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Abstract

The relative algorithms existing in medical devices for the identification of excitation

sources  inside  the  brain  using  EEG  data  are  based  on  the  assumption  that  the

geometry of the brain-head system is spherical. So, taking EEG measurements from a

realistic  ellipsoidal  model  and  using  these  data  in  a  spherical  model  leads  to  a

structural error. The purpose of the present work is to estimate this geometrical error.

The results show that for ellipsoids with small principal eccentricities the errors are

not significant. However these errors become bigger as the eccentricities increase and

this  is  a  general  result  that  becomes  available  for  any related  applications  of  this

inverse problem.

           Introduction

It is well known that the electric excitation of the brain is due to an equivalent electric

dipole in the interior of the brain which generates an electric and a magnetic field,

both in the interior and exterior of the brain [2, 11]. The electric and magnetic fields

are measured on the surface and the exterior  of the head via the EEG and MEG,

respectively [3, 10, 19]. The bioelectromagnetism problem is solved in both spherical

and  ellipsoidal  geometry.  Given  the  current,  the  direct  EEG  problem consists  of

finding  the  electric  potential  [4,  12],  while  the  inverse  EEG problem consists  of

finding the current from the given EEG measurements once we know the geometry of

the  brain  [6,  7].  Direct  mathematical  problems  are  well-posed,  while  the  inverse

problems are ill-posed, due to lack of uniqueness [15]. In order to work with the

inverse  and  the  forward  EEG  problems,  we  have  to  make  certain  assumptions,

concerning  the  electrochemical  source  and  the  conductor  that  models  the  human

brain.  The most  popular source model is  a  current  dipole with fixed moment  and

location inside the brain. As far as the brain itself is concerned, in most of the work

that  has  been  published,  it  is  considered  to  be  a  homogeneous  or  a  partially
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homogeneous  conductor  [14,  16].  The  most  popular  geometrical  model  is  the

spherical one, although the ellipsoidal geometry it best fits the anatomical model of

the human brain [1, 9, 13].

In this  work we use the  solution  of  inverse  problems in  spherical  and ellipsoidal

geometry in order to develop analytic connection relations,  aiming to compare the

results of the present paper.

1. Statement of the problem

Let Ω be a bounded, connected and finite homogeneous conductor  with a smooth

boundary S=∂Ω. The domain Ω provides a simplified geometrical model of the brain

as an isotropic and homogeneous conductor with conductivity σ. A neuronal current

J P  with support in Ω generates the electric and magnetic activity that is generated

from J P  is governed by the Quasi-Static Theory of Electromagnetism.

Ι. Ellipsoidal system

Let Se denotes the triaxial ellipsoid which in rectangular coordinates is specified by

                                                     

x1
2

α1
2
+
x2
2

α 2
2
+
x3
2

α 3
2
=1

(1)

where 0<α3<α2<α 1<+∞  are its semi-axes. 

The basic ellipsoid (1) introduces an ellipsoidal system with coordinates (ρ, μ, ν)

and semi-focal distances h1 , h2 , h3  where

                                                      

h1=√α22−α 32 ¿}h2=√α12−α 32 ¿}¿¿¿
(2)

The ellipsoidal coordinates (ρ,  μ,  ν), involve the ellipsoidal variable  ρ∈ [ h2 ,+∞)

and the hyperboloidal variables μ∈ [h3 , h2 ]  and ν∈ [−h3 , h3 ] . 

The transformation from ellipsoidal to Cartesian to coordinates is given by
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(3)            
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=
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12
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The coordinate  ρ plays the role of the radial variable r, while μ and ν correspond to

the angular variable θ and φ in spherical coordinates. 

The  ellipto-spherical  coordinate  system  ( ρ ,θε ,φε )  combines  the  ellipsoidal

variable  that  specifies  the family of confocal  ellipsoids  with the eccentric  angular

variables of the spherical system. It is defined by

x1=ρ cosθε h2≤ ρ<+∞

x2=√ρ2−h3
2sin θε cosφε 0≤ θε≤π ( 4 )

x3=√ρ2−h2
2sin θε sinφε 0≤φε<2π

In ellipsoidal coordinates, the surface Se given in (1) corresponds to ρ=α1  and it

represents the boundary of the brain. The interior space V-  is defined by the interval

ρ∈ [ h2 , a1 ) and it is characterized by the conductivity  σ. The exterior to Se, non-

conductive space V+ is defined by ρ∈(a1 ,∞) .

ΙΙ. Spherical system

We assume now that the domain Ω is a sphere of radius a  centered at the origin.

Let Ss denotes a sphere which in rectangular coordinates is specified by

                                                     x1
2
+x2

2
+x3

2
=a2 (5)

In spherical coordinates,  the surface Ss given in (5) corresponds to  r=a  and it

represents the boundary of the brain. The interior space V-  is defined by the interval
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r∈ [ 0 , a) and  it  is  characterized  by  the  conductivity  σ.  The exterior  to  Ss,  non-

conductive space V+ is defined by r∈(a ,∞) .

In the interior of a homogeneous ellipsoidal/spherical conductor  V−
there exists a

primary current dipole source given by

                                                    
JP(r )=Qδ (r−r0 ) (6)

where δ stands for the Dirac measure at a fixed point  r0 with a dipole moment equal

to Q. 

The primary current
J P(r )  induces an electric  field  E in the interior  conductive

space, which in turn generates an inductive volume current with density JP(r )

                                                     
J v (r )=σ⋅E (r )

(7)

resulting to the total current density

                                                     
J (r )=J P(r )+J v (r )

(8)

The current J generates an electromagnetic wave, which propagates in the interior as

well as in the exterior to the conducting space. Because of the values of the dielectric

constant and the electric conductivity of the brain tissue, quasistatic approximation of

Maxwell’s equations is considered [17, 18]. Therefore the electric  field  E and the

magnetic induction field B satisfy the following equations 

                                                              ∇×E=0

(9)

                                                            ∇×B=μ0J

(10)
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                                                              ∇⋅E=0

(11)

                                                              ∇⋅B=0

(12)

where μ0 is the value of the magnetic permeability in the whole space.

Since Ε is irrotational, it can be represented by an electric potential u, such that 

                                                           
E(r )=−∇ u(r )

(13)

The potential u is the field recorded in any electroencephalogram. In particular, we

denote the electric potential in the interior space V- by u-  and in the exterior space V+

by u+ . Combining equations (8), (13) and (10) we obtain the Poisson equation 

                                                  
Δu− (r )=

1
σ

∇⋅J p(r )
  r∈V−

(14)

which the interior potential u- must satisfy in V- .

In the source-free space V+ the potential u+ and solve the Laplace equation 

                                                           
Δu+

(r )=0   r∈V +

(15)

On the surface S the following transmission conditions hold 

                                                        u+
(r )=u−(r )    r∈ S

(16)

                                                        

∂u−(r )
∂ ρ

=0
       r∈ S

(17)
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where the outward normal  differentiation  on the surface is  considered.  Conditions

(16)-(17) state the continuity of the potential function as well as the continuity of the

normal component of current density on S.

In addition the asymptotic behavior at infinity 

                                                 
u+ (r )=O(1r )

   r→∞

(18)

Separation of variables  for Laplace’s equation in the ellipsoidal  coordinate  system

leads to the Lamé equation

( x2−h3
2
)(x2−h2

2
)E' '

( x )+x (2 x2−h3
2
−h2

2
)E '

( x )+[(h3
2
+h2

2
)P−n(n+1 )x2 ]E( x )=0

                                                                                                                                   (19)

for  each  one  of  the  factors  E(ρ),  E(µ)  and  E(ν)  that  form the  interior  harmonic

function

                                   ΙΕn
m
( ρ ,μ , ν )==En

m
( ρ)En

m
( μ)En

m
( ν )

(20)

In Eq. (19) the parameters P and n are constants that define, in a complicated way, the

degree n and the order m of the interior ellipsoidal harmonic (20).

The corresponding exterior ellipsoidal harmonic assumes the form

                             IFn
m
( ρ , μ , ν )==(2n+1 )IEn

m
( ρ ,μ , ν )I n

m
( μ)

(21)

The ρ-dependent functions I n
m
( ρ )  are elliptic integrals of the form

                              

I n
m( ρ )=∫ρ

+∞ dt

[ En
m( t ) ]2√|t2−h3

2||t 2−h2
2|

(22)

for each n = 0, 1, 2, …, and m = 1, 2,..., 2n + 1.

The products En
m
( μ ), En

m
( ν )  defined on the surface of any specific ellipsoid, are 

known as surface ellipsoidal harmonics and they form a complete orthogonal set of 

surface eigenfunctions, with respect to the weighting function
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la1( μ , ν )=[(a1

2
−μ2)(a1

2
−ν2) ]−1/2

(23)

corresponding to the ellipsoid ρ=a1 .

We define the normalization constants γ n
m

 as

                                      

γ n
m
= ∫

ρ=α 1

[En
m
( μ )En

m
(ν )]

2
la
1
( μ , ν )ds

(24)

In the present work the following normalization constants are to be used:                     

                                                                 γ 0
1
=4 π

(25)

                                                  
γ 1
m=
4 π
3

h1
2 h2
2h3
2

hm
2

    m=1,2,3                                  

(26)

                            
γ 2
1=−

8 π
5

( Λ− Λ'
)( Λ−α1

2)( Λ−α 2
2 )(Λ−α3

2 )
                               

(27)

                            
γ 2
2=
8 π
5

( Λ−Λ '
)( Λ'

−α1
2)( Λ'

−α 2
2 )( Λ'

−α 3
2)

                               

(28)

                                              
γ 2
6−m=

4 π
15

h1
2 h2
2h3
2hm
2

    m=1,2,3                                 

(29)

where

                                       

Λ
Λ' }=13∑i=1

3

ai
2±
1
3 [∑i=1

3

(ai4−
a1
2a2
2a3
2

ai
2 )]

1/2

(30)
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2. The Exterior Electric Potential

In order to apply the transimission conditions to the problem, one has to assume that

the solution has an eigenfunction expansion in the appropriate coordinate system. The

first step is to determine the coefficients of u-  by solving the interior problem (14),

(17). Then the value of u+  on the ellipsoidal surface S provides the Dirichlet data in

order to solve the exterior Dirichlet problem (15), (16), (18). The basic notation for

the spectral decomposition of the Laplace operator in ellipsoidal coordinates can be

found in [4, 5], where the ellipsoidal harmonics IEn
m
( ρ , μ , ν )  and IFn

m
( ρ ,μ , ν )

that are used in this work as well as useful relations connecting them, can be found. 

The solution of (15) is an exterior harmonic function that assumes the: 

 ellipsoidal expansion 

                               

ue
+ ( ρ ,μ , ν )=∑

n=0

∞

∑
m=1

2n+1

k n
m IFn

m( ρ ,μ , ν ) , ρ>α1 , (31 )

  
 spherical expansion

                               

us
+ (r ,θ ,φ )=∑

n=0

∞

∑
m=−n

n

k̂ n
m 1
rn+1

Y n
m(θ ,φ ) , r>a , (32 )

  

And satisfy automatically the asymptotic condition (18).

3. Connection between algorithms 

The exterior EEG potential in spherical coordinates (32) at a fixed point 

A(r,θ,φ),  r = γ > α is,
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us, Α
+ (r , θ ,φ )=∑

n=0

∞

∑
m=−n

n

k̂n
m1
γ n+1

Y n
m(θ ,φ)⇒

us, Α
+ (r , θ ,φ )=Y 0

0 (θ ,φ)
1
γ
k̂0
0+Y 1

−1(θ ,φ )
1
γ2
k̂1
−1+Y 1

1 (θ ,φ)
1
γ2
k̂ 1
1+Y 1

0 (θ ,φ)
1
γ 2
k̂ 1
0

+Y 2
−2 (θ ,φ)

1

γ 3
k̂ 2

−2+Y 2
−1(θ ,φ)

1

γ 3
k̂ 2

−1+Y 2
0 (θ ,φ)

1

γ 3
k̂ 2
0+Y 2

1 (θ ,φ)
1

γ 3
k̂ 2
1+Y 2

2 (θ ,φ)
1

γ 3
k̂ 2
2⇒

us, Α
+ (r , θ ,φ )=

1
√4 π

1
γ
k̂0
0+

√3
√4 π

1
γ 3
k̂ 1

−1 x3+
√3
√4 π

1
γ 3
k̂1
1 x2+

√3
√4 π

1
γ 3
k̂ 1
0 x1

+
√15

√4 π
1

γ5
k̂2
−2 x2 x3+

√15

√4 π
1

γ 5
k̂2
−1 x1 x3+

√5

√16 π
1

γ 5
k̂2
0
(3 x1

2
−γ 2)+

√15

√4π
1

γ5
k̂2
1 x2 x1+

√15

√16π
1

γ5
k̂2
2
(x2
2
−x3

2
)

(33 )

for n=0,1,2 and m = -2,0,1,2.

The  exterior  EEG  potential  in  ellipsoidal  coordinates (31)  at  a  fixed  point

A(γ,θ,φ)=Α(ρ,μ,ν)  is: 

ue ,Α
+ ( ρ ,μ , ν )=∑

n=0

∞

∑
m=1

2 n+1

kn
m IFn

m( ρ ,μ , ν ) ⇒

ue ,Α
+ ( ρ ,μ , ν )=k 0

1 IF0
1( ρ, μ , ν )+k1

1 IF1
1( ρ , μ , ν )+k1

2 IF1
2 ( ρ ,μ , ν )+k1

3 IF1
3( ρ, μ , ν )+

k2
1 IF 2

1 ( ρ, μ , ν )+k2
2 IF2

2 ( ρ ,μ , ν )+k 2
3IF 2

3 ( ρ ,μ , ν )+k2
4 IF2

4 ( ρ ,μ , ν )+k2
5 IF 2

5 ( ρ , μ , ν )⇒

ue ,Α
+ ( ρ ,μ , ν )=k 0

1 I0
1 ( ρ)+3 k1

1 I 1
1 ( ρ)h2h3 x1+3k1

2 I1
2( ρ )h1 h3 x2+3k1

3 I 1
3 ( ρ)h2h1 x3+

5k2
1 I2
1( ρ )IL(∑n=1

3 xn
2

Λ−an
2
+1)+5k 22 I 22( ρ) I L' (∑n=1

3 xn
2

Λ'−an
2
+1)

+5k2
3 I 2
3 ( ρ)h1h2 h3

2 x1x2+5k2
4 I 2
4( ρ )h1h3h2

2x1 x3+5 k2
5 I2
5( ρ)h3 h2h1

2 x3 x2 (34 )
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for n=0,1,2 and m=1, 2, …, 2n+1.

If we assume at the point A:

                         
us , Α

+
(r , θ ,φ)=ue , Α

+
( ρ , μ , ν ) (35 )

We obtain the following connected relations:

1
√4 π

1
γ
k̂0
0−

√5
√16π

1
γ3
k̂2
0=k0

1 I 0
1( ρ )+5k2

1 I 2
1( ρ )IL+5k2

2 I 2
2( ρ)I L' , (36)

√3

√4 π
1

γ3
k̂ 1
0
=3k1

1 I 1
1
( ρ)h2 h3 , (37)

√3
√4 π

1
γ3
k̂ 1
1=3 k1

2 I1
2 ( ρ)h1h3 , (38 )

√3
√4 π

1
γ3
k̂ 1

−1=3 k1
3 I 1
3( ρ )h2h1 , (39)

√15

√4 π
1

γ5
k̂ 2

−2
=5 k2

5 I 2
5
( ρ )h3 h2h1

2 , ( 40)

√15
√4 π

1

γ5
k̂ 2

−1=5 k2
4 I 2
4 ( ρ )h1h3h2

2 , ( 41)

√15
√4 π

1
γ5
k̂ 2
1=5 k2

3 I 2
3 ( ρ )h1 h2h3

2 , (42 )

3
√5
√16 π

1
γ5
k̂2
0=5k2

1 I 2
1( ρ )IL

1
Λ−α1

2
+5k2

2 I 2
2( ρ )I L'

1
Λ'

−α1
2
, (43 )

√15
√16 π

1

γ 5
k̂ 2
2=5 k2

1 I2
1 ( ρ) IL

1

Λ−α2
2
+5k2

2 I 2
2( ρ ) I L'

1

Λ'
−α 2

2
, (44 ) ¿} ¿}¿

¿

⇒ ¿ ¿ k̂2
2=
10√π
√15

h1
2γ5(k 2

1 I 2
1 ( ρ)( Λ−α 1

2)+k2
2 I2
2 ( ρ)( Λ '

−α1
2)) ¿¿
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4. The inverse EEG problem for a dipole

 Let the brain be represented by the reference ellipsoid (1) and let a localized

neuronal current which is represented by a dipole located at the point r0, inside

the brain, having moment Q. The unique solution for the inverse EEG problem

of a current dipole inside an ellipsoid (1) is given by

Qe=(
4πσ a2a3 h2h3
3

k1
1 ,
4 πσ a1 a3h1 h3
3

k1
2 ,
4 πσ a2a1h2h1
3

k1
3) (46 )

r0
, e
=
h1h2h3
5 (

a1
2+a3

2

a1h1

k2
4

k1
3
,
a1
2+a2

2

a2h2

k2
3

k1
1
,
a2
2+a3

2

a3h3

k 2
5

k 1
2 ) (47 )

Now we use the inversion algorithm for the ellipsoid without using the intrinsic 

ellipsoidal data kn
m

but the data k̂n
m

as they are expressed in terms of kn
m

From (37)-(39) and (40)-(42) we have,

Q̂eap=(
4 πσ a2 a3√3

9 γ 3√4 π

k̂1
0

I1
1( ρ)

,
4 πσ a1 a3√3

9 γ 3√4 π

k̂1
1

I1
2( ρ)

,
4 πσ a1a2√3

9 γ3√4 π

k̂1
−1

I 1
3( ρ ) ) ( 48)

r̂0
, eap

=(
a1
2+a3

2

25a1

3√5 Ι 1
3 ( ρ)

γ2 Ι 2
4( ρ)

k̂2
−1

k̂1
−1
,
a1
2+a2

2

25 a2

3√5 Ι 1
1( ρ )

γ2 Ι 2
3( ρ )

k̂2
1

k̂1
0
,
a2
2+a3

2

25a3

3√5 Ι 1
2( ρ)

γ2 Ι 2
5( ρ )

k̂2
−2

k̂1
1 ) ( 49)

 Let the brain be represented by the reference sphere (5) and let a localized

neuronal current which is represented by a dipole located at the point r0, inside

the brain, having moment Q. The unique solution for the inverse EEG problem

of a current dipole inside a sphere (5) is given by

Qs=(√2 π√3
σα 2( k̂1

−1+ k̂1
1 ), i √

2π
√3

σα 2( k̂1
−1− k̂1

1 ) ,√
4 π

√3
σα2 k̂1

0) (50 )

r0
, s
=
a

√5 (
k̂ 2

−2

k̂ 1
−1

+
k̂2
2

k̂1
1
, i(
k̂2

−2

k̂1
−1

−
k̂2
2

k̂1
1 ) ,2

k̂ 2
1

k̂ 1
1
−√2

k̂1
0

k̂1
1

k̂2
2

k̂1
1 ) (51 )
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Now we use the inversion algorithm for the sphere without using the intrinsic 

spherical data 
k̂n
m

but the data kn
m

as they are expressed in terms of k̂n
m

,

From (37)-(39) and (40)-(42), (44), (45) we have,

Q̂sap=¿ (2√2πσα 2γ 3( k1
3 I 1
3( ρ )h2h1+k1

2 I1
2( ρ)h1h3 ), ¿) ( i2√2πσα 2γ 3 (k1

3 I 1
3( ρ )h2h1−k1

2 I 1
2( ρ )h1h3 ) ,¿ )¿

¿
¿¿

¿

¿

5. Numerical implementation

Ι.  We  assume that  there  is  a  dipole  (6)  inside  the  ellipsoid  (1)  with  semi-axes

α 1=9 cm,a2=6 .5cm,a3=6cm
 

and  inside  the  sphere  (5)  of  radius

r=α=(α 1⋅α2⋅α 3)
1/3

=7 .054 cm .  Now  at  the  point  Α(r,θ,φ)=A(15,30,30)  or

equivalently  Α(ρ, μ, ν)=Α(ρ, θε ,φε)=(15.3808, 32.85, 30.32)  we assume that 

us , A
+

(r ,θ ,φ)=ue , A
+

( ρ , μ , ν )=c1

From (46), (47) we have,

Q=(Q1=104 . 44 c1 , Q2=79.07c1 , Q3=50 .26 c1)

r0=( r01=10. 98 , r02=8 .76 , r03=3 .53 )

From (48), (49) we have,

Q̂=(Q̂1=96 .10c1 , Q̂2=59 .72c1 , Q̂3=36 .65c1)

r̂0=( r̂01=11.29 , r̂ 02=7 .43 , r̂03=2 .82 )
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From (50), (51) we have,

Q=(Q1=71 .15 c1 , Q2=−19 . 06 ic1 , Q3=127 .59 c1)

r0=( r01=4 .07 , r 02=2.03 i , r03=9 . 34 )

From (52), (53) we have,

Q̂=(Q̂1=95.45 c1 , Q̂2=−24 . 01ic1 , Q̂3=138.66c1 )

r̂0=( r̂01=4 . 99 , r̂ 02=2.39 i , r̂ 03=8 .80 )

ΙΙ.  We  assume that  there  is  a  dipole  (6)  inside  the  ellipsoid  (1)  with  semi-axes

α1=25cm ,a2=4 cm ,a3=3.51cm
 

and  inside  the  sphere  (5)  of  radius

r=α=(α 1⋅α2⋅α 3)
1/3

=7 .054 cm .  Now  at  the  point  Α(r,θ,φ)=A(15,30,30)  or

equivalently  Α( ρ, μ, ν) =Α(ρ, θε, φε ) =(26.1652, 60.26, 30.54)  we assume that

                                     us , A
+

(r , θ ,φ)=ue , A
+

( ρ , μ , ν )=c1

From (46), (47) we have,

Q=(Q1=35 .83 c1 , Q2=336 .91c1 , Q3=227 .28c1)

r0=( r01=12.66 , r 02=119.70 , r 03=3 .57 )

 From (48), (49) we have,

Q̂=(Q̂1=64 .33c1 , Q̂2=48.66c1 , Q̂3=31 .17 c1 )

r̂0=( r̂01=47 . 08 , r̂02=35 .99 r̂03=0 .73 )

From (50), (51) we have,

Q=(Q1=71 .15 c1 , Q2=−19 .06 ic1 , Q3=127 .59c1)

r0=( r01=4 .07 , r 02=2. 03 i , r03=9 .34 )

From (52), (53) we have,

Q̂=(Q̂1=502 .26 c1 , Q̂2=−122.44 ic1 , Q̂3=71.06 c1 )

r̂0=( r̂01=18. 91 , r̂02=9. 46i , r̂03=2.19 )
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III.  We  assume that  there  is  a  dipole  (6)  inside  the  ellipsoid  (1)  with  semi-axes

α 1=12 cm ,a2=11.7cm ,a3=2 .5cm
 

and  inside  the  sphere  (5)  of  radius

r=α=(α 1⋅α2⋅α 3)
1/3

=7 .054 cm .  Now  at  the  point  Α(r,θ,φ)=A(15,30,30)  or

equivalently  Α( ρ, μ, ν) =Α(ρ, θε, φε ) =(15.634, 33.9, 40.76)  we assume that

us , A
+

(r ,θ ,φ)=ue , A
+

( ρ , μ ,ν )=c1

From (46), (47) we have,

Q=(Q1=80.09 c1 , Q2=41.68 c1 , Q3=167 .98 c1 )

r0=( r01=10. 40 , r02=10 .12 , r03=20.79 )

 From (48), (49) we have, 

Q̂=(Q̂1=67 .20 c1 , Q̂2=33 .82c1 , Q̂3=57 .21 c1 )

r̂0=( r̂01=10.30 , r̂ 02=10.53 , r̂03=8. 32 )

From (50), (51) we have,

Q=(Q1=71 .15 c1 , Q2=−19 .06 ic1 , Q3=127 .59c1)

r0=( r01=4 .07 , r 02=2.03 i , r03=9 .34 )

From (52), (53) we have,

Q̂=(Q̂1=132 .06c1 , Q̂2=20.89 ic1 , Q̂3=152 .06c1)

r̂0=( r̂01=5 .84 , r̂02=0 .55i , r̂03=4 . 12 )

We observe (tables 1-8) that for ellipsoids with small principal eccentricities, 

approximate algorithms (48), (49), (52), (53) for Q and r0, give relatively good 

results. On the contrary as the eccentricities increase, approximate algorithms have a 

large deviation from the real data.

In the following graphs we observe that when the semi-axes approaches the realistic

shape of the brain i.e.  α1 = 9cm,  α2 = 6.5cm,  α3  = 6cm, the errors calculated from

algorithms (46)-(53) for Q and r0 are not significant so the approximate solutions of
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those algorithms meet a certain quality guarantee. As the semi-axes grow the errors

become bigger and there is a large difference between exact and approximate data

(fig.1,  fig.2,  fig.3,  fig.4).  On the  other  hand, when we assume that  the semi-axes

diverge from the standard measurements of the brain i.e.  α1 = 25cm, α2 = 4cm, α3 =

3.51cm,  the  errors  increase  dramatically.  In  this  case  the  approximate  solutions

through the algorithms (46)-(53) give bad results (fig.5, fig.6, fig.7, fig.8).
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Errors of Qe as the semi-axes a1,a2,a3,
increase.

           α1           α2             α3       ││Q-Qe││2

      9.0000     6.5000      6.0000   25.0893c1
      9.5263     7.0263      5.2439   30.6161c1
    10.0526     7.5526      4.6231   38.0411c1
    10.5789     8.0789      4.1069    47.7091c1
    11.1053     8.6053      3.6729    60.0433c1
    11.6316     9.1316      3.3046    75.6453c1
    12.1579     9.6579      2.9893    95.4316c1
    12.6842    10.1842     2.7172   120.8857c1
    13.2105    10.7105     2.4807   154.6112c1
    13.7368    11.2368     2.2739   201.7507c1
    14.2632    11.7632     2.0920   274.5000c1
    14.7895    12.2895     1.9312   413.1682c1
    15.3158    12.8158     1.7882   970.9220c1
    15.8421    13.3421     1.6606   738.7033c1
    16.3684    13.8684     1.5462   504.8524c1
    16.8947    14.3947     1.4433   426.8974c1
    17.4211    14.9211     1.3503   387.8817c1
    17.9474    15.4474     1.2661   365.3463c1
    18.4737    15.9737     1.1895   351.5686c1
    19.0000    16.5000     1.1196   343.1108c1

Table 1: shows how the error of Qe, grows as the semi-axes increase

Errors of re as the semi-axes a1,a2,a3,
increase.

α1            α2             α3      ││r-re││2

    9.000        6.500        6.000      1.535
    9.526        7.026        5.244      1.932
  10.053        7.553        4.623      2.496
  10.579        8.079        4.107      3.293
  11.105        8.605        3.673      4.420
  11.632        9.132        3.305      6.012
  12.158        9.658        2.989      8.257
  12.684       10.184       2.717    11.445
  13.211       10.711       2.481    16.051
  13.737       11.237       2.274    22.972
  14.263       11.763       2.092    34.249
  14.789       12.289       1.931    56.404
  15.316       12.816       1.788   144.950
  15.842       13.342       1.661   120.070
  16.368       13.868       1.546     88.468
  16.895       14.395       1.443     80.449

17



  17.421       14.921       1.350     78.423
  17.947       15.447       1.266     79.071
  18.474       15.974       1.190     81.273
  19.000       16.500       1.120     84.544

Table 2: shows how the error of re, grows as the semi-axes increase.

Errors of Qs as the semi-axes
  a1,a2,a3 increase.

    α1             α2             α3        ││Q-Qs││2

9.0000      6.5000      6.0000    27.1538c1
9.5263      7.0263      5.2439    33.6629c1
10.0526    7.5526      4.6231    40.7378c1
10.5789     8.0789     4.1069    48.6183c1
11.1053     8.6053     3.6729    57.6545c1
11.6316     9.1316     3.3046    68.3387c1
12.1579     9.6579     2.9893    81.3913c1
12.6842    10.1842     2.7172    97.9331c1
13.2105    10.7105     2.4807   119.8607c1
13.7368    11.2368     2.2739   150.7978c1
14.2632    11.7632     2.0920   199.1315c1
14.7895    12.2895     1.9312   292.3014c1
15.3158    12.8158     1.7882   671.4706c1
15.8421    13.3421     1.6606   502.2536c1
16.3684    13.8684     1.5462   335.9783c1
16.8947    14.3947     1.4433   275.7967c1
17.4211    14.9211     1.3503   241.4188c1
17.9474    15.4474     1.2661   217.6606c1
18.4737    15.9737     1.1895   199.4899c1
19.0000    16.5000     1.1196   184.7909c1

Table 3 : shows how the error of Qs, grows as the semi-axes increase.

Errors of rs as the semi-axes
a1,a2,a3 increase.

α1              α2             α3         ││r-rs││2

9.000         6.500       6.000         1.124
9.526         7.026       5.244         1.798
10.053       7.553       4.623         2.556
10.579       8.079       4.107         3.362
11.105       8.605       3.673         4.221
11.632       9.132       3.305         5.142
12.158       9.658       2.990         6.137
12.684       10.184     2.717         7.212
13.211       10.711     2.481         8.369
13.737       11.237     2.274         9.597
14.263       11.763     2.092        10.873
14.789       12.289     1.931        12.161
15.316       12.816     1.788        13.414
15.842       13.342     1.661        14.583
16.368       13.868     1.546        15.627
16.895       14.395     1.443        16.521
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17.421       14.921     1.350        17.255
17.947       15.447     1.266        17.835
18.474       15.974     1.190        18.275
19.000       16.500     1.120        18.593

Table 4 : shows how the error of rs, grows as the semi-axes increase

Errors of Qe

as the semi-axes a1,a2,a3, increase.

α1                α2             α3      ││Q-Qe││2

25.0000     4.0000     3.5100   349.8009c1
25.5263     4.5263     3.0379   438.7780c1
26.0526     5.0526     2.6665   765.6380c1
26.5789     5.5789     2.3671   965.6468c1
27.1053     6.1053     2.1210   717.6692c1
27.6316     6.6316     1.9155   509.4681c1
28.1579     7.1579     1.7415   441.5583c1
28.6842     7.6842     1.5924   409.0694c1
29.2105     8.2105     1.4635   392.1303c1
29.7368     8.7368     1.3510   383.6136c1
30.2632     9.2632     1.2521   380.2329c1
30.7895     9.7895     1.1645   380.2447c1
31.3158    10.3158     1.0865   382.6367c1
31.8421    10.8421     1.0167   386.7827c1
32.3684    11.3684     0.9539   392.2780c1
32.8947    11.8947     0.8971   398.8523c1
33.4211    12.4211     0.8455   406.3213c1
33.9474    12.9474     0.7986   414.5579c1
34.4737    13.4737     0.7557   423.4747c1
35.0000    14.0000     0.7163   433.0119c1

Table 5: shows how the error of Qe, grows as the semi-axes increase

Errors of re as the semi-axes
  a1,a2,a3, increase.

α1            α2             α3         ││r-re││2

      25.000       4.000       3.510        90.553
      25.526       4.526       3.038       104.680
      26.053       5.053       2.667       135.440
      26.579       5.579       2.367       254.190
      27.105       6.105       2.121       235.550
      27.632       6.632       1.916       144.530
      28.158       7.158       1.742       116.130
      28.684       7.684        1.592      102.450
      29.211       8.211        1.464        95.129
      29.737       8.737        1.351        91.316
      30.263       9.263        1.252        89.743
      30.789       9.790        1.165        89.740
      31.316       10.316      1.087       90.917
      31.842       10.842      1.017       93.026
      32.368       11.368      0.954       95.905
      32.895       11.895      0.897       99.444
      33.421       12.421      0.846      103.570
      33.947       12.947      0.799      108.230
      34.474       13.474      0.756      113.380
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      35.000       14.000      0.716      119.020

Table 6: shows how the error of re, grows as the semi-axes increase

Errors of Qs as the semi-axes
a1,a2,a3,  increase

α1             α2          α3        ││Q-Qs││2

25.000     4.000     3.510      446.910c1
25.526     4.526     3.038      569.000c1
26.053     5.053     2.667      902.670c1
26.579     5.579     2.367    1332.800c1
27.105     6.105     2.121    1104.900c1
27.632     6.632     1.916       695.430c1
28.158     7.158     1.742       551.020c1
28.684     7.684     1.592       468.520c1
29.211     8.211     1.464       412.110c1
29.737     8.737     1.351       369.680c1
30.263     9.263     1.252       335.920c1
30.789     9.790     1.164       308.150c1
31.316    10.316    1.087       284.840c1
31.842    10.842    1.017       265.010c1
32.368    11.368    0.954       248.030c1
32.895    11.895    0.897       233.430c1
33.421    12.421    0.846       220.830c1
33.947    12.947    0.799       209.940c1
34.474    13.474    0.756       200.530c1
35.000    14.000    0.716       192.390c1

Table 7: shows how the error of Qs, grows as the semi-axes increase

Errors of rs as the semi-axes
a1,a2,a3 increase.

α1               α2          α3          ││r-rs││2

25.000       4.000       3.510       18.073
25.526       4.526       3.038       24.390
26.053       5.053       2.667       37.299

          26.579       5.579       2.367       81.835
27.105       6.105       2.121       84.467
27.632       6.632       1.916       59.531
28.158       7.158       1.742       53.559
28.684       7.684       1.592       51.527
29.211       8.211       1.464       50.842
29.737       8.737       1.351       50.634
30.263       9.263       1.252       50.540
30.789       9.790       1.165        50.404
31.316       10.316     1.087        50.167
31.842       10.842      1.017       49.822
32.368       11.368      0.954       49.381
32.895       11.895      0.897       48.865
33.421       12.421      0.846       48.297
33.947       12.947      0.799       47.695
34.474       13.474      0.756       47.077
35.000       14.000      0.716       46.455

Table 8: shows how the error of rs, grows as the semi-axes increase
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