On the geometrical sensitivity of the EEG inversion algorithm
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Abstract

The relative algorithms existing in medical devices for the identification of excitation
sources inside the brain using EEG data are based on the assumption that the
geometry of the brain-head system is spherical. So, taking EEG measurements from a
realistic ellipsoidal model and using these data in a spherical model leads to a
structural error. The purpose of the present work is to estimate this geometrical error.
The results show that for ellipsoids with small principal eccentricities the errors are
not significant. However these errors become bigger as the eccentricities increase and
this is a general result that becomes available for any related applications of this

inverse problem.

Introduction
It is well known that the electric excitation of the brain is due to an equivalent electric
dipole in the interior of the brain which generates an electric and a magnetic field,
both in the interior and exterior of the brain [2, 11]. The electric and magnetic fields
are measured on the surface and the exterior of the head via the EEG and MEG,
respectively [3, 10, 19]. The bioelectromagnetism problem is solved in both spherical
and ellipsoidal geometry. Given the current, the direct EEG problem consists of
finding the electric potential [4, 12], while the inverse EEG problem consists of
finding the current from the given EEG measurements once we know the geometry of
the brain [6, 7]. Direct mathematical problems are well-posed, while the inverse

problems are ill-posed, due to lack of uniqueness [15]. In order to work with the

inverse and the forward EEG problems, we have to make certain assumptions,
concerning the electrochemical source and the conductor that models the human
brain. The most popular source model is a current dipole with fixed moment and
location inside the brain. As far as the brain itself is concerned, in most of the work

that has been published, it is considered to be a homogeneous or a partially

1



homogeneous conductor [14, 16]. The most popular geometrical model is the
spherical one, although the ellipsoidal geometry it best fits the anatomical model of
the human brain [1, 9, 13].

In this work we use the solution of inverse problems in spherical and ellipsoidal
geometry in order to develop analytic connection relations, aiming to compare the

results of the present paper.
1. Statement of the problem

Let Q be a bounded, connected and finite homogeneous conductor with a smooth
boundary S=0Q. The domain € provides a simplified geometrical model of the brain

as an isotropic and homogeneous conductor with conductivity c. A neuronal current
P
J" with support in Q generates the electric and magnetic activity that is generated

P
from J  is governed by the Quasi-Static Theory of Electromagnetism.
I. Ellipsoidal system

Let S. denotes the triaxial ellipsoid which in rectangular coordinates is specified by
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where are its semi-axes.

The basic ellipsoid (1) introduces an ellipsoidal system with coordinates (p, p, v)

hl h2 h3

and semi-focal distances , , where
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The ellipsoidal coordinates (p, p, v), involve the ellipsoidal variable P E[hy,+o0)

vE[-h,,h,]
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and the hyperboloidal variables and

The transformation from ellipsoidal to Cartesian to coordinates is given by
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The coordinate p plays the role of the radial variable r, while p and v correspond to

the angular variable 0 and ¢ in spherical coordinates.

The ellipto-spherical coordinate system (p ’98’(/)5) combines the ellipsoidal
variable that specifies the family of confocal ellipsoids with the eccentric angular

variables of the spherical system. It is defined by

x,=pcosh_ h,<p<+o0
x,=1p°—h3sinf, cosg, 0<6,<n (4)
x3:\/pz—hgs.inegsimp‘,3 0<o.<2m

In ellipsoidal coordinates, the surface S, given in (1) corresponds to P=%1  and it

represents the boundary of the brain. The interior space V- is defined by the interval
p€lhy.a,) and it is characterized by the conductivity o. The exterior to S., non-

conductive space V' is defined by = (al’ OO)
I1. Spherical system

We assume now that the domain € is a sphere of radius @ centered at the origin.

Let S, denotes a sphere which in rectangular coordinates is specified by
e =d )

In spherical coordinates, the surface S, given in (5) corresponds to r=a and it

represents the boundary of the brain. The interior space V- is defined by the interval



r E[O,G) and it is characterized by the conductivity c. The exterior to S,, non-

conductive space V* is defined by T E(a,»)

In the interior of a homogeneous ellipsoidal/spherical conductor V' there exists a

primary current dipole source given by
P

where 0 stands for the Dirac measure at a fixed point r,with a dipole moment equal

to Q.

P
) J (r) induces an electric field E in the interior conductive
The primary current

P
space, which in turn generates an inductive volume current with density J (r )

J'(r)=0-E(r)

(7

resulting to the total current density

®)

The current J generates an electromagnetic wave, which propagates in the interior as
well as in the exterior to the conducting space. Because of the values of the dielectric
constant and the electric conductivity of the brain tissue, quasistatic approximation of
Maxwell’s equations is considered [17, 18]. Therefore the electric field E and the

magnetic induction field B satisfy the following equations
VXE=0
©)
VxB=p,J
(10)



(an

(12)

where L, 1s the value of the magnetic permeability in the whole space.

Since E is irrotational, it can be represented by an electric potential u, such that
E(r)=—Vul(r]
(13)

The potential u is the field recorded in any electroencephalogram. In particular, we
denote the electric potential in the interior space V by u and in the exterior space V"

by u" . Combining equations (8), (13) and (10) we obtain the Poisson equation

Au_(r):%VJp(r) ey

(14)

which the interior potential u- must satisfy in V- .

In the source-free space V+ the potential u+ and solve the Laplace equation

M (r)=0  rev*

(15)

On the surface S the following transmission conditions hold

u'(r)=u (r) res
(16)

op res
(17)



where the outward normal differentiation on the surface is considered. Conditions
(16)-(17) state the continuity of the potential function as well as the continuity of the
normal component of current density on S.

In addition the asymptotic behavior at infinity

r—> oo

(18)

Separation of variables for Laplace’s equation in the ellipsoidal coordinate system

leads to the Lamé equation

(x*=h3)(x*=h5) E (x)+x(2x*=hi—h})E (x)+[(h3+h3)P—n(n+1)x*] E(x)=0

(19)

for each one of the factors E(p), E(u) and E(v) that form the interior harmonic

function

IE; (p,p,v)==E, (p) E; (1) E; (V)
(20)

In Eq. (19) the parameters P and n are constants that define, in a complicated way, the
degree n and the order m of the interior ellipsoidal harmonic (20).

The corresponding exterior ellipsoidal harmonic assumes the form

Iy (p,p,v )==(2n+1)IE; (p, v ) I (1)

21)
The p-dependent functions I nm(p ) are elliptic integrals of the form
+00 dt
Iip)=
=L e
(22)

foreachn=0,1,2,...,andm=1,2,...,2n+ 1.

m m
The products E, (” )’ E, (V) defined on the surface of any specific ellipsoid, are
known as surface ellipsoidal harmonics and they form a complete orthogonal set of

surface eigenfunctions, with respect to the weighting function



L (1, v)=[(a =) a2 T2
(23)

corresponding to the ellipsoid p=a,

m
We define the normalization constants 'n  as

va= [

p=a,

(24)

E;(n)E;(v)

In the present work the following normalization constants are to be used:

Yo=4n
(25)
m 4nhih§h§
Yi=—5
R m=1,2,3
(26)
8n '
1= 8% (A ) A=) A-a) At
(27)
2= (-n) (A -) (A -a3) (A -ad)
Y= 5 oy a, oy
(28)
—m_4m
YS :Eh%hghghrzn m=1.2.3
(29)
where




2. The Exterior Electric Potential

In order to apply the transimission conditions to the problem, one has to assume that
the solution has an eigenfunction expansion in the appropriate coordinate system. The
first step is to determine the coefficients of u” by solving the interior problem (14),
(17). Then the value of u” on the ellipsoidal surface S provides the Dirichlet data in
order to solve the exterior Dirichlet problem (15), (16), (18). The basic notation for

the spectral decomposition of the Laplace operator in ellipsoidal coordinates can be
m m

found in [4, 5], where the ellipsoidal harmonics IE, (P:F”V) and IF, (P,H,V)

that are used in this work as well as useful relations connecting them, can be found.

The solution of (15) is an exterior harmonic function that assumes the:

» ellipsoidal expansion

2n+1

kaFm (p,p,v), p>«a

+

(p,u,v)=

12

0 M8
I M

» spherical expansion

u:(r,H,(p)zz Z 1221 nl”YT(B,(p), r>a, (32)

n=0 m=—n r

And satisfy automatically the asymptotic condition (18).
3. Connection between algorithms
The exterior EEG potential in spherical coordinates (32) at a fixed point

A(1,0,0), T=v>ais,
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for n=0,1,2 and m =-2,0,1,2.

The exterior EEG potential in ellipsoidal coordinates (31) at a fixed point
A(7,0,9)=A(p,1v) is:

eAp/,lv ZkaIFmppv =
uy 4 (P, v )=ko IF g p, v F KU IF (p, p,v )+ K IFS (o, v ) 4K IF (o, v )+
KN IFL (p, v J#KSIF (pop, v )+KOIES (p,p, v )4k IFS (p,p, v )+KSIF S (v )=

uy ,(pp,v)=koIo(p)+3 k11 (p)hyhy x,+3K I1(p )hy hyx,+3k 15 (p) hyhy x+

277371 177372 27173
3 X2 - 3 X2
171 n ' n
5kil(p)IL ,;A—aﬁ +1|+5K21(p)IL ;A,_azu
+5K315(p) hy hy hax, x,+5K315(p ) hy hyhox, x,+5 kS 15 (p) hy by he x4 x, (34)
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for n=0,1,2 and m=1, 2, ..., 2n+1.

If we assume at the point A:

u; A(r,8,0)=u; 4(p,p,v) (35)

We obtain the following connected relations:

M:ny_kO_Ey_gkz'kgIo(p)+5k212[Pm+5k212(p“L, (36)
%ﬂ?ﬁﬂkh}(p)hzm, 7
%—312}:3k§1§(p)hlh3, 3|
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4. The inverse EEG problem for a dipole

* Let the brain be represented by the reference ellipsoid (1) and let a localized
neuronal current which is represented by a dipole located at the point r,, inside
the brain, having moment Q. The unique solution for the inverse EEG problem

of a current dipole inside an ellipsoid (1) is given by

47wa2a3h2h3 L 47wa1a3h1h3 5 47waza1h2h1

e 3 1’3 1’3 1
2 214 2 21,3 2 215
r :h1h2h3 a1+03k_2 al+azk_2 a2+03k_2 (47>

Now we use the inversion algorithm for the ellipsoid without using the intrinsic
m rm m
ellipsoidal data ky but the data Ky as they are expressed in terms of ky

From (37)-(39) and (40)-(42) we have,

o 4nocggx/§ K 4nac23@ k! 4nacE2\/§ ki (48)
“Ploy*Var  INp) 9yVam  IX(p) 9yNam  I¥(p)

N a’+a2 3V513(p) k;*! af+a§3x/§1}(p)f<_§ a2+a? 3V51%(p) k;* (49)
ew |25ay y'I5(p) ki''25a, y'I3(p) ki 2543 yI3(p) Kk

* Let the brain be represented by the reference sphere (5) and let a localized
neuronal current which is represented by a dipole located at the point r,, inside
the brain, having moment Q. The unique solution for the inverse EEG problem

of a current dipole inside a sphere (5) is given by

V2T A1 a1y N2 A_ \/471 A
Q.= 5 02(k11+k}),1—@ oa2(k11—k}),\/—§ oo’ k) (50)
k=2 k2 (k2 k2 ke kO k2
ro =4 172 22 2 o L2 (51)
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Now we use the inversion algorithm for the sphere without using the intrinsic

K K K
. n butthe data "n asthey are expressed in terms of "n
spherical data ,

From (37)-(39) and (40)-(42), (44), (45) we have,

et

-
|
m—
—
p—
p—
_
— >
—_—
[ el —
—_—

5. Numerical implementation

I. We assume that there is a dipole (6) inside the ellipsoid (1) with semi-axes

o, =3Jcm,a,=6.5cm, a;=6cm and inside the sphere (5) of radius

r=a:(0( o, A )1/3=7 054cm
17273 ) . Now at the point A(r,0,0)=A(15,30,30) or
equivalently A(p, 1, v)=A(p, 0. ,0.)=(15.3808, 32.85, 30.32) we assume that

U:’A(T,Q,Q):U:’A(p,[J,V):Cl

From (46), (47) we have,

Q=(Q,=104.44c,, Q,=79.07c,, Q,=50.26¢,)
ro=(r,;=10.98, r,=8.76, ry;=3.53)
From (48), (49) we have,
Q=(Q,=96.10c,, Q,=59.72c,, Q,=36.65¢,)
ro=(ry=11.29, rp,=7.43, r;=2.82)
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From (50), (51) we have,
Q=(Q,=71.15¢;, Q,=-19.06ic;, Q;=127.59¢,)
ro=(ry,=4.07, ryp=2.03i, rE=9.34)
From (52), (53) we have,
Q=(Q,=95.45¢c,, Q,=—24.0lic,, Q,=138.66c,]
ro=(ry,=4.99, rp,=2.39i, r,=8.80)

II. We assume that there is a dipole (6) inside the ellipsoid (1) with semi-axes

a,=25cm,a,=4cm,a,=3.51cm and inside the sphere (5) of radius

r—a—(a o, o )1/3—7 054cm
IR e Tt . Now at the point A(r,0,9)=A(15,30,30) or
equivalently A( p, 1, v) =A(p, 0. 9. ) =(26.1652, 60.26, 30.54) we assume that

U:’A(F,Q,QD)ZUZJA(p,[,l,V):Cl
From (46), (47) we have,

Q:(Q1:35.83C1, Q,=336.91cy, Q3:227.28C1)
ro=(ry;=12.66, ry,=119.70, r;=3.57)
From (48), (49) we have,

Q=(Q,=64.33c,, Q,=48.66c,, Q,=31.17¢,)
ro=(ro;=47.08, ry;,=35.99 rp;=0.73)

From (50), (51) we have,
Q=(Q,=71.15¢;, Q,=-19.06ic,, Q;=127.59¢,)
ro=(r;=4.07, ry,=2.03i, ru=9.34)
From (52), (53) we have,

Q=(Q,=502.26c,, Q,=-122.44ic,, Q,=71.06c,)
ry=(7,;=18.91, r,=9.46i, Fy=2.19)
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III. We assume that there is a dipole (6) inside the ellipsoid (1) with semi-axes
a,=12em,a,=11.7cm,a,=2.5¢m and inside the sphere (5) of radius

1/3

r:a:(al-a2-a3) =7.054cm

. Now at the point A(r,0,0)=A(15,30,30) or
equivalently A( p, u, v) =A(p, 0. 0. ) =(15.634, 33.9, 40.76) we assume that

u:,A(r’e’(P):u:,A(p’va)zcl
From (46), (47) we have,

Q=(Q,=80.09¢,, Q,=41.68c,, Q,=167.98¢,)
ro=(ry;=10.40, r,=10.12, ry=20.79)
From (48), (49) we have,
Q=(Q,=67.20¢,, Q,=33.82¢,, Q,=57.21c,)
ro=(7;=10.30, r,=10.53, r;;=8.32)
From (50), (51) we have,
Q=(Q,=71.15¢,, Q,=-19.06ic,, Q;=127.59c,)
ro=(rp;=4.07, ry,=2.03i, ry;=9.34)
From (52), (53) we have,
Q=(Q,=132.06¢,, Q,=20.89ic,, Q,=152.06c,)
Fo=(7y,=5.84, r,=0.55i, r;=4.12)

We observe (tables 1-8) that for ellipsoids with small principal eccentricities,
approximate algorithms (48), (49), (52), (53) for Q and r0, give relatively good
results. On the contrary as the eccentricities increase, approximate algorithms have a

large deviation from the real data.

In the following graphs we observe that when the semi-axes approaches the realistic
shape of the brain i.e. a; = 9cm, o, = 6.5cm, o3 = 6¢cm, the errors calculated from

algorithms (46)-(53) for Q and r, are not significant so the approximate solutions of

14



those algorithms meet a certain quality guarantee. As the semi-axes grow the errors
become bigger and there is a large difference between exact and approximate data
(fig.1, fig.2, fig.3, fig.4). On the other hand, when we assume that the semi-axes
diverge from the standard measurements of the brain i.e. a; = 25cm, a, = 4cm, o3 =
3.51cm, the errors increase dramatically. In this case the approximate solutions

through the algorithms (46)-(53) give bad results (fig.5, fig.6, fig.7, fig.8).
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Errors of Q, as the semi-axes al,a2,a3,

increase.

al a2 a3 Q-Q.| |,
9.0000 6.5000 6.0000 25.0893c1
9.5263 7.0263 5.2439 30.6161c1
10.0526 7.5526 4.6231 38.0411c1
10.5789 8.0789 4.1069 47.7091c1
11.1053 8.6053 3.6729 60.0433c1
11.6316 9.1316 3.3046 75.6453c1
12.1579 9.6579 2.9893 95.4316¢c1
12.6842 10.1842 2.7172 120.8857c1
13.2105 10.7105 2.4807 154.6112c1
13.7368 11.2368 2.2739 201.7507ci1
14.2632 11.7632 2.0920 274.5000c1
14.7895 12.2895 1.9312 413.1682c1
15.3158 12.8158 1.7882 970.9220c1
15.8421 13.3421 1.6606 738.7033c1
16.3684 13.8684 1.5462 504.8524c1
16.8947 14.3947 1.4433 426.8974c1
17.4211 14.9211 1.3503 387.8817c1
17.9474 15.4474 1.2661 365.3463c1
18.4737 15.9737 1.1895 351.5686¢c1
19.0000 16.5000 1.1196 343.1108c1

Table 1: shows how the error of Q., grows as the semi-axes increase

Errors of r, as the semi-axes a1,a2,a3,
increase.

9.000 6.500 6.000 1.535

9.526 7.026 5.244 1.932
10.053 7.553 4.623 2.496
10.579 8.079 4.107 3.293
11.105 8.605 3.673  4.420
11.632 9.132 3.305 6.012
12.158 9.658 2,989 8.257
12.684 10.184 2.717 11.445
13.211  10.711  2.481 16.051
13.737  11.237 2.274 22.972
14.263  11.763  2.092 34.249
14.789 12.289 1.931 56.404
15.316 12.816 1.788 144.950
15.842 13.342 1.661 120.070
16.368 13.868 1.546 88.468
16.895 14.395 1.443 80.449
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17.421 14921 1.350 78.423
17.947 15.447 1.266 79.071
18.474 15974 1.190 81.273
19.000 16.500 1.120 84.544

Table 2: shows how the error of r., grows as the semi-axes increase.

Errors of Q, as the semi-axes
al,a2,a3 increase.

al a2 Q-Q.||,
9.0000 6.5000 6.0000 27.1538c1
9.5263 7.0263 5.2439 33.6629c1
10.0526 7.5526 4.6231 40.7378c1
10.5789 8.0789 4.1069 48.6183c1
11.1053 8.6053 3.6729 57.6545c1
11.6316 9.1316 3.3046 68.3387c1
12.1579 9.6579 2.9893 81.3913c1
12.6842 10.1842 2.7172 97.9331cl
13.2105 10.7105 2.4807 119.8607c1
13.7368 11.2368 2.2739 150.7978c1
14.2632 11.7632 2.0920 199.1315c1
14.7895 12.2895 1.9312 292.3014c1
15.3158 12.8158 1.7882 671.4706c1
15.8421 13.3421 1.6606 502.2536c1
16.3684 13.8684 1.5462 335.9783c1l
16.8947 14.3947 1.4433 275.7967c1
17.4211 14.9211 1.3503 241.4188c1
17.9474 15.4474 1.2661 217.6606c1
18.4737 15.9737 1.1895 199.4899c1
19.0000 16.5000 1.1196 184.7909c1

Table 3 : shows how the error of Os, grows as the semi-axes increase.

Errors of r, as the semi-axes

al,a2,a3 increase.

9.000 6.500 6.000 1.124
9.526 7.026 5.244 1.798
10.053  7.553  4.623 2.556
10.579  8.079 4.107 3.362
11.105 8.605 3.673 4.221
11.632 9.132  3.305 5.142
12.158 9.658  2.990 6.137
12.684 10.184 2.717 7.212
13.211  10.711 2.481 8.369
13.737 11.237 2.274 9.597
14.263  11.763 2.092 10.873
14.789  12.289 1.931 12.161
15.316 12.816 1.788 13.414
15.842 13.342 1.661 14.583
16.368  13.868 1.546 15.627
16.895 14.395 1.443 16.521
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17.421  14.921 1.350 17.255
17.947 15.447 1.266 17.835
18.474  15.974 1.190 18.275
19.000 16.500 1.120 18.593

Table 4 : shows how the error of r,, grows as the semi-axes increase

Errors of Q,
as the semi-axes al,a2,a3, increase.

al a2 QQ.| |,
25.0000 4.0000 3.5100 349.8009c1
25.5263 4.5263 3.0379 438.7780c1
26.0526 5.0526 2.6665 765.6380c1
26.5789 5.5789 2.3671 965.6468c1
27.1053 6.1053 2.1210 717.6692c1
27.6316 6.6316 1.9155 509.4681c1
28.1579 7.1579 1.7415 441.5583c1
28.6842 7.6842 1.5924 409.0694c1
29.2105 8.2105 1.4635 392.1303c1
29.7368 8.7368 1.3510 383.6136c1
30.2632 9.2632 1.2521 380.2329c1
30.7895 9.7895 1.1645 380.2447c1
31.3158 10.3158 1.0865 382.6367c1
31.8421 10.8421 1.0167 386.7827c1
32.3684 11.3684 0.9539 392.2780c1
32.8947 11.8947 0.8971 398.8523c1
33.4211 12.4211 0.8455 406.3213c1
33.9474 12.9474 0.7986 414.5579c1
34.4737 13.4737 0.7557 423.4747c1
35.0000 14.0000 0.7163 433.0119c1

Table 5: shows how the error of Q., grows as the semi-axes increase

Errors of r, as the semi-axes
al,a2,a3, increase.

25.000 4.000 3.510 90.553

25.526 4.526 3.038 104.680
26.053 5.053 2.667 135.440
26.579 5.579 2.367 254.190
27.105 6.105 2.121  235.550
27.632 6.632 1916 144.530
28.158 7.158 1.742 116.130
28.684 7.684 1.592 102.450
29.211 8.211 1.464 95.129
29.737 8.737 1.351 91.316
30.263  9.263 1.252 89.743
30.789  9.790 1.165 89.740
31.316 10.316 1.087 90.917

31.842 10.842 1.017 93.026

32.368 11.368 0.954 95.905

32.895 11.895 0.897 99.444

33.421 12421 0.846 103.570
33.947 12,947 0.799 108.230
34.474 13.474 0.756 113.380
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Table 6: shows how the error of r., grows as the semi-axes increase

Errors of Q, as the semi-axes

al,a2,a3, increase
al a2 al Q-Q,| |,
25.000 4.000 3.510 446.910c1
25.526 4.526 3.038 569.000c1
26.053 5.053 2.667 902.670c1
26.579 5.579 2.367 1332.800c1
27.105 6.105 2.121 1104.900c1
27.632 6.632 1.916 695.430c1
28.158 7.158 1.742 551.020c1
28.684 7.684 1.592 468.520c1
29.211 8.211 1.464 412.110c1
29.737 8.737 1.351 369.680c1
30.263 9.263 1.252 335.920c1
30.789 9.790 1.164 308.150c1
31.316 10.316 1.087 284.840c1
31.842 10.842 1.017 265.010c1
32.368 11.368 0.954 248.030c1
32.895 11.895 0.897 233.430c1
33.421 12421 0.846 220.830c1
33.947 12.947 0.799 209.940c1
34.474 13.474 0.756 200.530c1
35.000 14.000 0.716 192.390c1

Table 7: shows how the error of Q,, grows as the semi-axes increase

Errors of r, as the semi-axes
al,a2,ad increase.

al a2 a3 r-ry| |,

25.000 4.000 3.510 18.073
25.526 4.526 3.038 24.390
26.053 5.053 2.667 37.299
26.579 5.579 2.367 81.835
27.105 6.105 2.121  84.467
27.632 6.632 1916 59.531
28.158 7.158 1.742  53.559
28.684 7.684 1.592 51.527
29.211 8.211 1464 50.842
29.737 8.737 1.351 50.634
30.263  9.263 1.252  50.540
30.789 9.790 1.165 50.404
31.316 10.316 1.087 50.167
31.842 10.842 1.017 49.822
32.368 11.368 0.954 49.381
32.895 11.895 0.897 48.865
33.421 12421 0.846  48.297
33.947 12.947 0.799 47.695
34.474 13.474 0.756 47.077
35.000 14.000 0.716 46.455

Table 8: shows how the error of r,, grows as the semi-axes increase
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