
Calibration and error investigation of large tipping bucket flow meters

Abstract

Inherent errors in tipping bucket flow meters may limit monitoring data reliability. In
this work, we perform the static and dynamic calibration of four large tipping buckets,
apply  different  regression  curves  and  investigate  the  possible  measurement  error
sources. The volumetric  capacity  (static calibration)  of each piece of equipment  was
determined. They were tested (dynamic calibration) under ten flow intensities, ranging
from low to high rainfall intensities (return period larger than 100 years). For each flow
rate, the measurement was recorded during six time intervals (1, 2, 5, 10, 20 and 30
minutes) and four regression equations - linear, potential, T vs. 1/Q and quadratic - were
tested. According to the static calibration, the equipment has a volumetric capacity of
11.63 mL (TB1), 64.16 mL (TB2), 139.86 mL (TB3) and 660.95 mL (TB4).  When
tested under different flow rates (dynamic calibration), underestimations were identified
according to the size of the cavity: TB1 (3.31%), TB2 (5.75%), TB3 (9.33%) and TB4
(13.57%). Among the alternative curves, linear regression showed the best correlation
(above 99%) with the monitored data. Using this method, the measurement errors were
reduced  to  -1.35%  (TB1),  0.04%  (TB2),  3.18%  (TB3)  and  3.73%  (TB4).  We
investigated how the different variables (tipping speed, cavity volumetric capacity and
time interval of data collection) influenced the error. Errors follow a parabolic function
of tipping velocity and a linear function of cavity volumetric capacity. The time interval
of data collection interfered in the data sampled, however no statistical correlation was
found. Among those variables, cavity size is the most important one. Given its low cost
we  aimed  to  minimize  the  inherent  error  in  large  tipping  buckets  flow meters  and
encourage its application, increasing in-situ collection of hydrological data.

Keywords: systemic errors; runoff; in-situ monitoring; hillslope hydrology; land use and land
cover; device. 

1 Introduction

Rapid land use and land cover  (LULC) changes  (Chanapathi  & Thatikonda,  2020;
Mello  et al., 2020), climate change  (Rocha  et al., 2020; Yang  et al., 2020) and population
growth  (Kifle  Arsiso  et  al.,  2017) result  in  higher  demand  of  water,  food  and  energy
(Mahlknecht  et al., 2020). Through in-situ monitoring, long-term data are created to support
the  development  of  new  technologies  and  solutions  to  maintain  the  hydrological  cycle
(Nóbrega et al., 2017; Anache et al., 2019).  

Considering  the specific  requirements  for  hydrological  monitoring  in  a  study area,
there are many alternative instruments available, while each one has its own advantage and
limitations (Sun et al., 2014). A tipping bucket (TB) flow meter is a robust, simple and high
mobility monitoring piece of equipment, which is easy to install and maintain  (Sun  et al.,
2014; Shimizu et al., 2018). A TB consists of two cavities divided by a vertical plate at stable
positions  (one remains  up while  the other  is  down) and it  uses a very simple operational
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mechanism: the collected water flow falls into a cavity and once it  reaches its  volumetric
capacity, the gravitational mass center is switched towards the full cavity, rising the empty
cavity and replacing the previous one, while releasing the stored water.  This process repeats
during  the  entire  flow  event.  In  addition  to  monitoring  accurately,  using  this  kind  of
equipment when associated with a reed switch and datalogger allows automation and better
details  of the data collected,  such as identifying the beginning, end, and peak of the flow
(Corona et al., 2013; Sun et al., 2014; Zabret et al., 2018).

Despite the fact that tipping bucket application dates back to 1928 (Nebol’sin, 1928), it
has been used for surface/subsurface flows in small study area measurements, such as runoff
(Calder  and Kidd,  1978;  Chow,  1976;  Corona  et  al.,  2013;  Elder  et  al.,  2014;  Hollis  &
Ovenden, 1987; Khan & Ong, 1997; Klik et al., 2004; Kim et al., 2005; Johnston, 1942; Nehls
et al.,  2011; Peyrard  et al.,  2016; Perales-Momparler  et al.,  2017; Langhans  et  al.,  2019;
Wang  et al.,  2020; Whipkey, 1965), percolation  (Peyrard  et al.,  2016; Lamb  et al.,  2019;
Wang  et al., 2020), throughfall  (Takahashi  et al., 2010; Zabret  et al., 2018) and stemflow
(Takahashi et al., 2010; Iida et al., 2012; Shimizu et al., 2018; Zabret et al., 2018).

As well  as tipping bucket rain gauges,  tipping bucket  flow meters  used for runoff
measurements are also susceptible to measurement errors between the reference and measured
flows, thus requiring the application of calibration curves. Calibration can be done in two
ways: static (volumetric) and dynamic. Static calibration consists of determining the volume
of water necessary for the center of mass to be shifted towards the filling cavity, leading to its
tipping. The volume determined in this step corresponds to the equipment's reference volume
or its volumetric capacity. On the other hand, dynamic calibration consists of plotting sample
points in a graph, which correlates reference and measured flows and then using regression
curves to minimize errors. Unlike the static calibration that occurs under extremely low flow
rates, usually by drops, to minimize the kinetic energy of the water, in dynamic calibration,
the measurements occur under different flow rates  (Shedekar  et al., 2016). Further details
about both methodologies mentioned are given by Humphrey et al. (1997). 

After  lab  tests  and  data  collection  for  dynamic  calibration,  another  phase  begins:
application of regression curves that best fit the data. There is a large number of applicable
equations,  ranging  from  the  simplest  (linear)  to  the  most  complex  (polynomial  and
exponential). Calder and Kidd (1978) identified a non-linearity of errors under increased flow,
and thus proposed a new calibration curve by correlating the input flow and time interval
between tilts.  Based on the same central  idea of describing the errors considering its non-
linearity, other authors have also proposed calibration curves (Iida et al., 2012; Shimizu et al.,
2018; Shiraki & Yamato, 2004; Takahashi et al., 2010). 

Despite  its  recognized  applicability,  using  TBs  has  systemic  errors  that  need
minimization, through calibration, for a more accurate estimation of water flow. Edwards et
al. (1974) were pioneers in error investigation and development of calibration curves for large
TBs. They discovered that water kinetic energy and the volume lost during cavity switching,
after reaching volumetric capacity, are some of the main sources of errors in TBs. Since then,
many others have dedicated their time to developing calibration techniques  (Calder & Kidd,
1978; Iida et al., 2012; Shimizu et al., 2018), while others have focused on applying existing
methods and investigating the sources of the errors  (Barfield and Hirschi, 1986;  Calder &
Kidd, 1978; Edwards et al., 1974; Egorov et al., 2015; Hollis & Ovenden, 1987; Iida et al.,
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2012; Kanzari  et al.,  2018; Shimizu  et al., 2018; Langhans  et al., 2019; Sun  et al., 2014;
Somavilla et al., 2019; Takahashi et al., 2010; Yahaya et al., 2009). Nowadays, Shimizu et al.
(2018), which is one of the most outstanding papers, provides a general calibration equation
for TBs with flat triangular buckets. Although it was successful in eliminating the 2–3% errors
in stemflow measurements,  it  is  only applicable  for low flow rates  (less than  60 mL per
minute), inapplicable for most surface flow measurements.

Errors  in  TBs  can  be  significantly  reduced  by  static  and  dynamic  calibrations
(Shedekar et al., 2016), but some observed errors are still not completely minimized (Shimizu
et al., 2018). In this context, some questions remain unclear: How can errors be affected by
main operational and design variables (tipping velocity, cavity size and time interval)? Among
the existing regression curves, which is the most suitable for minimizing errors? Is there a
pattern  in  occurring  errors  in  TBs?  Based  on  these  questions,  this  paper  uses  different
techniques (static and dynamic calibration) and regression curves (linear, potential, T vs. 1/Q
and quadratic) aiming to minimize and investigate the source of the occurring errors in four
large sizes of tipping buckets flow meters.

2 Methodology

2.1 Tipping bucket description

The tipping bucket flow meters (Figure 1) were designed to measure runoff in the outlet
of experimental plots (100 m²) under four different LULC: Wooded Cerrado, also known as
Cerrado sensu stricto (TB1), sugarcane (TB2), pasture (TB3) and bare soil (TB4). The plots,
which have been operating since 2011  (Youlton  et al., 2016a, 2016b; Anache  et al., 2018,
2019), are located at the Arruda Botelho Institute, Itirapina, central region of the State of São
Paulo – Brazil (latitude 22º10'S, longitude 47º52'O, elevation of 790 m). 

INSERT FIGURE 1 

2.2 Calibration techniques

To construct an adequate calibration curve, the conditions to be found in the field were
evaluated,  as  the  equipment  will  be  applied  in  determining  the  runoff  in  natural  and
agricultural  areas,  and  is  therefore  susceptible  to  the  presence  of  sediments.   A  high
concentration  of  sediments  can  influence  the  water  density,  as  well  as  accumulate  in  the
cavities of the equipment  (Egorov  et al., 2015; Langhans  et al., 2019). In both cases, they
result in malfunction and measurement errors.

Through the construction of a histogram of the concentration of sediments occurring in
the study area from 2011 to 2017, it was identified that the highest concentration recorded in
the  period  was  10.2  grams  per  liter,  while  most  of  the  events  monitored  (95%)  have  a
concentration  of  around  3.0  g/L.  Barfield  and  Hirschi  (1986) carried  out  the  calibration
process  of  four  scales  used  to  measure  surface  flow  under  different  concentrations  of
sediments and concluded that at a concentration below 20 g/L, the presence of sediments can
be neglected. Therefore, the adverse effects mentioned above due to the presence of sediment
were disregarded, and thus water from the public supply system was used instead of a mixture
of water and soil. Figure 2 shows an illustration of the methodological process applied during
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the static (a) and dynamic (b) calibration processes. A better description of each calibration is
given below.

INSERT FIGURE 2

2.2.1 Static calibration

Prior to the calibration step, both cavities must have the same, or as similar as possible,
water storage capacity. Thus, preliminary tests were carried out to ensure this consideration by
increasing  or  decreasing  the  height  of  the  adjustment  bar.  To  determine  the  volumetric
resolution or nominal volume (NV), a graduated pipette and a  pipette bulb were used. The
water was dripped slowly (interval greater than 2 seconds) so that the kinetic effect did not
interfere in the process until one of the cavities tipped and the volume was identified. The
procedure  was  performed  ten  times  in  each  cavity  and  then  the  average  between  the
measurements was applied to determine the equipment's NV.

2.2.2 Dynamic calibration

During the dynamic calibration process, we used a water column made of a PVC pipe
with 250 mm of diameter and 1.5 meters in height kept at a constant water level and hydraulic
head. In the apparatus, water from the public supply system provides water to the interior of
the PVC pipe, keeping the water level constant by overflowing the pipe. A valve at the base of
the  tube  allowed  water  to  escape  and  enter  the  equipment's  cavities.  The  reed  switch
previously installed on the TB, coupled to a datalogger (Campbell Scientific Inc CR10 and
measuring  at  1-minute  interval)  and  a  12V  battery,  allowed  the  counting  and  automatic
recording of the number of tips.

In order to test the equipment’s behavior under extreme conditions, TBs were tested
under runoff rates corresponding to different rainfall return periods. Flow rates were estimated
using an Intensity-Duration-Frequency curve - IDF (Equation 1) (Rosalem et al., 2018). The
IDF curve was obtained from 40 years of daily precipitation data from the meteorological
monitoring  station  located  at  the  Center  for  Water  Resources  and Environmental  Studies
(CRHEA) at the University of São Paulo, located 5 km far from the application area.

I=1249.
T 0.15

(t+11.39)
0.81

Equation 1

Where:  I  is the average rainfall intensity (mm.h-1) associated with a return period T (years)
and duration t  (minutes) adopted.

To construct the dynamic calibration curve of each TB, ten sampling points (runoff
flow rates) were calculated based on different return periods and uniformly distributed, with
the last sampled flow point resulting from precipitation with a return period greater than 100
years.

The water that flows into the TB (reference flow) was determined by gravimetry, in
which  the  mass  of  water  reserved  over  a  minute  was  measured  on  a  precision  scale  or
electronic scale, when the maximum measurement limit of the precision scale was reached.
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This procedure was carried out in three replicates, at the start and end of each sampling, where
the average of these six values was used for the final determination of the reference flow.

In order to investigate the sampling time length interference on measurements, the data
collected were grouped into six-time intervals: 1, 2, 5, 10, 20 and 30 minutes. To reduce the
possibility of interference from adverse effects, measurements were made in five replicates for
each time interval, and the average of the replicates was subsequently calculated.

For the regression curve application, the volume and flow measured by the equipment
(called simulated volume and flow here) need to be determined. The simulated volume is the
product between the nominal volume and the number of dumps measured in the time interval
under analysis, while the simulated flow is the quotient between the simulated volume and the
time interval.

2.2.3 Calibration curves

The second part of the dynamic calibration process consists of applying mathematical
and statistical  techniques searching for equations that best predict  simulated and reference
flows. To do this, we used four equations: linear; potential; time as function of the inverse of
flow rates, and quadratic. Data representation techniques were applied to each of the four TBs
under the different time intervals, totaling 96 adjustment curves. A better description of each
curve is given below.

A  simple  linear  regression  (Equation  2)  was  the  first  option  used  to  establish  a
relationship between the reference (x-axis) and the simulated (y-axis) flows. Other authors
(Shimizu et al., 2018) have investigated errors in TBs and mention that the correlation may
not be linear. Thus, we investigated the error behaviors under non-linear functions, in which
the potential (Equation 2) is one of them. We did not include an intercept value in a linear nor
a potential curve, since it would represent a simulated flow associated with a null reference
flow. The third regression curve consisted of the graphical representation of the time between

dumps (T) as a function of the inverse of the reference flow (Qref
−1), as suggested by Calder and

Kidd (1978), called T vs. 1/Q curve here. The time between dumps was calculated by the
quotient between the time interval and the number of dumps registered (Equation 2), which
was  plotted  against  the  inverse  of  the  reference  flow,  resulting  in  the  mathematical
representation  of  the  regression  used  given  by  Equation  2.  Finally,  a  quadratic  model
regression was applied between the dump volume (V tip) as a function of the reference flow (
Qref ),  as proposed by  Costello and Williams (1991).  This regression technique assumes that

there  is  a  change  in  the  nominal  volume according  to  the  reference  flow rate.  Once  the
instantaneous tipping volume is calculated (Equation 2), the simulated flow can be estimated
by this mathematical representation (Equation 2).

Qbas=mQref Equation 2

Qbas=aQref
b Equation 3

T=Δt /n Equation 4

T=V bascQref
−1

+c Equation 5
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V basc=(Qref∗Δt)/n
Equation 6

V basc=b0+b1QBasc+b2QBasc
2 Equation 7

Where: Qtip is the flow rate measured by the TB; Qref  is the reference flow rate; m is the slope
of the linear regression curve; a and b are constants of the potential regression curve, in which
a is the point of intercession when the simulated flow is equal to 1 and b is the curve slope; T
is the time between dumps;  Δt  is the time interval (1, 2, 5, 10, 20 or 30 minutes);  n is the
number of dumps registered;  c is the constant in the T vs.  1/Q curve indicating the time
required for the cavity to leave the stable at one side, move and reach the stable point at the
other side; and b0, b1and b2 are constants of adjustment in the quadratic curve.

2.3 Statistical analysis

For  the  statistical  validation  of  TB  applicability  for  flow  monitoring  during  the
dynamic calibration tests, three statistical metrics were applied: coefficient of determination
(R²);  percentage  of bias  (PBIAS);  and Kling-Gupta efficiency (KGE) in a  non-parametric
form.  The  R²  assesses  the  degree  of  collinearity  between  measured  and  reference  flows,
varying between 0 and 1. The closer to 1, the better the correlation between measured and
reference  data  (Surfleet  et  al.,  2012).  The  PBIAS  indicates  the  average  tendency  of  the
measured data to be larger or smaller than the ones observed  (Gupta  et al., 1999). Positive
PBIAS values indicate  a measured underestimation of models and equipment  representing
reference  data,  while  negative  values  mean an overestimation  and,  when equal  to  zero,  a
perfect correlation of the data. Finally, using the KGE metric in the non-parametric form was
an option in  an attempt  to use a  more robust  function  that  would allow analysis  through
different aspects (BIAS, standard deviation and Pearson's correlation), as indicated by Pool et
al. (2018). In this metric,  the values vary between 0 and 1; the closer to 1, the better  the
statistical correlation between the measured and reference data.

In  addition  to  using  statistical  metrics  that  help  the  description,  spatialization  and
comparison of the simulated data, the Analysis of Variance (2-way ANOVA) and Pearson's
correlation were applied to investigate the interference of the selected variables (tipping speed,
cavity dimension and time interval) in the mean error between the observed and the simulated
flow rates at TBs of different sizes.

3 Results and discussion

3.1 Static calibration

The mean and standard deviations of measures at each cavity and global analysis (both
cavities) were obtained during the static calibration of each TB (Table 1). After performing
the procedure and calculating the mean of the measurements, it was found that the nominal
volumes were 11.63 mL, 64.16 mL, 139.86 mL and 660.95 mL for TB1, TB2, TB3 and TB4,
respectively. Thus, these will be the values used to identify the volumes and flows measured
during the dynamic calibration, calculated by its product with the registered number of tips.
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The standard deviation (SD), when expressed in absolute values (mL), has a positive
correlation with the size of the equipment, ranging from 0.44 to 12.21 in the TB1 and TB4,
respectively. However, when expressed in percentage values, TB1 has a higher SD (3.82%)
than TB4 (1.85%). Among the various factors that could lead to such a result, it is believed
that it may be associated with the cavity small water storage capacity and great sensitivity of
TB1. Although care has been taken to carry out the calibration through the slow dripping of
water, the kinetic effect added to the drop volume promotes oscillations between the replicates
(Iida et al., 2012). As the cavity size increases, this effect is smoothed out and, therefore the
SD decreases. 

INSERT TABLE 1

3.2 Dynamic calibration

Table 2 give the mean, maximum and minimum errors, standard deviation, PBIAS and
KGE in TBs under different time intervals. The number of tips registered at each of the flow
sampling points in each TB is available as Supplementary Material (A). In both TBs, it is
observed that time interval plays a fundamental role in the calibration process. As expected, in
shorter intervals, there is a smaller number of data records,  and thus the SD is greater than
when using longer intervals, such as 30 minutes. This point will be better discussed in the
following sections.

Considering the ten flow rates sampled during the dynamic calibration process, both
data from all TBs registered positive PBIAS (underestimation of reference flow). The highest
PBIAS (13.6%) was observed in TB4 under a nominal volume of 660.95 mL, followed by
TB3 (9.3%), TB2 (5.7%) and TB1 (3.3%), which have nominal volumes of 139.86 mL, 64.16
mL and 11.63 mL, respectively. The errors occurred under a range of low and high runoff
intensities and TBs could still operate adequately and even before applying calibration curves,
the proposed monitoring equipment can adequately measure the water flow (KGE> 0.86). 

Given the flow ranges analyzed in both TBs, a greater standard deviation of errors was
recorded at low flows, reducing as the flow increased, as well as in rainfall gauges (Shedekar
et al., 2016). Among all the designed equipment, TB1 had the highest SD, especially under a
small-time interval (1 minute). It is important to cite that the reed switch in TB1 is located
below the central axis, between cavities 1 and 2, recording one electrical signal every two
tipping points. This contributes to the error being greater in this equipment when compared to
the others, which have a record at each tip. Under an increasing time interval (30 minutes) and
flow rate, the influence of this limitation reduces and, consequently, the SD is smaller. Thus,
monitoring short  precipitation events has a greater associated error than those with longer
duration. Similarly, at higher intensities, there is a reduction in SD while there is a higher
mean error. At any measured flow rates, there was an overestimation of the reference flows.
The  behavior  of  TBs  under  flow  rates  at  other  time  intervals  analyzed  can  be  found  in
Supplemental Material (B).

Sun et al. (2014) designed and calibrated TBs with a nominal resolution of 2.5 liters
and identified the same error pattern: high errors under low and high flow rates. It is believed
that under low flow rates, the surface tension of the water influences the displacement along
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the surface of the cavity (Sun et al., 2014), while at high flow rates, the slow and subtle shift,
ideal in the gravity center, is affected by the rapid entry of water under turbulent flow (Iida et
al., 2012).  Another error source comes from the water left in the cavities after one replicate
test ending, which is not sufficient to tip (Nehls et al., 2011). This volume was not removed
from the cavities between calibration tests since we wanted to estimate the errors that would
occur during in-situ monitoring and identify the best calibration model to reduce those errors.

INSERT TABLE 2

3.2.1 Linear regression

As can be seen, in all  TBs there was an underestimation of flow rates as the angular
coefficients (m) obtained are lower than 1 (Figure 3). From the data given in Figure 4 and
Figure  5,  it  can  be  seen  that  for  both  TBs,  the  time  interval  is  a  relevant  variable  that
influences  the  coefficient  of  determination  (R²).  However,  there  is  no  direct  correlation
between this variable and the angular coefficient (m) of the regression curve. In this section,
we  will  discuss  data  obtained  under  30  minutes  of  time  interval,  but  you  can  find  data
regarding other time intervals in Supplemental Material (C). 

Using linear regression is a satisfactory option for all TBs analyzed, as shown by the
statistical metrics used: R² (> 0.99) and KGE (> 0.85). As given in the previous session, the
PBIAS registered in TBs has a direct correlation with the nominal  volume of its cavities.
Likewise, the slope of the linear fit curve (0.967, 0.942, 0.895 and 0.852) follows the same
trend for TB1, TB2, TB3 and TB4, respectively. After implementing the curves, the fitting
curve was ideal in TB1 (PBIAS = 0), while underestimation still occurred in TB2 (0.079%),
TB3  (1.189%)  and  TB4  (1.397%).  Similarly,  the  KGE  index,  considering  PBIAS  in  its
calculation, has an inversely proportional (Pearson correlation of -0.905) and not significant
(p-value of 0.095) behavior for TB1, TB2, TB3 and TB4: 0.967, 0.942, 0.896 and 0.852.

The results are similar to those obtained by Khan and Ong (1997), Yahaya et al. (2009)
and Sun et al. (2014) after applying the linear curves to reduce errors during the calibration of
TBs of different sizes. Khan and Ong (1997) carried out the calibration process of a TB with a
volumetric capacity of 3 liters and obtained R² equal to 0.99 and a residual overestimation
error of 2%. Similarly,  Yahaya et al. (2009) obtained a good coefficient of determination of
0.99 in the calibration of a 0.14 liter of volumetric capacity, which had an average error of
0.74%. Finally,  Sun et al. (2014) calibrated a TB with an NV of 2.5 liters, finding a good
linear correlation (R² equals to 0.99) between reference and measured flows and low mean
error (2.1%). It is important to note that the NV of TB4 (660.95 mL) is greater than all of
those previously mentioned, which would then be expected to have a high error, however, its
average error is lower (1.397%), proving its efficiency.

INSERT FIGURE 3

INSERT FIGURE 4

INSERT FIGURE 5
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3.2.2 Potential regression

The potential curve (Figure 6) is a satisfactory option for all of the TBs, as shown by
the statistical  metrics used: R² (> 0.99), KGE (> 0.85) and mean residual error (<0.2). As
recorded in the linear regression curve,  the KGE has an inversely proportional correlation
(Pearson's correlation of -0.906) with NV, although it was not statistically significant (p-value
of 0.094). As for PBIAS, there is an overestimation of the residual error of -0.358%, -0.251%,
-0.021% and -0.183% in TB1, TB2, TB3 and TB4, respectively. Unlike what was observed in
the linear curve, there is no clear correlation between PBIAS and NV.  Barfield and Hirschi
(1986) found overestimated errors between 1.62% and 1.90% in four TBs with NV ranging
between 356mL and 1284mL while applying a potential calibration curve. 

 INSERT FIGURE 6

3.2.3 T vs. 1/Q regression

In Figure 7, it can be observed that the method has limitations under two situations:
low flow rates and short time intervals  (Shedekar  et al., 2016). Although the flow sampling
points  are  uniformly  distributed  throughout  the  sampling  range  due  to  the  mathematical
formulation of the method, there is a concentration of sampling points at the bottom curve,
while just few sampling points contribute to adjusting the curve in the upper portion. 

Besides the low reliability at low flow rates, this method has good metrics statistics: R²
(> 0.99), KGE (> 0.85) and mean residual error (<3%). By implementing this curve, there is
an overestimation of residual error in TB1 (5.5%), TB2 (4.55%) and TB4 (1.68%), while there
is an underestimation (0.36%) in TB3. 

INSERT FIGURE 7

3.2.4 Quadratic regression

Based on R²,  this  method  works  well  (R²  higher  than  0.6)  for  TB1 (0.721),  TB3
(0.826) and TB4 (0.615). It is important to note that although the KGE presented satisfactory
values, the sampling points are completely dispersed (R² of 0.0255) along the regression curve
(Figure 8) in the TB2. The statistical  discrepancies observed are associated with the KGE
mathematical formulations involved, and thus emphasize the importance of using different
metrics in the calibration process.

By implementing this curve, there is an underestimation in the residual error in TB1
(0.747%), TB3 (3.114%) and TB4 (0.134%), while there is an overestimation (-0.129%) in
TB2.  Although we have not  found the quadratic  to  be a  satisfactory  method for  the TBs
calibration, Somavilla et al. (2019) obtained a good statistical correlation (R² of 0.99 and NSE
of 0.997) and low underestimation (2.27%). Similarly, Shimizu et al. (2018) were successful
in eliminating the 2–3% errors in steamflow measurements. However, in both cases, TBs have
a low volumetric capacity.

INSERT FIGURE 8
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3.2.5 Determining the best calibration curve

After applying different adjustment curve methods, it was defined which curve has the
best fit. Keeping in mind the importance of standardizing methodologies for monitoring runoff
in the study area, the linear regression has the best statistical metric values and it also has
greater simplicity  and confidence in terms of extrapolation.  Table 3 shows the calibration
equations to obtain the flow measured by the TBs based on the number of tips counted by the
datalogger.  Note  that  the  multiplier  number  is  greater  than  the  nominal  resolution  found
during static calibration due to the underestimate error sources presented before, such as water
tension, kinetic effects, water left in cavities and spills.

INSERT TABLE 3

3.3 Causality tests

3.3.1 Tipping velocity

Through the Pearson correlation, the possibility of a correlation between the tipping
speed and the percentage error recorded in the different TB sizes was investigated. It can be
observed  that  the  TBs  have  discordant  behaviors:  TB3  presented  a  directly  proportional
(0.852) significant correlation (p-value of 0.02), while TB1 and TB2 had negative (-0.579 and
-0.008)  and  TB4  positive  (0.707)  correlations,  but  both  not  significant  (p-value  >  0.05).
Considering a joint analysis (join data from all TBs), we found a positive correlation (0.134)
and also significant one (p-value equals to 0.038).

When plotting the mean error according to the number of dumps registered in the TBs
(Figure  9),  a  similar  pattern  was  identified  in  the  error  curve  behavior,  which  can  be
summarized in three zones: Zone I occurs at low tipping speeds and results in high errors
(underestimation);  zone  II  occurs  at  average  tipping  speeds,  characterized  by  a  decay  of
underestimation and thus, it is considered as the optimal range of operation; finally, in zone III
at a high tipping speed, the percentage error re-rises. While calibrating a TB with a 0.14 liter
NV in Nigeria,  Yahaya et al. (2009) also agree that the runoff intensity and the tipping rate
intefere greatly in the errors and, finally, after plotting the efficiency versus the runoff errors,
found  a  parable  trend  in  the  data  collected,  implying  the  existence  of  these  three  zones
explained here.  

In general, there is a tendency to underestimate the flow measured by TBs under high
intensities of runoff  (Iida  et al., 2012; Somavilla  et al., 2019) and rainfall  (Shedekar  et al.,
2016; Sypka, 2019). This phenomenon can be attributed to the volume of water lost while
cavities switches (Shedekar et al., 2016). As the water enters a constant flow, when reaching
the nominal  volume, the cavity starts  the switching but the water continues to fall  on the
cavity that already reached its NV. Thus, there is a small time interval for the filled cavity to
move and water to begin to fall into the second cavity. This delay was also found by Langhans
et al. (2019) in TBs of different NVs (0.1-2 l). Considering that this displacement interval is
constant,  under  increased  flow  of  water,  the  greater  the  underestimation  errors  recorded
(Edwards et al., 1974).
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INSERT FIGURE 9

3.3.2 Time interval of data collection 

The specification of a time interval for the hydrological data acquisition commonly
depends on the available data storage capacity and time interval of other installed equipment.
Using shorter  time intervals,  the greater  the possibilities  of recording extreme events,  the
better the monitoring of natural phenomena (Shedekar et al., 2016). 

Different  data  recording  intervals  were  used  in  the  sampling  during  the  dynamic
calibration (1, 2, 5, 10, 20, and 30 minutes). Thus, to investigate the interference that this
variable  has  in  the  mean percentage  error,  the graphs of  the main effects  were drawn up
(available in Supplemental Material D). Through the graphs, it can be observed that there is a
positive correlation in the TB1, TB3 and TB4, while the TB2 has a negative correlation.  In
order to validate the correlation identified through the graphs of the main effects, the Pearson's
correlation was calculated between the time interval and the mean errors. It can be noted that
there  is  no  strong  correlation  (Pearson's  correlation  less  than  0.2)  between  the  variables
analyzed,  however,  due  to  the  p-value  being  above  the  limit  (0.05),  the  null  hypothesis
considered cannot be rejected. 

TB1, TB2 and TB4 had a greater error variation at different sampling time intervals,
while TB3 had a smoother variation, considering different sampling time intervals (1, 2, 5, 10,
20 and 30 minutes) (Figure 10). As specially  observed in TB1 and TB2, shorter intervals
result in greater errors (Habib et al., 2001; Shedekar et al., 2016). At low flow rates, when the
time interval required to reach the nominal volume is higher than the time interval, two or
more time intervals are required to register a tipping. In the first-time interval, there is no
record of tipping, as it was only recorded in the second. 

INSERT FIGURE 10

Ciach (2003) and  Costello  and Williams  (1991) also found that  the  sampling time
interval is a significant variable in hydrological studies and indicate the use of the tipping
interval  instead of  defined sampling times.  However,  it  was not  possible  to  adopt  such a
consideration due to limitations in the datalogger used (Campbell Scientific Inc CR10), which
had the capacity to record data with a minimum interval of one minute. Considering this, it is
recommended that further studies be carried out on the errors in TBs by identifying the time
between the emptying of one cavity and the beginning of filling the other one.

3.3.3 Tipping bucket volumetric capacity 

The third variable investigated with the potential to influence the mean errors was the
TBs´  volumetric  capacity.  Through  the  Pearson  correlation  test,  we  found  a  statistically
significant  (p-value  ≤ 0.05)  positive  correlation  (0.369),  indicating  that  mean  errors  are
directly influenced by NV. The obtained data reinforces the importance of the adequate sizing
of TBs, so that it is not under or over-sized. 
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The results obtained follow the consideration of Shedekar et al. (2016) and Somavilla
et al. (2019) that the storage capacity of TBs is an important source of errors. As previously
mentioned, the underestimation is possibly due to the volume of water lost during the time
interval of cavity switching. The volume of water lost is a fraction of the volume stored in the
cavities, the greater the storage capacity, the lower the sensitivity of the equipment to this
small  fraction of volume that  is  not  monitored,  and thus the greater  the associated  errors
(Somavilla et al., 2019).

Finally, another important source of error is the volume of residual water retained in
the cavities which is not enough for tipping. For example, TB1 has an NV of 11.63 mL, while
TB4 has a 660.95 mL. TB1 has a higher volumetric resolution than TB4 and, consequently, a
smaller residual volume that can be lost by evaporation.

3.3.4 Joint analysis

As previously presented, the percentage error is influenced by the variables´ tipping
speed, cavity capacity and time interval. In order to investigate which variable analyzed has
the greatest contribution to the mean error, we applied the Multi-factor Analysis of Variance.
We found out that the cavity size has a greater influence (F-value of 16.12) in mean errors
than tipping speed (F-value of 11.34). The null  hypothesis  of non-correlation between the
variables´  time interval  and mean errors cannot be rejected,  due to the p-value above the
imposed limit of 0.05.

3.4 Factors affecting calibration and errors

The operation principle of TBs used for runoff and rain measurements is the same, thus
the errors to which they are susceptible are similar. Errors can be grouped into two categories:
systematic/mechanical and random (Shedekar  et al.,  2016). Systematic errors are due to the
operation, construction material and design of the equipment, thus they are more predictable
and easier to minimize. Random errors, however, are not predicted and occur from unusual
operations during in-situ measurements.

In addition to some main examples of systemic and random errors given in Table 4,
there are those already mentioned and discussed previously (tipping speed and time interval)
and  errors  inherent  in  any  laboratory  measurement,  in  this  case:  uncertainties  in  the
measurements  of  the  nominal  volume and  reference  flow rate  during  static  and  dynamic
calibration,  respectively.  Despite  the  inherent  error  sources,  the  use  of  tipping  bucket  for
runoff measurement is a potential instrument for a better understanding in the hydrology field.
It is even more applicable in developing countries, such as Brazil,  which most of the time
have limited funding for acquisition of high-tech monitoring equipment.

INSERT TABLE 4
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4 CONCLUSIONS

A tipping bucket flow meter is a potential instrument in in-situ monitoring. However, its
inherent errors may limit and create doubts about its data reliability. Thus, in this paper, we
performed  static  and  dynamic  calibration  on  four  large  TBs,  applied  different  regression
curves  and  investigated  the  error  sources  in  order  to  minimize  them.   Through  static
calibration, we found out that the equipment had a volumetric capacity of 11.63 mL (TB1),
64.16 mL (TB2), 139.86 mL (TB3) and 660.95mL (TB4). Afterwards, TBs were tested under
different flow rates (dynamic calibration) and time intervals. Considering a 30-minute time
interval, an underestimation of flows at different levels was identified according to the size of
the cavity: TB1 (3.31%), TB2 (5.75%), TB3 (9.33%) and TB4 (13.57%).

We discovered a high underestimated error at  low flow rates,  indicating that  the best
operating  range  of  the  equipment  is  under  medium flow rates.  Even  not  dimensioned  to
operate at high intensities, the equipment was tested in the laboratory under different low and
high flow intensities and had a satisfactory performance.

After  performing  the  dynamic  tests,  four  calibration  equations  were  tested:  linear,
potential, T vs. 1/Q and quadratic. Among the alternatives, linear regression showed the best
correlation (above 99%) with the monitored data. Using this method, the mean error will be
reduced to -1.35% (TB1), 0.04% (TB2), 3.18% (TB3) and 3.73% (TB4).

Once  the  occurrence  of  systematic  errors  was  verified,  it  was  investigated  how  the
different variables (tipping speed, tipping bucket volumetric capacity and time interval of data
collection) influenced the errors. By plotting mean errors and tipping rates, a behavior pattern
in the error curves was identified: Zone I at low tipping speeds and results in high percentage
errors  (underestimation);  zone  II  at  average  tipping  speeds,  characterized  by  a  decay  of
underestimation and thus, it is considered as the optimal range of operation; and zone III at
high tipping speed, the percentage error re-rises. Investigating the second variable, we found
that mean errors are directly influenced by the cavity volumetric capacity. The last variable,
time interval of data collection, barely interfered in the data sampled. Finally, considering all
three error sources, the cavity size is the most important one.

Throughout the research, we aimed to minimize the errors inherent to the large tipping
buckets and encourages various applications (steam, runoff, percolation, etc.), increasing the
in- situ hydrological data collection, which is still very scarce, mainly in developing countries.

5 DATA AVAILABILITY STATEMENT

The data that supports the findings of this study are available in the supplementary material of this
article.
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