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Abstract

By the Lagrangian multiplier and constraint variational derivative, a rela-
tionship between conserved quantities and multi-Hamiltonian structures is
built. Making using the relation, a method is founded to prove the infinite-
dimensional Liouville integrability of evolution equations with continuous
variables. As the application, the conservation laws of the Kundu equation
are firstly obtained. Its conserved quantities are deduced for comparing by
Fokas’ method different from the method used in the existed literature. The
integrability of the equation is proved through taking the conservation laws
as a starting point.
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1 INTRODUCTION

It is well known that the research of the infinite dimensional integrable system is based on the finite dimensional
complete one presented by V.I. Arnold and J. Moser. According to the classical Liouville completely integrability
theory on a finite dimensional symplectic manifold, if a 2N -dimensional Hamiltonian structure possesses N involutive
independent conserved integrals, it is completely integrable. On soliton equations, there are two different type ways
to prove their integrability.
The first one is nonlinearization of Lax pairs1,2. From Lax pairs of soliton equations, a class of finite-dimensional

Hamiltonian systems is obtained under a constraint between the potential and the eigenfunctions. But for some

†This is an example for title footnote.
0Abbreviations:CLs, conservation laws
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spectral problems, it is not easy to find these constrains. To solve this problem, the constraints called binary non-
linearlization were presented from spectral problems and their conjugate ones3,4. To solve the resulting Hamiltonian
structure, Zhou introduced algebraic geometric method5 and found finite-band solutions of these systems. Through
the given constraint, solutions of the corresponding soliton equation can be obtained, too. Recent research shows that
the solutions of these Hamiltonian systems can also be obtained by the bilinear direct method and the Wronskian
technique6-8.
Another method presented by Fokas et al. is through generalizing the concept of finite dimensional integrability to

infinite dimensional integrability to prove the integrality of soliton hierarchies9-13. In this method, recursion operators
of soliton hierarchies play a central role. Usually, these operators must be a hereditary and strong symmetrical. This
property ensure that each equation in the isospectral hierarchy is Liouville integrable. When we prove integrability
of soliton equations, recursion operators often are factorized into an implectic operator and a symplectic operator.
Finally, by the properties of the operator and evolution equations the Hamiltonian structures can be set up. At
the same time, the corresponding infinite conserved quantities named Hamiltonian functionals are obtained from
the resulting Hamiltonian structures. But it is not very easy to obtain the infinite conserved quantities by this
method. Tu presented the trace identities to obtain conserved quantities more easily base on the constraint variational
principle14,15.
There are many approaches to find their conservation laws (CLs), such as the approach in the non-semisimple Lie

algebras framework to find generating functions for conserved densities16,17 by the variational identities, through
adjoint symmetries18-20 and the expansion technique of ratios of eigenfunctions of spectral problems21,22. Among
them, the most popular one is generating the CLs from Lax pairs21-23.
Notice that the conserved quantities obtained from the Hamiltonian structures are similar to the conserved densities

of the CLs. In this paper, we will find a relationship between CLs and Hamiltonian structures and build a method
to prove the infinite-dimensional Liouville integrability of soliton equations with continuous variables. First, from a
Riccati equation that a ratio of two eigenfunctions need to satisfy we will derive out the CLs of the Kundu equation.
But its conserved quantities have already been obtained through the Tu scheme25. For comparison, we will re-derive
them by the Fokas’ method. Finally, the general method will be constructed to prove the integrability of evolution
equations from its conserved densities of the CLs. As its application, the Kundu equation will be considered. We
show that the integrability of soliton hierarchy can be proved by either getting the infinite conserved quantities from
Hamiltonian structures or establishing the Hamiltonian structures from conserved quantities.
We organize the paper as follows. In section 2, we will recall some basic notions and notations. In section 3, we

will re-derive the Kundu hierarchy and present its CLs. In section 4, conserved quantities will be given by the Fokes’
method. In section 5, a method to prove the integrability of evolution equations will be constructed and the Kundu
equation will be taken as an example. We conclude the paper in section 6.

2 BASIC NOTIONS

In this section, we recall some notions, notations and propositions used in this paper9 (see also12,13).
Let u be a manifold variable and M = M(u) is a suitable manifold, where u is a column vector. Denote the tangent

bundles and cotangent bundles on M by T(M) and T∗(M) respectively. C∞(M) expresses the spaces of smooth
functions on M.
Now let us introduce the conception of the Gateaux derivative for it is a powerful tool to study all kinds of tensor

fields. The Gateaux derivative of a tangent field X ∈ T(M) at direction S ∈ T(M) is defined as

X ′(u)[S] =
∂X(u+ εS)

∂ε
|ε=0

which is usually written as X ′[S] or X ′S for short when there is no confusion. X ′ is actually a linear operator of ∂
and ∂−1. If X is a tensor functions of variables x, t, ∂−lu, · · · , u, · · · ∂mu, then X ′ can be calculated as follows

X ′ =

m∑
j=−l

∂X

∂(∂ju)
∂j ,
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where l and m are positive integers. The Gateaux derivatives of operators can be defined similarly or with the aid of
their tensor fields. Let K,S ∈ T(M), then

[K,S] = K ′[S]− S′[K], adKS = [K,S]

represent the commutator of them and the adjoint map adK . According to the duality between cotangent and tangent
vectors we can work out the conjugate operator of an operator. For example, through

< Φ∗α,K >=< α,ΦK >, α ∈ T∗(M), K ∈ T(M),

we can compute the conjugate operator Φ∗ : T∗(M) → T∗(M) of an operator Φ : T(M) → T(M). An operator
J : T∗(M)→ T(M) (or θ : T(M)→ T∗(M)) is called skew-symmetric, if it equals its negative conjugate operator.

Definition 1. γ ∈ T∗(M) is called a gradient field or the variational derivative if there exists H ∈ C∞(M), so that

H ′[K] =< γ,K >, for all K ∈ T(M).

It is often denoted by γ = δH/δu.

As one can easily confirm, a cotangent vector field γ ∈ T∗(M) is a gradient field if and only if γ′ = γ′∗. Its
corresponding potential H ∈ C∞(M) can be calculated as follows

H(u) =

1∫
0

< γ(λu), u > dλ. (1)

Setting
ut = K(u), K ∈ T(M), (2)

be an evolution equation, then

τt = K ′τ, τ ∈ T(M), (3)

γt = −K
′∗γ, γ ∈ T∗(M), (4)

are its linearized and adjoint linearized equation respectively. As mentioned, K ′ expresses the Gateaux derivative
operator of K(u) with respect to u, K ′∗ is its adjoint operator and ft is the total derivative of f on the variable t.

Definition 2. Supposing that a linear operator Φ : T(M)→ T(M) satisfies
∂Φ

∂t
+ Φ′[K]− [K,Φ] = 0,

then it is a strong symmetry operator of Eq.(2).

Evidently a strong symmetry operator Φ : T(M)→ T(M) maps symmetries into new symmetries of Eq.(2).

Definition 3. If a linear operator Φ : T(M)→ T(M) meet

Φ′[Φf ]g − Φ′[Φg]f = Φ(Φ′[f ]g − Φ′[g]f)

for all vector fields f, g ∈ T(M), it is a hereditary symmetry operator.

Obviously, if Φ is a strong and hereditary symmetry operator of Eq.(2), Φ is also the strong operator of ut = ΦK(u),
i.e., Φ is a strong operator of ut = ΦnK(u), where n is a natural number.

Definition 4. A tangent vector τ ∈ T(M) is a symmetry of Eq.(2) if it solves Eq.(3) when u is a solution of Eq.(2).
A cotangent vector γ ∈ T∗(M) is called an adjoint symmetry of Eq.(2), if it solves Eq.(4) when u satisfies (2).

Through the following proposition, we can see that symmetries and adjoint symmetries are related closely to each
other9.
Proposition 1. 18,19 Let τ(x, u) be a symmetry of Eq.(2) while γ(x, u) be an adjoint symmetry, then I =<

τ(x, u), γ(x, u) > is a conserved quantity of Eq.(2).
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Proof. The total derivative of I can be computed as follows
dI
dt

=<
dτ
dt
, γ > + < τ,

dγ
dt

>

=< K ′[τ ], γ > + < τ,−K ′∗[γ] >

=< K ′[τ ], γ > + < K ′[τ ],−γ >
= 0.

Definition 5. A linear operator Ω : T∗(M)→ T(M) satisfies

Ω′[K]− ΩK ′∗ −K ′Ω = 0,

then Ω is a Noether operator of Eq.(2).
A linear inverse Noether operator Λ : T(M)→ T∗(M) of Eq. (2) satisfies

Λ′[K] +K
′∗Λ + ΛK ′ = 0.

By simple calculation, we find that the Noether operator maps adjoint symmetries of (2) to its symmetries.
Accordingly, the inverse of the Noether operator (if exists) maps symmetries of (2) to its adjoint symmetries.
Let Φ = ΩΛ be a strong symmetry operator of Eq.(2) and Ω be its Noether operator, it is easy to verify that Λ is

an inverse Noether operator of Eq.(2) if the inverse operator of Ω exists.

Definition 6. If θ : T∗(M)→ T(M) is a linear skew-symmetric operator and satisfies the Jacobi identity

< f, θ′[θg]h > +cycle(f, g, h) = 0, ∀f, g, h ∈ T∗(M),

θ is an implectic operator (also known as Hamiltonian operator or Poisson tensor (see9,13). The Poisson bracket can
be defined as

{H1, H2}θ =<
δH1

δu
, θ
δH2

δu
>, H1, H2 ∈ C∞(M).

If {H1, H2}θ = 0, they are considered as involutive with respect to θ, where H1, H2 ∈ C∞(M).

Definition 7. If J : T(M)→ T∗(M) is a linear skew-symmetric operator and satisfies the Jacobi identity

< f, J ′[g]h > +cycle(f, g, h) = 0, ∀f, g, h ∈ T(M),

J is a symplectic operator.

It is easy to verify that the inverse of a symplectic operator is implectic if it exists and vice versa.

Definition 8. Eq.(2) is named a Hamiltonian equation if it can be rewritten as

ut = K(u) = θ
δH

δu
,

where H ∈ C∞(M) and θ is an implectirc operator. Furthermore, if Eq.(2) has following format

ut = K(u) = θ
δH1

δu
= ϑ

δH2

δu
,

it is called bi-Hamiltonian equation, where H1, H2 ∈ C∞(M), θ, ϑ : T∗(M)→ T(M) are Hamiltonian operators and
form a Hamiltonian pair.
Proposition 2. 18,20 Let I(u) = I(x, u) be a functional , then I(u) is a conserved quantity of Eq.(2) if and only if
its variational derivative δI(u)

δu is an adjoint symmetry, where I(u) does not depend explicitly on time t.

Proof. Let γ be the variational derivative of I(u), i.e., I(u)′[g] =< γ, g > for any g ∈ T(M), we have

∂t < γ, g >=∂t(I(u)′[g])

=(∂tI(u))′[g] + I(u)′[∂tg]

=(∂tI(u))′[g]+ < γ, ∂tg > .

It gives rise to
(∂tI(u))′[g] =< ∂tγ, g > .
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For u satisfying Eq.(2) and noting that
dI(u)

dt
= ∂tI(u) + I(u)′[ut] = ∂tI(u) + I(u)′[K] = ∂tI(u)+ < γ,K >,

we have

(
dI(u)

dt
)′[g] = (∂tI(u))′[g]+ < γ,K >′ [g]

=< ∂tγ, g > + < γ′[g],K > + < γ,K ′[g] >

=< ∂tγ, g > + < γ′∗K, g > + < K ′∗γ, g >

=< ∂tγ + γ′K +K ′∗γ, g >,

where γ′ = γ′∗ has been used. Obviously, I(u) is a conserved quantity of Eq.(2) if and only if γ is an adjoint symmetry
of (2).

Hamiltonian structures, gradient fields and Noether operators are related as follows.
Proposition 3. 12 Let θ = θ(u) : T∗(M)→ TM is an implectic operator and Eq.(2) is rewritten as

ut = K(u) = θγ, γ ∈ T∗(M). (5)

Then θ is a Noether operator of Eq.(2) iff γ is a gradient field, in other words, (5) is a Hamiltonian structure.

Proof. For arbitrary f, g ∈ T∗(M), we have

< f, (θ′[K]−K ′θ − θK ′∗)g >
= < γ, θ′[θf ]g > + < f, θ′[θg]γ > + < g, θ′[θγ]f > + < θf, (γ′ − γ′∗)[θg] > .

From the above equation, it is easy to see that θ is a Noether operator iff γ′ = γ
′∗, i.e., γ is a gradient field for θ is

an implectic operator.

Now let us consider an evolution equation

ut = Kn(u) = ΦnK(u), (6)

where K ∈ T(M) and Φ is a hereditary and strong symmetry operator.
Proposition 4. 12 Suppose that the recursion operator Φ of Eq.(6) can be factorized into the product of an implectic
operator θ and a symplectic operator J and the first equation in (6) has a Hamiltonian structure

ut = K(u) = θf, (7)

then every equation in (6) is Hamiltonian equation

ut = θΦ∗nf = θ
δHn

δu
(n = 0, 1, 2, · · · ),

where the inverse operator of θ exists, Φ∗ is the conjugate operator of Φ and Φθ = θΦ∗. Furthermoer the functional
Hn can be expressed as

Hn =

1∫
0

< (Φ∗nf)(λu), u > dλ.

Proof. Since (7) is a Hamiltonian equation, we know that θ is a Noether operator of Eq.(7) by Proposition 3. Next
we will prove that θ is also a Noether operator of Eq.(6) in the case of n = 1.
If Φ is a strong symmetry operator and θ is a Noether operator of Eq.(7), then J is an inverse Noether operator

since the inverse operator of θ exists. By the definition of inverse Noether operator, we have

< θh, (J ′[K] +K
′∗ + JK ′)θg >= 0 h, g ∈ T(M).

On the other hand, we have
< g, θ′[θJK]h > +cycle(g, JK, h) = 0

for θ(u) is an implectic operator. Noticing that J(u) is a symplectic operator, we easily obtain

< g, {θ′[ΦK]− (ΦK)′θ − θ(ΦK)
′∗}h >=< θg, J ′[θh]K > +cycle(θg, θh,K) = 0.
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That is to say θ is a Noether operator for Eq.(6) in the case of n = 1. According to Proposition 3, this equation is a
Hamiltonian equation and its Hamiltonian functional is

H1 =

1∫
0

< (Φ∗f)(λu), u > dλ

by (1).
Similarly, we can prove this proposition for the case of n ≥ 2, based on the case of n− 1. This completes the proof

by the mathematical induction.

3 THE ISOSPECTRAL KUNDU HIERARCHY AND ITS CONSERVATION LAWS

In this section, we briefly recall the hierarchy of the isospectral Kundu equation and obtain its CLs by expanding the
ratios of the corresponding eigenfunctions into Laurent series.
Let

σ =

(
−1 0

0 1

)
, δ =

(
0 1

1 0

)
, e =

(
1 0

0 1

)
and assume that T denotes the transpose of a matrix. Let us consider the following spectral problem24,25

φx = Mφ, M =

(
− 1

2 (η2 − βqr) ηq

ηr 1
2 (η2 − βqr)

)
, φ =

(
φ1
φ2

)
, (8)

and its time evolution
φt = Nφ, N =

(
A B

C −A

)
,

where q = q(t, x), r = r(t, x) are the smooth functions and η is a spectral parameter. Supposing that the derivatives
of any order with respect to x of q and r vanish rapidly as x→∞, the compatibility condition reads

Mt −Nx + [M,N ] = 0,

which yields

ηût = L1L2

(
B

−C

)
+ η2L3

(
B

−C

)
− 2ηA0σû− ηtL1û+ 2η2ηtxû, (9)

where û = (q, r)T and

L1 = e− βσû∂−1ûT δ, L2 = −(σ∂ + βqre), L3 = e+ (2− β)σû∂−1(r, q).

Expanding (B,C)T in (9) as (
B

C

)
=

n∑
j=1

(−1)n−j
(
bj
cj

)
η2(n−j)+1,

and comparing the coefficients of the same power of η, we can obtain the related hierarchy of isospectral flow
(ηt = 0, A0 = 1

2 (−1)nη2n)

ût = K̂n = Φ̂nK̂0 = −Φ̂nσû, (10)

where n is a positive integer and

Φ̂ =L1L2L
−1
3

=− σ∂ +
1

2
βûT δûe+ (2− β)ûx∂

−1ûT δ + βσû∂−1ûTx σδ + 2(1− β)ûûT δ

+ β(β − 1)σû∂−1ûT δûT δû.

From26, we know that the operator Φ̂ is hereditary and strong symmetrical and the isospectral hierarchy and non-
isopectral hierarchy form an infinite-dimensional τ -symmetry Lie algebra. Furthermore, the hierarchy (10) includes the
Kaup-Newell equation27, the Chen-Lee-Liu equation28, the Gerdjikov-Ivanov equation29,30, the modified Korteweg-de
Vries equation, the Sharma-Tasso-Olever equation31 and a new equation as special reductions.



Zhang JB et al 7

Now, let us work out the CLs from the Lax pairs. Considering the ratio of the two eigenfunctions

ω(x, η) = η
φ2(x, η)

φ1(x, η)
,

obviously the ratio ω(x, η) satisfies the Riccati equation

qωx(x, η) = −q2ω2(x, η) + (η2 − βqr)qω(x, η) + η2qr. (11)

By the spectral problem (8), the following CLs relation holds

[−1

2
(η2 − βqr) + qω(x, η)]t = (A+B

ω(x, η)

η
)x. (12)

Expanding qω(x, η) into a Laurent series

qω(x, η) =

∞∑
n=0

ωn(x)η−2n,

we get a recursion relation for defining ωn:

ω0(x) = −qr, ω1(x) = −qrx + (1− β)q2r2,

ωn+1(x) = q(
ωn(x)

q
)x +

n∑
j=0

ωj(x)ωn−j(x) + βqrωn(x), (n = 0, 1, 2, · · · ),

from the above Riccati equation (11).
Therefore, for example, letting26{

A = 1
2η

4 − qrη2 + 1
2β(3− 2β)q2r2 + 1

2β(rqx − qrx),

B = −qη3 + qxη + (2− β)q2rη,

we have

[
1

2
β(qr) +

∞∑
n=0

ωn(x)

η2n
]t =[

1

2
η4 − qrη2 +

1

2
β(3− 2β)q2r2 +

1

2
β(rqx − qrx)

−
∞∑
n=0

ωn(x)

η2n−2
+
qx
q

∞∑
n=0

ωn(x)

η2n
+ (2− β)qr

∞∑
n=0

ωn(x)

η2n
]x.

(13)

The first several conservation laws in (13) are listed as follows:

(qr)t = [(3− 2β)q2r2 + qxr − qrx]x, (14a)

[qrx − (1− β)q2r2]t = [2(3− 2β)q2rrx + qxrx − qrxx − 2(1− β)(2− β)q3r3]x, (14b)

[−qrxx + (1− β)qqxr
2 + (4− 3β)q2rrx − (β − 1)(β − 2)q3r3]t = [qrxxx − qxrxx

− (1− β)qqxxr
2 − (5− 3β)q2r2x + (1− β)q2xr

2 − 2(1− β)qqxrrx + (5β − 8)q2rrxx

+ 3(1− β)(2− β)q2qxr
3 + (9β2 − 31β + 24)q3r2rx + (1− β)(3− β)(2β − 3)q4r4]x.

(14c)

4 THE CONSERVED QUANTITIES OF THE KUNDU HIERARCHY

In this section, we will get the conserved quantities to prove the Liouville integrability of the Kundu hierarchy
by establishing the Hamiltonian structure from the recursion relation (10). Actually, the conserved quantities have
already been derived out through the Tu scheme25. To illuminate the relationship between Hamiltonian structures
and conservation laws, we re-derive them by the Fokas’ method again.
Let us rewrite the system (10) as

ût = −Φ̂nσû = θ̂(θ̂−1Φ̂θ̂)nδû, (15)

where
θ̂ = δσ + 2(1− β)σû∂−1ûTσ.
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To show that the Eq.(15) is a Hamiltonian equation, we first prove that θ̂ is an implectic operator. It is easy to verify
that

θ̂∗ = −θ̂, θ̂−1Φ̂θ̂ = Φ̂∗,

thus θ̂ is skew-symmetric operator and Φ̂∗ is similar to the operator Φ̂, where Φ̂∗ is the conjugate operator of the
recursion operator Φ̂.

Lemma 1. θ̂ is an implectic operator.

Proof. For arbitrary three cotangent vectors f, g, h ∈ T∗(M), we have

(f, θ̂
′
[θ̂g]h) + (g, θ̂

′
[θ̂h]f) + (h, θ̂

′
[θ̂f ]g),

=2(1− β)[(f, σδσg∂−1ûTσh+ σû∂−1gTσδσh)] + (g, σδσh∂−1ûTσf + σû∂−1hTσδσf)

+ (h, σδσf∂−1ûTσg + σû∂−1fTσδσg)] + 4(1− β)2[(f, û∂−1ûTσg∂−1ûTσh)

+ (f, σû∂−1ûTh∂−1ûTσg) + (g, û∂−1ûTσh∂−1ûTσf) + (g, σû∂−1ûT f∂−1ûTσh)

+ (h, û∂−1ûTσf∂−1ûTσg) + (h, σû∂−1ûT g∂−1ûTσf).

It is easy to verify the following relations

g̃Tσδσf̃ = f̃Tσδσg̃,

(f̃ , σδσg̃∂−1ûTσh̃) = −(∂−1g̃Tσδσf̃ , ûTσh̃),

(f̃ , σû∂−1g̃Tσδσh̃) = (ûTσf̃ , ∂−1g̃Tσδσh̃)

hold for arbitrary cotangent vectors f̃ , g̃, h̃ ∈ T∗(M). Thus, we have

(f, θ̂
′
[θ̂g]h) + (g, θ̂

′
[θ̂h]f) + (h, θ̂

′
[θ̂f ]g) = 0.

Since the operator θ̂ is an implectic operator, it is possible to rewrite the Eq.(10) into a Hamiltonian equation.
Now let us find the corresponding symplectic operator. Upon setting

Ĵ =Φ̂∗θ̂−1

=δ∂ + (β − 2)δû∂−1ûTx σδ + (2− 3

2
β)ûT δûσδ + (2− β)σδûx∂

−1ûT δ+

(1− β)(2− β)δûûT δû∂−1ûT δ + (1− β)(2− β)δû∂−1ûT δûûT δ,

then the operator Φ̂ is factorized into the product of the operator θ̂ and Ĵ . Obviously, Ĵ is a skew-symmetric operator.
Next, we prove that it is a symplectic operator.

Lemma 2. Ĵ is a symplectic operator.

Proof. For arbitrary three tangent vectors f, g, h ∈ T(M), let

w1 = (f, gT δûσδh) + cycle(f, g, h),

w2 = (f, δû∂−1gTx σδh− σδgx∂−1ûT δh) + cycle(f, g, h),

w3 = (f, δg∂−1ûTx σδh− σδûx∂−1gT δh) + cycle(f, g, h),

w4 = (f, δg∂−1ûT δûûT δh+ δûûT δû∂−1gT δh) + cycle(f, g, h),

w5 = (f, δû∂−1ûT δûgT δh+ δgûT δû∂−1ûT δh) + cycle(f, g, h),

w6 = (f, δû∂−1gT δûûT δh+ δûûT δg∂−1ûT δh) + cycle(f, g, h),

and then we have wi = 0, i ∈ {1, 2, 3, 4, 5, 6}.
Here we only prove w2 = 0 and w3 = 0, and the others can be proved similarly.
It is easy to see that

(f, δg∂−1ûTx σδh) = (h, σδûx∂
−1gT δf),

and thus w3 = 0.
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Trough simple calculation, we find that

δû∂−1gTx σδh+ δû∂−1gTσδhx = δûgTσδh,

(f, δû∂−1gTσδhx) = −(g, σδhx∂
−1ûT δf),

and
(f, δûgTσδh) + cycle(f, g, h) = 0,

which leads to w2 = 0.
Now let us prove the operator Ĵ is a symplectic operator. With massive complex computations, we have

(f, Ĵ
′
[g]h) + (g, Ĵ

′
[h]f) + (h, Ĵ

′
[f ]g)

=(4− 3β)w1 + (β − 2)(w2 + w3) + (1− β)(2− β)(w4 + w5 + 2w6)

=0.

So, Ĵ is a symplectic operator.

We have shown that the recursion operator Φ̂ can be factorized into the product of the implectic operator θ̂ and
the symplectic operator Ĵ . Now, let us obtain the conserved quantities and complete the proof of the integrability
according to Proposition 4.

Theorem 1. Every equation in the Kundu hierarchy (10) possesses infinite conserved quantities and is integrable in
Liouville sense.

Proof. For Φ̂ is a hereditary and strong symmetry operator and it can be decomposed into the product of the implectic
operator θ̂ and the symplectic operator Ĵ , every equation in (10) has a Hamiltonian structure

ût = θ̂(Φ̂∗)nf̂(t, x, û) = θ̂
δĤn

δû
, (n = 0, 1, 2, · · · ),

where f̂(t, x, û) = −θ̂σû and the conserved quantity Ĥn is expressed as

Ĥn =

1∫
0

< (Φ̂∗nf̂)(λû), û > dλ.

The first three conserved quantities are

Ĥ0 =

∞∫
−∞

qrdx

Ĥ1 =

∞∫
−∞

(
1

2
qxr −

1

2
rxq + (1− β)q2r2)dx,

Ĥ2 =

∞∫
−∞

(
1

2
qxxr +

1

2
rxxq + (1− β)(2− β)q3r3 + (

3

2
− β)qxqr

2 − (
3

2
− β)q2rrx)dx.

According to classical Liouville integrable theory, an equation is integrable if it possesses a Hamiltonian structure
and sufficiently many conserved quantities, i.e., Hamiltonian functionals which are involutive. In theorem 1, we have
derived out infinite conserved quantities of the Kundu equation. From the first few conserved quantities, we can see
that these conserved quantities of the Kundu equations are similar to the conserved densities of its CLs.
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5 CONSTRUCTING HAMILTONIAN STRUCTURES FROM THE CLS

In section 3, we have already obtained infinite CLs of the Kundu Equation. In this section, we will develop a method
to prove the integrability of evolution equations. Thus, the Kundu equation can also be proved to be integrable in
Liouville sense through a way different from the one in Section 4.
From the equation (12), we know

[

∞∫
−∞

(
1

2
βqr + qω)dx]t = 0, (17)

for q, r and their derivatives of any order with respect to x vanish rapidly as x→∞. So the left side of the CLs (12)
is conserved densities of equation (10) and it can be written in the following integral type functional form

Ĥ =

∞∫
−∞

Fdx, F =
1

2
βqr + v̂, v̂ = qω.

Through simple calculation, we have

q(
v̂

q
)x + v̂2 − (η2 − βqr)v̂ − η2qr = 0 (18)

by the Riccati equation (11).
In order to prove the integrability of the Kundu equation, we first find the relation between the Hamiltonian

structure and conserved quantities.

Lemma 3. The variational derivative on u of the integrable type functional

H(u, v) =

∞∫
−∞

F (u, v)dx

under the condition
G(u, v, ux, vx) = 0 (19)

is
δH(u, v)

δu
=
∂F (u, v)

∂u
+ ρ

∂G(u, v, ux, vx)

∂u
− ∂

∂x
ρ
∂G(u, v, ux, vx)

∂ux
,

where ρ is a lagrangian multiplier which is determined by (19) and the following relation
∂F (u, v)

∂v
+ ρ

∂G(u, v, ux, vx)

∂v
− ∂

∂x
ρ
∂G(u, v, ux, vx)

∂vx
= 0. (20)

Proof. Given a Lagrangian multiplier ρ, let

H(u, v) =

∞∫
−∞

[F (u, v) + ρG(u, v, ux, vx)]dx.

Then its Gateaux derivative on u at a direction of h is

H(u, v)′[h] =
∂

∂ε
|ε=0

∞∫
−∞

F (u+ εh, v) + ρG(u+ εh, v, (u+ εh)x, vx)dx.

Under assumption [hx∂
−1(ρ ∂G∂ux

)]|∞x=−∞ = 0, we have

H(u, v)′[h] =

∞∫
−∞

∂F (u, v)

∂u
h+ ρ

∂G(u, v, zx, vx)

∂u
h− h ∂

∂x
ρ
∂G(u, v, zx, vx)

∂ux
dx

=<
∂F (u, v)

∂u
+ ρ

∂G(u, v, ux, vx)

∂u
− ∂

∂x
ρ
∂G(u, v, zx, vx)

∂ux
, h > .

Similarly, we can obtain the Gateaux derivative of H(u, v) on v at a direction h

H(u, v)′[h] =<
∂F (u, v)

∂v
+ ρ

∂G(u, v, ux, vx)

∂v
− ∂

∂x
ρ
∂G(u, v, ux, vx)

∂vx
, h > . (21)
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So the functional derivative of H(u, v) on u under the condition (19) is
δH(u, v)

δu
=
∂F (u, v)

∂u
+ ρ

∂G(u, v, ux, vx)

∂u
− ∂

∂x
ρ
∂G(u, v, ux, vx)

∂ux
,

and the lagrangian multiplier ρ can be defined by (19) and (20).

Lemma 3 provides us a method to calculate the variational derivative under a certain constraint condition.

Theorem 2. Consider the nonlinear evolution equation hierarchy (6). Its recusion operator Φ and the corresponding
conjugate operator Φ∗ satisfy

Φθ = θΦ∗, (22)

where θ is an implectic operator. If the integrable type functional

H(u, v, λ) =

∞∫
−∞

f(u, v, λ)dx

is the conserved quantity of (6) and Γ = δH(u,v,λ)
δu satisfies

Φ∗Γ = λΓ− θ−1K(u),

then every equation in the nonlinear evolution equation hierarchy (6) has a Hamiltonian structure and it is integrable
in the Liouville sense, where λ is a parameter.

Proof. Substituting the Laurent series of Γ on λ

Γ =

∞∑
j=0

Γjλ
−j−1

into (24) and comparing the coefficient of the same power of λ, we obtain

Γj = Φ∗jθ−1K(u). (23)

For Φθ = θΦ∗, ut = ΦmK(u) can be rewritten as ut = θΦ∗mθ−1K(u). Expanding H as the following Laurent series

H =

∞∑
j=0

Hjλ
−j−1, (24)

we can find that every equation in the nonlinear evolution equation hierarchy (6) has a Hamiltonian structure

ut = θΓm = θ
δHm

δu
by comparing the coefficient of the same power of λ.
It is easy to verify that

{Hl, Hm}θ =<
δHl

δu
, θ
δHm

δu
>=< Γl, θΓm >=< θ−1K(u),ΦlθΦ∗mθ−1K(u) >

=< θ−1K(u), Lm+nK(u) >=< Lm+nK(u), θ−1K(u) >= 0

by using (22), namely, Hl and Hm are involutive. So every equation in the nonlinear evolution equation hierarchy (6)
is integrable in the Liouville sense.

As an application of Theorem 2, we have the following corollary:

Corollary 1. Every equation in the Kundu hierarchy (10) is integrable in Liouville sense.

Proof. Through the Lemma 3, we have

G =
δĤ

δû
=

(
δĤ
δq
δĤ
δr

)
=

(
1
q (ρv)x + βρrv − ρη2r + 1

2βr,

βρqv − ρη2q + 1
2βq,

)
where û = (q, r)T and ρ can be defined by (18) and

ρx = 1 + ρ(−qx
q

+ 2v − η2 + βqr).



12 Zhang JB et al

By complicated calculation, we have

Φ̂∗G = −η2
(
B

C

)
− θ̂−1

(
q

−r

)
,

where
θ̂−1 = σδ + 2(1− β)δû∂−1ûT δ.

So every equation in the Kundu hierarchy (10) is integrable in Liouville sense.

Through the corollary 1, we prove the integrability of the Kundu equations in a way different from the previous
method. The main difference between the two methods is that they have different starting points.

6 CONCLUSIONS

In general, we developed a method to prove the Liouville integrability of evolution equations with continuous variable
through the connection between CLs and Hamiltonian structures. From the Lax pair of the Kundu hierarchy, we firstly
deduced its CLs through expanding the ratio of two eigenfunctions into a Laurent series. To obtain the conserved
quantities of the Kundu hierarchy from its Hamiltonian structure, we decomposed the recursion operator Φ̂ into the
product of an implectic operator θ̂ and a symplectic operator Ĵ . Although the conserved quantities have already
be deduced by the Tu scheme in25, we re-derived them through the Fokas’ method to demonstrate the connection
between the Cls and Hamiltonian structures. By the Largrange multiplier and the functional derivatives under certain
constraint conditions, the connection between the conserved quantities and Hamiltonian structures was found. Then
a method was built to prove the integrability of evolution equations from their conserved quantities. Finally, as an
application, the integrability of the Kundu equation was proved by the Cls resulted in section 3.
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