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Abstract

Graph theory has supported chemist with topological indices which
predict different physicochemical properties such as boiling point, en-
tropy, acentric factor etc. of chemical compounds. In this article, we
introduce two new topological indices called degree locating indices,
based on the degree and location of the vertices, we present exact ex-
pressions for some families of standard graphs and we get the exact
values of these indices for any graph of diameter two. Finally, we
compute these indices for the join of graphs, book graph and firefly
graph.
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1 Introduction

Topological indices play a significant role mainly in chemistry, pharmacol-
ogy, etc.(see [5–9, 12, 17, 18]) Many of the topological indices of current in-
terest in mathematical chemistry are defined in terms of vertex degrees of
the molecular graph. Two of the most famous topological indices of graphs
are the first and second Zagreb indices which have been introduced by Gut-
man and Trinajstic in [10], and defined as M1 (G) =

∑
u∈V (G) (d (u))2 and

M2 (G) =
∑

uv∈E(G) d (u) d (v), respectively. The Zagreb indices have been
studied extensively due to their numerous applications in the place of exist-
ing chemical methods which need more time and increase the costs. Many
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new reformulated and extended versions of the Zagreb indices have been
introduced for several similar reasons (cf. [1, 2, 4, 11, 13,15,19–21]).

One of the present author Saleh [16] has been recently introduced a new
matrix representation for a graph G by defining the locating matrix Lo(G)
over G. We will redefine this representation as in the following.

Definition 1 Let G = (V,E) be a connected graph with vertex set V =
{v1, v2, ..., vn}. A degree locating function of G denoted by Ld(G) is a func-
tion Ld(G) : V (G)→ (Z∪{0})d where d is the diameter of the graph G such
that Ld(vj) = −→vj = (Γ0(vj),Γ1(vj), ...,Γd(vj)), where Γi(vj) is the number of
vertices of distance i from the vertex vj in G. The vector −→vj is called the
degree locating vector corresponding to the vertex vj. Then we define first
and second degree locating indices of G as

L1(G) =
∑

vi∈V (G)

(−→vi )
2

and L2(G) =
∑

vivj∈E(G)

−→vi · −→vj ,

respectively, where −→vi · −→vj is the dot product of the two vectors −→vi and −→vj .

The above locating function and huge applications of topological indices
motivated us to introduce two new topological indices, namely first and sec-
ond degree locating indices, based on the degree locating vectors.

All graphs in this paper will be assumed simple, undirected and connected
unless stated otherwise.

For graph theoretical terminologies, we refer the reader to [3].

2 Some exact values of locating indices

In this section,we determine the first and second degree locating indices for
some standard graphs like Kn, Cn, Kn,m, Wn, Pn,

Theorem 2 Let G ∼= Kn be the complete graph with a vertex set V (G) =
{v1, v2, · · · , vn}, where n ≥ 2.Then

i. L1(G) = n2 (n2 − 3n+ 3).

ii. L2(G) =
n(n−1)(n3−4n2+7n−2)

2
.
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Proof. Let G ∼= Kn be the complete graph with vertex set V (G) =
{v1, v2, ..., vn}, n ≥ 2 and Obviously, for any vertex vi ∈ V (G) the corre-
sponding degree locating vector −→vi has one in the ith component and the
other n − 1 components contain the number n − 1, so −→vi 2 = 1 + (n − 1)2.
In the same way for any two adjacent vertices vi, vj ∈ V (G), we have
−→vi .−→vj = 2 + 2(n− 1) + (n− 1)2(n− 2) = n3 − 4n2 + 7n− 2.

Hence,
L1(G) = n2

(
n2 − 3n+ 3

)
.

Similarly, L2(G) = n(n−1)
2

(n3 − 4n2 + 7n− 2). Therefore,

L2(G) =
n (n− 1) (n3 − 4n2 + 7n− 2)

2
.

�

Proposition 3 For an even integer n ≥ 2, let G ∼= Cn. Then

L1(G) = L2(G) = 2n(n− 1).

Proof. By labeling the vertices of the cycle Cn as {v1, v2, · · · , vn} in the
anticlockwise direction, we can see that for any vertex vi the degree locating
vector will be in the form

−→vi =

1,

n/2−1︷ ︸︸ ︷
2, · · · , 2, 1

 , for all i = 1, 2, ..., n.

So, −→vi 2 = 2 + 4(n/2− 1) = 2(n− 1).
Hence,

L1(G) = L2(G) = 2n(n− 1).

�

Proposition 4 For an odd integer n ≥ 3, let G ∼= Cn. Then

L1(G) = L2(G) = n(2n− 1).
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Proof. By labeling the vertices of the cycle Cn as {v1, v2, · · · , vn} in the
anticlockwise direction, it is easy to see that for any vertex vi the degree
locating vector will be in the form

−→vi =

1,

n−1
2︷ ︸︸ ︷

2, · · · , 2

 , for all i = 1, 2, ..., n.

So, −→vi 2 = 2n− 1.
Hence,

L1(G) = L2(G) = n(2n− 1).

�

Theorem 5 Let G ∼= Ka,b,be a complete bipartite graph. Then

i. L1(G) = a3 + ab2 − 2a2 + 2a+ a2b+ b3 − 2b2 + 2b.

ii. L2(G) = ab (2ab− a+ 2− b).

Proof. Let G ∼= Ka,b, with two partite sets A and B such that |A| = a and
|B| = b,by labeling the vertices as V (G) = {v1, ...va, u1, ...ub}. Obviously for
any vertex vi the corresponding degree degree locating is of the form

−→vi = (1, b, a− 1) , for all i = 1, 2, ..., a,

and

−→ui = (1, a, b− 1) , for all i = 1, 2, ..., b.

Therefore

−→vi 2 = 1 + b2(a− 1)2 = a2 + b2 − 2a+ 2, for all i = 1, 2, ..., a,

and

−→ui 2 = 1 + b2(a− 1)2 = a2 + b2 − 2b+ 2, for all i = 1, 2, ..., b.

In the same way we have for any adjacent vertices vi, uj,

−→vi .−→ui = 1 + ab+ (a− 1)(b− 1), for all i = 1, 2, ..., band j = 1, 2, ..., b
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Hence,
L1(G) = a3 + ab2 − 2a2 + 2a+ a2b+ b3 − 2b2 + 2b,

and
L2(G) = ab (2ab− a+ 2− b) .

�

Since the following consequences of Theorem 5 are special cases and clear,
we will omit their proofs.

Corollary 6 Let G ∼= Ka,a, be complete bipartite graph. Then L1(G) =
2a2(a2 − a+ 1), and L2(G) = 4a(a2 − a+ 1).

Corollary 7 Let G ∼= K1,a, be a star graph with a+1 vertices. Then L1(G) =
a3 − a2 + 3a+ 1, and L2(G) = a(a+ 1).

Proposition 8 Let G be wheel graph Wn with n+ 1 vertices, where (n ≥ 4).
Then we have

i. L1(G) = n3 − 5n2 + 19n+ 1.

ii. L2(G) = n (n2 − 3n+ 20).

Proof. Let G ∼= Wn for n ≥ 4, where Wn is the wheel graph with n + 1
vertices. By labeling the vertices of V (G) in the anticlockwise direction as
v1, v2, · · · , vn, vn+1 such that vn+1 is the center of the wheel, we obtain

−→vi = (1, 3, n− 3) , for i = 1, 2, ..., n

and
−−→vn+1 = (1, n, 0) .

So we get for i = 1, ..., n, −→vi 2 = n2 − 6n + 19, −→vi .−−→vi+1 = n2 − 6n + 19,
−→vi .−−→vn+1 = 3n+ 1 and −−→vn+1

2 = n2 + 1. Hence,

L1(G) = n3 − 5n2 + 19n+ 1,

and
L2(G) = n

(
n2 − 3n+ 20

)
.

�
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Theorem 9 Let G ∼= Pn be path of even number of vertices (n ≥ 4). Then

i. L1(G) = n(3n−2)
2

.

ii. L2(G) = 3n(n−2)+4
2

.

Proof. Let G is be a path Pn with even number of vertices (n ≥ 4). By
labeling the vertices from left to right as v1, v2, · · · , vn

−→v1 =

( n︷ ︸︸ ︷
1, · · · , 1

)
, −−→vn−1 =

( n︷ ︸︸ ︷
1, · · · , 1

)
,

−→v2 =

1, 2,

n−3︷ ︸︸ ︷
1, · · · , 1, 0

 , −−→vn−1 =

1, 2,

n−3︷ ︸︸ ︷
1, · · · , 1, 0

 ,

−→v3 =

1, 2, 2,

n−5︷ ︸︸ ︷
1, · · · , 1, 0, 0

 , −−→vn−2 =

1, 2, 2,

n−5︷ ︸︸ ︷
1, · · · , 1, 0, 0

 ,

...
...

−→vn
2

=

1,

n
2
−1︷ ︸︸ ︷

2, · · · , 2, 1

n
2
−1︷ ︸︸ ︷

0, · · · , 0

 , −−→vn
2
+1 =

1,

n
2
−1︷ ︸︸ ︷

2, · · · , 2, 1

n
2
−1︷ ︸︸ ︷

0, · · · , 0

 .

By symmetry on components between the vectors easy to see that
−→v1 = −→vn, −→v2 = −−→vn−1, · · · ,−→vn

2
= −−→vn

2
+1 That means, for j = 1, 2, ..., n

2
, we have

−→vj =

1,

j−1︷ ︸︸ ︷
2, · · · , 2,

n−2j+1︷ ︸︸ ︷
1, · · · , 1,

j−1︷ ︸︸ ︷
0, · · · , 0

 ,

and

−→vj 2 = 1 + 4(j − 1) + (n− 2j + 1) = n+ 2j + 1.

Therefore,

L1(G) = 2

n
2∑

j=1

(n+ 2j − 2) = n2 + 4
n/2(n/2 + 1)

2
− 2n.

Hence,

L1(G) =
n(3n− 2)

2
.
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Now to prove part (ii), we have, for j = 1, 2, ..., n
2
− 1

−→vi .−−→vi+1 =

1,

j−1︷ ︸︸ ︷
2, · · · , 2,

n−2j+1︷ ︸︸ ︷
1, · · · , 1,

j−1︷ ︸︸ ︷
0, · · · , 0

 .

1,

j−1︷ ︸︸ ︷
2, · · · , 2, 2,

n−2j−1︷ ︸︸ ︷
1, · · · , 1,

j−1︷ ︸︸ ︷
0, · · · , 0


Thus,

−→vi .−−→vi+1 = 1 + 4(j − 1) + +2 + n− 2j − 1 = 2j + n− 2.

But, for

−−→vn
2
−1.
−→vn

2
=

1,

n
2
−1︷ ︸︸ ︷

2, · · · , 2, 1

n
2
−1︷ ︸︸ ︷

0, · · · , 0

 .

1,

n
2
−1︷ ︸︸ ︷

2, · · · , 2, 1

n
2
−1︷ ︸︸ ︷

0, · · · , 0

 = 2(n− 1).

Then we get

L2(G) = 2(n− 1) + 2

n−2
2∑

j=1

(n+ 2j − 2) =
3n (n− 2)

2
+ 2

Hence,

L2(G) =
3n (n− 2) + 4

2
.

�

Theorem 10 Let G ∼= Pn be path of odd number of vertices (n ≥ 5). Then

i. L1(G) = 3n2−2n+1
2

.

ii. L2(G) = 3n2−6n+3
2

.

Proof. Let G is be a path Pn with even number of vertices (n ≥ 5). By
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labeling the vertices from left to right as v1, v2, · · · , vn

−→v1 =

( n︷ ︸︸ ︷
1, · · · , 1

)
, −−→vn−1 =

( n︷ ︸︸ ︷
1, · · · , 1

)
,

−→v2 =

1, 2,

n−3︷ ︸︸ ︷
1, · · · , 1, 0

 , −−→vn−1 =

1, 2,

n−3︷ ︸︸ ︷
1, · · · , 1, 0

 ,

−→v3 =

1, 2, 2,

n−5︷ ︸︸ ︷
1, · · · , 1, 0, 0

 , −−→vn−2 =

1, 2, 2,

n−5︷ ︸︸ ︷
1, · · · , 1, 0, 0

 ,

...
...

−−→vn−1
2

=

1,

n−3
2︷ ︸︸ ︷

2, · · · , 2, 1

n−3
2︷ ︸︸ ︷

0, · · · , 0

 , −−→vn+3
2

=

1,

n−3
2︷ ︸︸ ︷

2, · · · , 2, 1

n−3
2︷ ︸︸ ︷

0, · · · , 0

 .

By symmetry on components between the vectors easy to see that
−→v1 = −→vn, −→v2 = −−→vn−1, · · · ,−−→vn−1

2
= −−→vn+3

2
That means, for j = 1, 2, ..., n−1

2
, we

have

−→vj =

1,

j−1︷ ︸︸ ︷
2, · · · , 2,

n−2j+1︷ ︸︸ ︷
1, · · · , 1,

j−1︷ ︸︸ ︷
0, · · · , 0

 ,

and

−→vj 2 = 1 + 4(j − 1) + (n− 2j + 1) = n+ 2j + 1.

For the remaining vertex vn+1
2

, we get

−−→vn+1
2

=

1,

n−1
2︷ ︸︸ ︷

2, · · · , 2,

n−1
2︷ ︸︸ ︷

0, · · · , 0

 ,

So,
−−→vn+1

2

2 = 2n− 1.

Therefore,

L1(G) = 2n− 1 + 2

n−1
2∑

j=1

(n+ 2j − 2) =
3n2 − 2n+ 1

2
.
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Now, to prove part (ii), we have, for j = 1, 2, ..., n−3
2

−→vi .−−→vi+1 =

1,

j−1︷ ︸︸ ︷
2, · · · , 2,

n−2j+1︷ ︸︸ ︷
1, · · · , 1,

j−1︷ ︸︸ ︷
0, · · · , 0

 .

1,

j−1︷ ︸︸ ︷
2, · · · , 2, 2,

n−2j−1︷ ︸︸ ︷
1, · · · , 1,

j−1︷ ︸︸ ︷
0, · · · , 0


Thus,

−→vi .−−→vi+1 = 1 + 4(j − 1) + +2 + n− 2j − 1 = 2j + n− 2.

But, for i = n−1
2
, n+1

2
, n+3

2

−−→vn−1
2
.−−→vn+1

2
= −−→vn+1

2
.−−→vn+3

2
=

1,

n−3
2︷ ︸︸ ︷

2, · · · , 2, 1

n−3
2︷ ︸︸ ︷

0, · · · , 0

 .

1,

n−1
2︷ ︸︸ ︷

2, · · · , 2,

n−1
2︷ ︸︸ ︷

0, · · · , 0

 = 2n−3.

Then, we get

L2(G) = 2(2n− 3) + 2

n−3
2∑

j=1

(n+ 2j − 2) = 2n+
3n2 − 10n+ 3

2

Hence,

L2(G) =
3n2 − 6n+ 3

2
.

�

Proposition 11 Let G be k-regular graph of n ≥ 2 and with diameter two.
Then

i. L1(G) = n (n2 − 2nk − 2n+ 2k2 + 2k + 2).

ii. L2(G) =
nk(n2−2nk−2n+2k2+2k+2)

2
.

Proof. Let G be k-regular graph of n ≥ 2 vertices and with diameter two.
Then clearly for any vertex v ∈ V (G),we have
−→v = (1, k, n− k − 1) and −→v 2 = 1 + k2 + (n− k − 1)2, Hence,

L1(G) = n
(
n2 − 2nk − 2n+ 2k2 + 2k + 2

)
, and

L2(G) =
nk (n2 − 2nk − 2n+ 2k2 + 2k + 2)

2
.

�
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Proposition 12 Let G be a graph of n ≥ 2 and with diameter two. Then

i. L1(G) = n+ 2M1(G) + (n− 1)(n− 2m− 1).

ii. L2(G) = 2M2(G)− (n− 1)M1(G) +mn2 + 2m− 2mn.

Proof. Let G be a graph of n ≥ 2 vertices and with diameter two. Then
clearly for any vertex v ∈ V (G),we have
−→v = (1, deg(v), n − deg(v) − 1) and −→v 2 = 1 + deg(v)2 + (n − deg(v) − 1)2,
then

L1(G) =
∑

u∈V (G)

−→v 2 = n+ 2M1(G) + (n− 1)(n− 2m− 1).

Similarly,

L2(G) =
∑

uv∈E(G)

−→u .−→v =
∑

uv∈E(G)

(1+deg(v)deg(u)+(n−1−deg(v))(n−1−deg(u))).

Hence,

L2(G) = 2M2(G)− (n− 1)M1(G) +mn2 + 2m− 2mn.

�

Locating indices of the join of two graphs

The join G = G1 +G2 of graphs G1 and G2 with disjoint vertex sets V1 and
V2 and edge sets E1 and E2 is the graph union G1 ∪G2 together with all the
edges joining V1 and V2. In the following theorem we find first and second
locating indices for the join graph G.

Theorem 13 Let G ∼= G1 + G2 such that G1 and G2 are both connected
graphs, such that G1 has n1 vertices and m1 edges while G2 has n2 vertices
and m2 edges. Then

L1(G) = 2(M1(G1) +M1(G2)) + (n2m1 + n1m2) + 4(m1 +m2)− 4(n1m1 + n2m2)

+(n3
1 + n3

2) + (n1n
2
2 + n2n

2
1)− 2(n2

1 + n2
2) + 2(n1 + n2).

and
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L2(G) = (n2 − n1 + 1)(M1(G1) +M(G2)) + 2M2(G1) +m1(n
2
1 + n2

2 − 2n1 + 2)

+m2(n
2
1 + n2

2 − 2n2 + 2) + n1n2(m1 +m2)

+ 2m1m2 + n1n2(2n1n2 + 2− n1 − n2).

Proof. Let G ∼= G1 + G2 such that G1 and G2 are both connected graphs,
such that G1 has n1 vertices and m1 edges while G2 has n2 vertices and m2

edges. Then.by labeling the vertices of the graph G as

V (G) = {v1, v2, · · · , vn1 , u1, u2, · · · , un2}

where v1, v2, · · · , vn1 ∈ V (G1) and u1, u2, · · · , vn2 ∈ V (G2). we get the
degree locating vectors in G as following:

−→vi = (1, n2 + degG1(vi), n1 − degG1(vi)− 1) ,

and
−→ui = (1, n1 + degG2(ui), n2 − degG2(ui)− 1) .

So,

−→vi 2 = 2degG1(vi)
2+2n2degG1(vi)+2degG1(vi)−2n1degG1(vi)+n2

2+n2
1+2−2n1

and

n1∑
i=1

−→vi 2 = 2M1(G1) + 4n2m1 + 4m1 − 4n1m1 + n3
1 + n1n

2
2 − 2n2

1 + 2n1.

In the same way

−→ui 2 = 2degG2(ui)
2+2n1degG2(ui)+2degG2(ui)−2n12degG2(ui)+n

2
2+n

2
1+2−2n2

S0,

n2∑
i=1

−→ui 2 = 2M1(G2) + 4n1m2 + 4m2 − 4n2m2 + n3
2 + n2n

2
1 +−2n2

2 + 2n2.

Clearly,

L1(G) =

n1∑
i=1

−→vi 2 +

n2∑
i=1

−→ui 2,
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then

L1(G) = 2(M1(G1) +M1(G2)) + (n2m1 + n1m2) + 4(m1 +m2)− 4(n1m1 + n2m2)

+(n3
1 + n3

2) + (n1n
2
2 + n2n

2
1)− 2(n2

1 + n2
2) + 2(n1 + n2)

To prove (ii), according to different types of edges in G, we have

L2(G) =
∑

vivj∈E(G)

(−→vi .−→vj ) +
∑

uiuj∈E(G)

(−→ui .−→uj ) +
∑

viuj∈E(G)

(−→vi .−→uj )

Since,

−→vi .−→vj = 1 + (n2 + degG1(vi)) (n2 + degG1(vj)) + (n1 − degG1(vi)− 1) (n1 − degG1(vj)− 1) ,

so,

−→vi .−→vj = n2degG1(vj) + n2degG1(vi) + 2degG1(vi)degG1(vj)

+degG1(vi) + degG1(vj)− n1degG1(vj)− n1degG1(vi)

+n2
2 + n2

1 + 2− 2n1.

Then∑
vivj∈E(G)

(−→vi .−→vj )

=
∑

vivj∈E(G)

(
n2(degG1(vi) + degG1(vj)) + 2(degG1(vi)degG1(vj))

+ (degG1(vi) + degG1(vj))− n1(degG1(vi) + degG1(vj)) + n2
1 + n2

2 + 2− 2n1

)
= (n2 − n1 + 1)M1(G1) + 2M2(G1) +m1(n

2
1 + n2

2 − 2n1 + 2)

Also, since

−→ui .−→uj = 1 + (n1 + degG2(ui)) (n1 + degG2(uj)) + (n2 − degG2(ui)− 1) (n2 − degG2(uj)− 1)

In the same way we get,∑
uiuj∈E(G)

(−→ui .−→uj ) = (n1 − n2 + 1)M1(G2) + 2M2(G2) +m2(n
2
1 + n2

2 − 2n2 + 2).
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Similarly, since,

−→vi .−→uj = 1 + (n2 + degG1(vi)) (n1 + degG2(uj)) + (n1 − degG1(vi)− 1) (n2 − degG2(vj)− 1)

We get ∑
viuj∈E(G)

(−→vi .−→uj ) =

n1∑
i=1

n2∑
j=1

(−→vi .−→uj ),

and

n1∑
i=1

n2∑
j=1

(−→vi .−→uj ) =

n1∑
i=1

(
n2m2 + n1n2degG1(vi) + 2m2degG1(vi) + n2degG1(vi)

+m2 − n2degG1(vi)− n1m2 + n2(2n1n2 + 2− n2 − n1)
)

= n1n2(m1 +m2) + 2m1m2 + n1n2(2n1n2 + 2− n1 − n2).

Hence,

L2(G) = (n2 − n1 + 1)M1(G1) + 2M2(G1) +m1(n
2
1 + n2

2 − 2n1 + 2)

(n1 − n2 + 1)M1(G2) + 2M2(G2) +m2(n
2
1 + n2

2 − 2n2 + 2) + n1n2(m1 +m2)

+ 2m1m2 + n1n2(2n1n2 + 2− n1 − n2).

�

Locating indices of the book graph

Theorem 14 Let G be a book graph Bt = P2 × St with (2t + 2) vertices.
Then,

i. L1(G) = 4t3 + 16t+ 4.

ii. L2(G) = 4t3 + 4t2 + 14t+ 2.

Proof. Suppose, we have G is the book graph Bt = P2×St with (2t+ 2) by
labeling the vertices as V (G) = {v, u, v1, v2, ....vt, u1, u2, ..., ut} as in Figure
1, we get,

−→v = (1, t+ 1, t, 0) , −→u = (1, t+ 1, t, 0)

13



v u

v1 u1u2v2

vt ut

Figure 1: A Book Graph Bt.

And for i = 1, 2, ...,m, we have

−→vi = (1, 2, t, t− 1) , −→u = (1, 2, t, t− 1) ,

Then,
−→v 2 = −→u 2 = 1 + (t+ 1)2 + t2 = 2(t2 + t+ 1),

and for i = 1, 2, 3, ..., t

−→vi 2 = −→ui 2 = 1 + 4 + t2 + (t− 1)2 = 2(t2 − t+ 3).

Hence,
L1(G) = 4t3 + 16t+ 4.

Similarly, to prove (ii) we have, −→v .−→u = 2(t2 + t + 1), and for any i =
1, 2, 3, ..., t,

−→vi .−→ui = 2(t2 − t+ 3)

and in the same way,

−→v .−→vi = −→u .−→ui = t2 + 2t+ 3.

Hence,
L2(G) = 4t3 + 4t2 + 14t+ 2.

�
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Locating indices of firefly graphs

A firefly graph Fs,t,n−2s−2t−1 (s ≥ 0, t ≥ 0 and n − 2s − 2t − 1 ≥ 0) is a
graph of order n that consists of s triangles, t pendant paths of lenght 2 and
n − 2s − 2t − 1 pendent edges that are sharing a common vertex [14]. Let
Fn be the set of all firefly graphs Fs,t,n−2s−2t−1.

Theorem 15 Let G ∼= Fs,t,l (s ≥ 0, t ≥ 0 and l ≥ 0) be a firefly graph of
order n. Then

i. L1(G) = 20s2 + 20st+ 20ls− 20s+ 5l2 + 10lt+ 10t2 + 25− 10l − 14t.

ii. for the second degree locating of G

L2(G) = 2t3+3lt2+8st2−t2+l2t+12s2t+8st+8lst−3l+8s3+8ls2+20s2+2l2s+10ls+12s−9.

Proof. Let G ∼= Fs,t,l (s ≥ 0, t ≥ 0 and l ≥ 0) be a firefly graph of
n = 2s+ 2t+ l+ 1 vertices, by labeling the vertices of the graph as in Figure
2 with clockwise direction. That means,

v

v2

v1

v2s−1

u1 u2 ulv2s

z1

z2

zt

w1

w2

wt

v

Figure 2: Firefly Graph Fs,t,l.

V (G) = {v, v1, v2, ...v2s, u1, u2, ..., ul, w1, w2, ..., wt, z1, z2, ..., zt},

where v is the center of the firefly graph and v1, ...v2s the vertices of the
triangles, u1, ...ul the vertices of the pendent edges, w1, ..., wt the first vertices
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of the pendent paths and z1, ..., zt be the the second vertices of the pendent
paths. We get

−→v = (1, 2s+ l + t, t, 0, 0) ,

and for i = 1, 2, ..., 2s,

−→v i = (1, 2, 2s− 2 + l + t, t, 0)

for i = 1, 2, ..., l,

−→u i = (1, 1, 2s+ t+ l − 1, t, 0) ,

for i = 1, 2, ..., t

−→w i = (1, 1, 2s+ l + t− 1, t− 1, 0) ,

and for i = 1, 2, ..., t

−→z i = (1, 1, 1, 2s+ l + t− 1, t− 1) .

By simple calculation we can get

−→v 2 = 1 + (2s+ l + t)2 + t2,

for i = 1, 2, ..., 2s
−→vi 2 = 5 + (2s− 2 + l + t)2 + t2,

for i = 1, 2, ..., l
−→ui 2 = 2 + (2s+ t+ l − 1)2 + t2,

for i = 1, 2, ..., t

−→wi
2 = 5 + (2s+ l + t− 1)2 + (t− 1)2,

and for i = 1, 2, ..., t

−→zi 2 = 3 + (2s+ l + t− 1)2 + (t− 1)2.

Obviously,

L1(G) = −→v 2 +
2s∑
i=1

−→vi 2 +
l∑

i=1

−→ui 2 +
t∑

i=1

−→wi
2 +

t∑
i=1

−→zi 2.
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So

L1(G) = 1 + (2s+ l + t)2 + t2 + 5 + (2s− 2 + l + t)2

+t2 + 2 + (2s+ t+ l − 1)2 + t2 + 5 + (2s+ l + t− 1)2

+ (t− 1)2 + 3 + (2s+ l + t− 1)2 + (t− 1)2

Hence,

L1(G) = 20s2 + 20st+ 20ls− 20s+ 5l2 + 10lt+ 10t2 + 25− 10l − 14t.

To prove (ii), by using the same labeling of the vertices as in Figure 2, we
see that

L2(G) =
2s−1∑
i=1

−→vi .−−→vi+1 +
2s∑
i=1

−→v .−→vi +
l∑

i=1

−→v .−→ui +
t∑

i=1

−→v .−→wi +
t∑

i=1

−→wi.
−→zi .

So,

L2(G) = (5 + (2s+ l + t+ 2)2)(2s− 1)

+(1 + 2(2s+ l + t) + t(2s+ l + t− 2))(2s)

+(1 + 2s+ l + t+ t(2s+ t+ l − 1))(l)

+(1 + 2(2s+ l + t) + t(2s+ l + t− 1))(t)

+(1 + 2 + 2s+ l + t− 1 + (t− 1)(2s+ t+ l − 1))(t).

Hence,

L2(G) = 2t3 + 3lt2 + 8st2 − t2 + l2t+ 12s2t+ 8st+ 8lst− 3l + 8s3 + 8ls2

+20s2 + 2l2s+ 10ls+ 12s− 9.

�
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