0 = a−1 = 0. By the mean value theorem, we have

‖(−An)−1Pnν − (−A)−1Pnν‖Xn

≤a†∆a
n∑

m=1

∣∣∣ d
da
ϑ(ηm) + µ(ηm)ϑ(ηm)− 1

∆a
(ϑ(εm)− ϑ(εm−1))− µmϑ(εm)|

≤a†∆a
n∑

m=1

(∣∣∣ d
da
ϑ(ηm)− d

da
ϑ(ζm)

∣∣∣+
∣∣∣µ(ηm)ϑ(ηm)− µ(m)ϑ(εm)

∣∣∣)
≤a2
†

[
ω(ϑ′, 2∆a) + ω(µ,∆a)ω(ϑ,∆a)],
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where ω(f, r) denotes the modulus of continuity. We know that ω(f, r) is defined by sup|y−z|≤r |f(y)− f(z)|

with the following property

ω(f, r)→ 0, as r → 0.

Hence, ‖(−An)−1Pnν − (−A)−1Pnν‖Xn → 0 holds. Then we consider the second term of (11) as follows

‖JnFnPn(−A)−1ν − F (−A)−1ν‖X = ‖JnFnPnϑ− Fϑ‖X

=

n∑
m=1

∫ am+1

am

∣∣∣ n∑
j=1

sπmβmj

∫ aj

aj−1

ϑ(ς)dς −
∫ a†

0

sπ(a)β(a, ς)ϑ(ς)dς
∣∣∣da

≤s
n∑

m=1

∫ am+1

am

n∑
j=1

∫ aj

aj−1

∣∣∣πmβmj − π(a)β(a, ς)
∣∣∣∣∣∣ϑ(ς)

∣∣∣dςda
≤sa†ω(π,∆a)ω(β,∆a)‖ϑ‖X → 0 as n→ +∞,

(12)

where ω(π,∆a)→ 0(∆a→ 0) and ω(β,∆a)→ 0(∆a→ 0), respectively. Hence,

‖JnFnPn(−A)−1ν − F (−A)−1ν‖X → 0.

Combine the above discussion, we have lim
n→+∞

‖JnKnPnν −Kν‖X = 0.

As a result, from Assumption 3.2 and Lemma 3.3, we know that Theorem 3.1 holds. Namely, R0,n → R0

as n converges to +∞, preserving algebraic multiplicity 1[26].

4. Numerical simulations

To further illustrute the results of the theorem, we present a numerical simulation. At the moment, the

values of these parameters in system (1) are as follows a† = 100, s = 105, u(a) = 0.2(1 + a3

106 ), β(a, ς) =

kJ(a− ς), here k=0.0003 and J(x) = 0.6(−x2 + 1002)× 10−6 + 0.001 ([15])is a normalized distance function.

µ(a) = 0.03 + 0.32(a− 52).Thus, we can easily verify that assumption 3.2 hold.

|π(a+ g)β(a+ g, ς)− π(a)β(a, ς)|

≤ 0.6k × 10−6| − π(a+ g)(a+ g − ς)2 + π(a)(a− ς)2 + 1002(π(a+ g)− π(a))|+ 0.001k|π(a+ g)− π(a)|

≤ 0.6k × 10−6|(−π(a+ g) + π(a))(a− ς)2 − π(a+ g)2g(a− ς)− g2π(a+ g)|+ 0.0007k|π(a+ g)− π(a)|

≤ (0.6k × 10−6ω2 + 0.007k)|π(a+ g)− π(a)|+ (2ωg + g2)π̄ −→ 0 as h −→ 0 uniformly for ςεR,

Define the π̄ is the upper bound of π. By calculating we get R0,1000 ≈ 2.647322605581397 =: R∗ as a

threshold value for R0. In Figure 1, we give the images of R0,n and error (R∗ −R0,n), respectively. From

figure 1(a), we see that R0,n increases as n increases . We note that diseases persist and eventually become

endemic. From figure 1(b), we see that the error (R∗ − R0,n) → 0 as n increase. In table 2, we give the

numerical value of R0,n, and we can see R0,n converges to R0 as n→ +∞.

7



10
1

10
2

10
3

0

0.5

1

1.5

2

2.5
 R

s 0,
n

n

(a)

10
1

10
2

10
3

0

0.5

1

1.5

2

2.5

E
rr

or
  R

* s−
R

s 0
,n

n

(b)

Figure 1: (a) Graphic of the threshold R0,n ; (b) the error R∗ −R0,n in regard to the reference value R∗ = 2.647322605581397

.

Table 2: Numerical value of R0,n.

n R0,n

10 0.039168237289443

50 0.797849417727710

100 2.463366617482032

500 2.642085560275887

1000 2.647322605581397

R∗ 2.647322605581397

5. Concluding remarks

Here, we consider HIV transmission models of the age structure. Generally, R0 cannot be explicity

calculated for an age-structured HIV infection model in an infinite dimensional space. Hence, we discretized

the equation (6) into a finite space. Subsequently, we apply the spectral approximation theory to present the

convergence theorem of the basic reproduction ratio. In addition, we proved that K is compact. Finally, to

verify the results of the theorem, we present a numerical simulation. In figure 1 and table 2, we see that Rn
increases as n increases, and the error (R∗ −R0,n)→ 0 as n increase. For such problems, proof of pointwise

convergence in Lemma 3.3 is still more challenging in future research.
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