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ABSTRACT 
Reactive transport codes are today one of the cornerstones of environmental research. They now 

contain multiphysics with very complex algorithms, including flow, transport, chemical and sometimes 

heat transport, mechanical and/or biological algorithms. Because of this complexity, some parts of 

these algorithms still have not been sufficiently studied. Here, we present a comparison of 3 algorithms 

for activity correction, a specific subset of equilibrium chemistry algorithms. We show that the most 

used algorithm (the inner fixed-point algorithm) or the most rigorous algorithm (the full Newton) might 

not be the most efficient, and we propose the outer fixed-point algorithm, which is more robust and 

faster than other algorithms. 

 

INTRODUCTION 
The problem of groundwater management has received increasing attention, and many tools have 

been developed to address this issue. One of these tools, reactive transport modeling, was first limited 

to laboratory experiments [1] and then extended to the comprehension of problems in various fields 

[2]. Reactive transport modeling is actually a mature research field that has produced important results 

in many environmental domains, such as water management, sea water intrusion [3], long-term 

nuclear waste storage [4] and heavy metal contamination [5]. Numerous reactive transport codes are 

available, and some review articles [6–12] propose an overview of them.  
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General algorithms and/or numerical methods for geochemical speciation modelling are widely 

recognized as very challenging due the non-linearity of the mathematic system, the very large range 

of magnitude of the chemical species concentrations and of the equilibrium constants. Since first works 

[13], many authors worked on improving these algorithms and/or numerical methods [14–25]. 

Examining these articles, it can be seen that all these codes include one or more activity correction 

models. Even though the different models of activity correction are usually well-detailed, the 

algorithmic method used to compute the activity coefficients and to incorporate these calculations 

into the entire chemistry algorithm is usually not given. 

In this work, we will propose and compare some algorithmic ways to incorporate activity correction 

models into an entire geochemical speciation algorithm. Although some approaches have abandoned 

formulation based on mass action law [26, 27] or resolution based on a "Newton" type method [28, 

29], we will apply our activity correction algorithms to this historical formulation, so as not to make it 

too cumbersome. Because we will focus on a specific part of the geochemical algorithm, we will not 

discuss, nether on the specific methods used to overpass the high non-linearity of the mathematical 

problem, nor on the ways to include specific chemical phenomena such as precipitation-dissolution, 

liquid-gas exchange or surface complexation modelling. This simplification made for the presentation 

of the model does not imply any loss of generality because the specificity neglected here are usually  

treated as “external” loop in geochemical modelling [15, 25, 30, 31]. As example, precipitation-

dissolution phenomena are usually solved as follow: (a) solving a first geochemical equilibrium with a 

given set of minerals. (b) Checking saturation of the existing and potential minerals. (c) Solving a new 

geochemical equilibrium including the existence of oversaturated (as calculated at step c) minerals and 

removing the under-saturated minerals. (d) Repeat (a), (b) and (c) to obtain a definitive set of minerals.  

We show here that different algorithms can handle activity corrections. All of them can be easily 

implemented into geochemical codes but they are not all equivalent. It seems that the most used 

algorithm, named the inner fixed-point algorithm, leads to numerical instabilities when handling 

highly-charged chemical species. We then recommend the new algorithm presented in this work: the 

outer fixed-point algorithm. It is more robust, faster and less sensitive to the initial conditions.  

 

GENERAL CONCEPTS 
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A general formulation of a chemical reaction leading to the formation of one of the Nc species (Ci) 

from the number Nx of chosen components Xj is written as: 

,
1

  
Nx

i i j j
j

C a X

  (1) 

Components and species may be named Primary and Secondary species in some other works. We 

prefer the term “component” rather than “primary species”. Saying “Primary species” implies that they 

are a subsets of the chemical species whereas the term “component” did not. By this way a component 

can different than a chemical species. In this work, we use the electron e- as component to describe 

redox reaction in the iron-chromuim test case. Some authors [32, 33] describe surface complexation 

phenomena by including the electrical potential at the surface as a component. 

Instantaneous equilibrium chemistry is usually described using two fundamental concepts: mass 

conservation equations and mass action laws. According to the classical formulation stated by Morel 

and Morgan, mass conservation equations describe the conservation of the total concentrations of the 

components (Tj), and mass action laws describe the formation of each chemical species as a 

combination of the Nx chosen components. 

Mass conservation equations are written using the species concentrations [Ci]: 

,
1

Nc

j i j i
i

T a C


      (2) 

On the other hand, mass action laws are written using the species {Ci} and components {Xj} of the 

activities: 

    ,

1

i j
Nx a

i i j
j

C K X


   (3) 

To ensure the closure of the system, an activity model is used. The activity coefficient (i) is determines 

the species activity from its concentration. 

 i i iC C       (4) 

Several activity models have been developed, most of which use the ionic strength of the solution (I): 

2

1

1
2

Nc

i i
i

I z C


      (5) 

Davies model 
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One of the most used activity models for reactive transport is the Davies model, where the activity 
coefficients are given by: 

  2log
1i i

IAz BI
I


         

 (6) 

The parameters A and B are defined by: 
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Extended Debye-Hückel model 

Another activity model commonly used in reactive transport is the extended Debye-Hückel model. In 
this case, the activity coefficients are computed by: 

  2log
1i i i

i

IAz c I
B a I


           

 (8) 

B-dot model 

The purpose of the B-dot model is to give nonunit activity coefficients for neutral chemical species. 
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Newton algorithm 

The methodology for computing chemical equilibrium is well established [13, 25, 34–38] and is usually 
built on a Newton procedure. By incorporating the Nc mass action laws into the Nx conservation 
equation, one can obtain an Nx by Nx nonlinear system that must be iteratively solved. Here, we 
present the approach where mass action laws are written in a logarithmic form. 

We define the logarithm of the components activity j  as: 

   ln lnj j j jX X         (10) 

This can be rewritten as a matrix formulation: 

   ln lnXdiag   X  (11) 

Where  ln Xdiag   is a diagonal matrix, size  ,Nx Nx  with    ,
ln lnX jj j

diag   . The mass action 

laws are then: 

  ,
1

ln ln
Nx

i i i j j
j

C K a 


   (12) 

These can be rewritten by using the vector of species concentrations C : 

 ln ln ln Cdiag     C K A  (13) 
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Where  ln Cdiag   is a diagonal matrix, size  ,Nc Nc  with    
,

ln lnC ii i
diag   . The conservation 

equations are: 

TT A C  (14) 
 

Combining both equations, we obtain: 

  exp ln lnT
Cdiag    T A K A  (15) 

This nonlinear system is iteratively solved using a Newton procedure. At the nth iteration, the error is 
given by: 

  exp ln lnn T n n
Cdiag     Y T A K A  (16) 

By computing the derivative of the error versus the logarithm of the components of the activity, we 
obtain the Jacobian matrix Z . By solving the linear system (17): 

n n n Z Y  (17) 

Then, a new value of the activity component is given by: 

1n n n      (18) 

The procedure is repeated until the error is sufficiently small. In this work, we check the convergence 

using relation (19) with the convergence criteria 1510  . Relation (19) ensure an equivalent accuracy 
for both major and trace element. 

,
1

max j
Nc

j i j i
i

Y

T a C




            
 (19) 

 

POSSIBLE ALGORITHMS 
Historically, activity correction has been neglected when computing the Jacobian matrix. This 
approximation is justified if: 

(i) The ionic strength is small enough so that the activity coefficients can be assumed to be 
equal to one (ideal solution). 

(ii) The changes in ionic strength are sufficiently small during one Newton iteration so that 
the activity coefficients can be assumed to be constant. 

The complete computation of the Jacobian matrix leads to equation (20): 
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This is because: 

, , , ,
1 1

exp exp
Nx Nx

i i
i h h i k i h h i k i

h hk i i

K K
a a a a c 

   

                                  
   (21) 

Neglecting the derivative of the activity coefficient (hypothesis (i) or (ii)), one obtains (22): 

, , ,
1

Nc

j k i j i k i
i

Z a a c


        (22) 

Alternatively, with  diag C  a diagonal matrix, size  ,Nc Nc  and  
, ii i

diag c    C : 

 TdiagZ A C A  (23) 

 

  

Figure 1: Inner and outer fixed-point activity algorithms 

 

Inner fixed-point activity algorithm 
This algorithm is the most commonly used algorithm. At each Newton loop, the activity coefficients 
are updated according to the new ionic force (Figure 1). From a strictly mathematical point of view, 
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this method is then a quasi-Newton method because the Jacobian matrix Z is an approximation of the 
derivative of the error using equation (22). 

Outer fixed-point activity algorithm 
Here, we propose this new algorithm. For a given set of values for the activity coefficients, the Newton 
procedure is iteratively run until convergence is achieved. Once convergence is reached, the activity 
coefficients are updated according to the ionic strength computed at the time of convergence (Figure 
1). This procedure is repeated until no changes are detected in the activity coefficients. We then obtain 
a true Newton algorithm where the Jacobian matrix calculated by equation (22) is truly the derivative 
of the error. 

Full Newton activity algorithm 
One can find an approach in the PHREEQC code [35] for including the derivative of the activity 
coefficients in the Jacobian matrix. This lead to the Full Newton algorithm (Figure 2) where jacobian 
matrix is computed using equation (20).  

 

Figure 2: Full Newton activity algorithm 

 

We then must calculate the derivative of the activity coefficients. Because the activity coefficients are 
strongly dependent on the ionic strength, we write: 

   ln lni i

k k

I
I

 

 

           
  

 (24) 

We then compute two parts: 
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(i) The derivative of the activity coefficients versus the ionic strength 
 ln i

I

    


. This 

component is model-dependent and simple to compute regardless of which model is used. 
These elements are given for the 3 presented models in equations (37) to (39). 

(ii) The derivative of the ionic strength versus the logarithm of the activity components. 

We propose here two computation ways. A recursive formulation using equation (31) and an explicit 
formulation using equation (36). 

 

Computation method 1: a recursive formulation 

Computing the derivative of the ionic strength yields: 

 2 2
,

1 1

ln1 1
2 2

Nc Nc pp
p p p p k

p pk k k

CI z z C a


   

                           
   (25) 

We obtain a recursive formulation for the derivative of the activity coefficients: 

     2
,

1

ln ln ln1
2
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p p p k

pk k
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  (26) 

This recursive formulation can be rearranged as: 
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The vector kN  contains the explicit portion of the equation. This vector differs depending on the 

component used to derive the activity coefficient through the stoichiometric coefficient p ,ka . 

   2
,

1

ln1
2

Nc
i

i p p k p
p

N z a C
I




       
   (28) 

The matrix M  contains the coefficients of the implicit portion of the equation. This matrix is the same 
regardless of the component used in the derivation. 

  2
,

ln1
2

i
i p p pM z C

I
       


 (29) 

A complete derivative of the activity coefficients is given by the following linear system: 

   ln lnk
k k

 
 
            

N M  or     ln k
k



     

Id M N  (30) 
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Computation method 2: an explicit formulation 

Computing the derivative of the ionic strength yields: 

 2 2
,

1 1

ln1 1
2 2

Nc Nc pp
p p p p k

p pk k k

CI z z C a


   

                           
   (32) 

   2 2 2
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    (33) 
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   (34) 

We obtain an explicit formulation for the derivative of the ionic strength: 

 

2
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This allows for an explicit formulation of the derivative of the activity coefficients: 
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Derivative of the activity coefficients versus the ionic strength 
 ln i

I

    


: Davies model 

For a Davies model, the activity coefficients are given in logarithmic form by: 

    2ln ln 10
1i i

IAz BI
I


         

 (6) 

Taking the derivative of this equation yields: 

     
 

2 2
2

ln 1 1ln 10 ln 10
1 2 1

i
i i

IAz BI Az B
I I I I I


                            

 (37) 
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Derivative of the activity coefficients versus the ionic strength 
 ln i

I

    


: Extended Debye Hückel 

model 

For an extended Debye Hückel model, the activity coefficients are given in logarithmic form by: 

    2ln ln 10
1i i i

i

IAz c I
B a I


           

 (8) 

Taking the derivative of this equation yields: 
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Derivative of the activity coefficients versus the ionic strength 
 ln i

I

    


: B-dot model 

For the B-dot model, the activity coefficients are given in logarithmic form by: 

   
2

ln ln 10
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 (9) 

Taking the derivative of this equation yields: 
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TEST CASES 
Testing procedure 

It is well-known that the initial guess of the values of the components plays a critical role in the 
convergence of the Newton methods [13, 21]. To test several initial guesses, we generate a large 
number (30 000) of activity component values according to the following procedure: 

       min maxlog 1 log logX rand X rand X      (40) 

where 0;1rand       and minX  and maxX  are given in the description of the chemical test case to handle 

a representative range of concentrations. 

We then obtain 30 000 realizations of the optimization procedure using the same chemical test case 
but different initial guesses. To analyze this large amount of data, we construct a frequency graph of 
the number of Newton iterations needed to reach convergence. 

Chemical test cases 
We propose 4 chemical test cases. 

Test case with only activity correction  
We first propose a test case without any chemical reactions. Any nonlinearity is only due to activity 
correction. The chemical system is composed of chloride Cl  ions, calcium 2Ca   ions, aluminum 3Al   
ions and thin 4Sn   ions. We neglect water dissociation and all chemical reactions. The details and 
equilibrium solutions are given in appendix A-1. 

 

Table 1: Chemical table for the test case with only activity correction. 

 Cl- Ca2+ Al3+ Sn4+ K 
Cl- 1 0 0 0 1 

Ca2+ 0 1 0 0 1 
Al3+ 0 0 1 0 1 
Sn4+ 0 0 0 1 1 

TOTAL 9.10-5 10-5 10-5 10-5  
Initial low I 5.10-7 5.10-7 5.10-7 5.10-7  
Initial high I 5.10-4 5.10-4 5.10-4 5.10-4  

minX  10-9 10-9 10-9 10-9  
maxX  5.10-1 5.10-1 5.10-1 5.10-1  

 

One should note that this test case is not chemically realistic. Moreover, its numerical value comes 
only from activity correction if the unknowns of the nonlinear system (16) are the logarithms of the 

activity components j  (10). Otherwise, if the unknowns are component concentrations jX    , the 

problem becomes trivial and linear, and its solution is the total concentration 

      1,...,j jX T j Nx       . 
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Phosphoric acid test case 
This test presents reactions between phosphoric acid and salt water. It includes 4 components and 8 
chemical species. We handle only acid-base reactions: water dissociation and the 3 phosphoric acid 
reactions. A table including the stoichiometric coefficients, equilibrium constants, total concentrations 
and equilibrium solutions is given in appendix A-2. 

 

Gallic acid test case 
This test case was proposed by Brassard and Bodurtha [30]. It includes 3 components and 17 chemical 
species. It is a classical test case, and many difficulties in convergence have been reported while solving 
it by using Newton or Newton-like algorithms [25, 34, 39]. A table including the stoichiometric 
coefficients, equilibrium constants, total concentrations and equilibrium solutions is given in appendix 
A-3. 

 

Iron-chromium test case 
This test case concerns the rehabilitation of chromium-contaminated industrial soil using an iron-
chromium reduction [2, 40]. Chromium (VI), which is the most toxic and mobile form of chromium, is 
reduced by iron (II) to yield chromium (III), which has a much lower solubility and is less toxic [41]. This 
test is reported to be a very difficult one [34, 39], so here we use some favorable testing conditions to 
increase the convergence of the Newton algorithm. It includes 7 components and 39 species. A table 
including the stoichiometric coefficients, equilibrium constants, total concentrations and equilibrium 
solutions is given in appendix A-4. 

 

Morel-Morgan test case 
This test has been presented in the article that founded Newton algorithm as a key tool of equilibrium 
computation [13]. It is one of the larger test case reported in the literature, using 52 components to 
generate 781 species. A table including the stoichiometric coefficients, equilibrium constants, total 
concentrations and equilibrium solutions is given in appendix A-5. 
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RESULTS 
Study of the test case with only activity correction during one resolution. 

We first present two scenarios for the test case with only activity correction: one with a low ionic 
strength and one with a high ionic strength. The objective is to determine the influence of the activity 
correction on the Newton procedure depending on the algorithm used. For the situation with a low 
ionic strength, this influence is expected to be negligible, whereas we expect a greater impact in the 
situation with a high ionic strength. 

For the low ionic strength situation, the initial component activities are 5.0 10-7 mol L-1 for all 
components. The ionic strength is 7.80 10-6 mol L-1, and we obtain the species concentrations and 
activity values, which are given in Table 2. Also in Table 2, we show the first Newton steps   proposed 

by the fixed-point algorithms (inner and outer) and by the full Newton algorithm. 

Table 2: Initial values for the situation with a low ionic strength. 

  C     
  

Fixed-point 
  

Full Newton 
Cl- 5.02 10-7 0.997 8.41 8.41 

Ca2+ 5.07 10-7 0.987 19.00 18.58 
Al3+ 5.15 10-7 0.970 19.00 18.06 
Sn4+ 5.27 10-7 0.948 19.00 17.34 

 

The Jacobian matrices given by both fixed-point algorithms are the same: 

7

7

7

7

5.00 10 0.00 0.00 0.00

0.00 5.00 10 0.00 0.00

0.00 0.00 5.00 10 0.00

0.00 0.00 0.00 5.00 10

Z









 
  
 
 

  

 (41) 

The full Newton algorithm leads to the following derivative matrix of the activity coefficients: 

 
5 4 4 4

4 4 3 3

4 3 3 3

4 3 3 2

5.46 10 2.21 10 5.05 10 9.19 10
ln 2.18 10 8.83 10 2.02 10 3.67 10

4.91 10 1.99 10 4.54 10 8.27 10
8.74 10 3.53 10 8.08 10 1.47 10

i

k

d
d




   

   

   

   

         
                             

 (42) 

The following Jacobian matrix is also obtained: 

7 10 10 10

10 7 9 9

10 9 7 9

10 9 9 7

5.02 10 1.11 10 2.53 10 4.61 10
1.11 10 5.07 10 1.02 10 1.86 10
2.53 10 1.02 10 5.18 10 4.26 10
4.61 10 1.86 10 4.26 10 5.36 10

Z

   

   

   

   

     
                 

 (43) 
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For the scenario with a low ionic strength, the Jacobian matrices are equivalent for the full Newton 
and fixed-point algorithms, leading to similar Newton steps (  ). 

 

The high ionic strength scenario starts with an initial component activities equal to 5.0 10-4 mol.L-1 for 
all components. The ionic strength equals 1.197 mol.L-1. The species concentrations, activity values and 
first Newton steps   proposed by the fixed-point algorithm (inner and outer) and full Newton 

algorithm are given in Table 3. 

Table 3: Initial values for the situation with a high ionic strength. 

  C     
  

Fixed-point 
  

Full Newton 
Cl- 7.12 10-4 0.702 -0.82 -1.07 

Ca2+ 2.06 10-3 0.243 -0.98 -1.78 
Al3+ 1.20 10-2 4.16 10-2 -0.98 -2.75 
Sn4+ 1.42 10-1 3.51 10-3 -0.98 -4.12 

 

The Jacobian matrices given by both fixed point algorithms are the same: 

4

4

4

4

5.00 10 0.00 0.00 0.00
0.00 5.00 10 0.00 0.00
0.00 0.00 5.00 10 0.00
0.00 0.00 0.00 5.00 10

Z









  
        

 (44) 

 

The full Newton algorithm leads to the following derivative matrix of the activity coefficients: 

 
5 4 3 2

5 4 3 1

4 3 2 1

4 3 2 1

1.43 10 1.65 10 2.17 10 4.58 10
ln 5.73 10 6.61 10 8.70 10 1.83 10

1.29 10 1.49 10 1.96 10 4.12 10
2.29 10 2.64 10 3.48 10 7.33 10

i

k

d
d




   

   

   

   

     
                 

 (45) 

The following Jacobian matrix is also obtained: 

4 7 6 5

7 3 5 4

6 5 2 3

5 4 3 2

7.12 10 1.18 10 1.55 10 3.26 10
1.18 10 2.05 10 1.79 10 3.76 10
1.55 10 1.79 10 1.18 10 4.95 10
3.26 10 3.76 10 4.95 10 3.80 10

Z

   

   

   

   

        
                          

 (46) 

 

For the scenario with a high ionic strength, the Jacobian matrices Z are very different for the full 
Newton and fixed-point algorithms, leading to very different Newton steps (  ). Moreover, we find 
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an increase in the condition number of matrix Z for the full Newton algorithm. The condition number 
of matrix (46) is 21.6, whereas it equals 1 for matrix (44). 

The symmetry of the Jacobian matrix in equations (43) and (46) is specific to this test case. As shown 
in equation (23), the Z matrix for the fixed-point algorithm is symmetric, whereas equation (20) proves 
that it is usually not symmetric for the full Newton algorithm. 

 

 

Figure 3 : Evolution of || Y || versus the number of Newton iterations for the test case with only 
activity correction 

 

Comparing the three algorithms on the test case with only activity correction, one can see in Figure 3 
that: 

- The outer fixed-point algorithm requires the fewest Newton iterations to reach 
convergence, whereas the inner algorithm requires the most iterations. The full Newton 
algorithm requires an intermediate number of Newton iterations. 

- For the tree algorithms, obtaining the solution at a low ionic strength requires less Newton 
iteration than at a high ionic strength. This point is obvious: for this test case, activity 
corrections are the only nonlinearity of the problem, and they are less important at a low 
ionic strength than at a high ionic strength. 

- The outer fixed-point algorithm runs 3 minimization loops for the situations with both low 
and high ionic strength. The first loops converge at 10 (low) and 23 (high) iterations; the 
second loop converges at 15 (low) and 29 (high) iterations. The third loop is the 
confirmation loop used to check that no changes in the ionic strength computation occur 
and then to confirm the convergence of the algorithm. 
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Frequency graphs 
We plot graphs of the cumulative ratio of the resolutions that converge within a given number of 
Newton iterations. It gives the ratio of simulations that converge within a given number of Newton 
iteration. According to the graph, the algorithm that reaches a cumulative frequency of 1 is said to be 
robust. The algorithm that reaches a high cumulative frequency for a low number of Newton iterations 
is said to be fast. The difference between 1 and the highest cumulative frequency gives the failure ratio 
of the algorithm. 

 

Test case with only activity correction 
The test case with only activity correction is a simple chemical test case. It makes sense only for 
studying the activity correction algorithms. It is solved by all the algorithms (see Table 5) within 150 
Newton iterations (Figure 4). The fastest algorithm is the outer fixed-point algorithm, regardless of the 
ionic strength. Moreover, this algorithm shows a very low sensitivity to the ionic strength by resolving 
the low ionic strength case within 24 or 25 iterations and the high ionic strength case within 21 
iterations regardless of the initial guess. The inner fixed-point and the full Newton algorithms are much 
more sensitive to the ionic strength, with significant increases in the number of iterations required to 
converge in the case with a high ionic strength. For this case, we find that the best algorithm is the 
outer fixed-point algorithm, and the inner fixed-point algorithm is the worst according to the number 
of Newton iterations. Taking the computing time of one Newton iteration into account (Table 4), we 
see that the full Newton algorithm is the slowest and the outer fixed-point algorithm is the fastest. 

 

 

Figure 4: Frequency graph for the test case with only activity correction at low and high ionic 
strengths. 
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Phosphoric acid test case 
This test case is a simple chemical test, which is interesting in this context because of the PO4

3- species. 
We find that all the algorithms reach 100 % resolution (Table 5) in fewer than 70 iterations. The 
frequency graph shows that the full Newton algorithm usually converges within the fewest iterations 
and that the inner fixed-point algorithm requires the most iterations to converge. Nevertheless, the 
outer fixed-point algorithm provides very interesting results for this test case: it converges within 36 
and 39 iterations regardless of the initial guess. 

 

Figure 5: Frequency graph for the phosphoric acid test case 

 

Gallic acid test case 
The results for the gallic acid test case (Figure 6) confirm those of the phosphoric acid test case. The 
inner fixed-point algorithm requires the most iterations to converge (approximately 150). The full 
Newton algorithm usually requires fewer iterations (approximately 130) but sometimes requires many 
more iterations (200); sometimes it fails to converge at all (0.05 % failure rate, see Table 5). The outer 
fixed-point algorithm converges with the fewest iterations (77 iterations maximum). Moreover, this 
algorithm gives the sharpest frequency graph, indicating that it is not sensitive to the initial guess. 
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Figure 6: Frequency graph for the gallic acid test case 

 

Iron-chromium test case 
The iron-chromium test case is the strongest test used here. It is reported [34, 39] to generate very 
high condition numbers. The range of initial guesses is chosen with the goal of keeping this test 
reasonable. Nevertheless, one can see (Figure 7) that it is very hard for the full Newton algorithm to 
converge, with a 91.35 % failure rate (Table 5). Notably, this full Newton algorithm sometimes results 
in faster resolutions (according to the number of Newton iterations) because it is the only algorithm 
that sometimes converges with fewer than 200 Newton iterations. Both the inner and outer fixed-
point algorithms converge most frequently within 230-240 iterations. The inner fixed-point algorithm 
reaches 80 % of its realizations after 240 iterations but needs up to 1000 iterations to complete the set 
and fails to converge at a rate of 1.62 % (Table 5). The outer fixed-point algorithm requires between 
226 and 233 iterations to converge regardless of the initial point. Moreover, it always succeeds in 
solving this test case. 
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Figure 7: Frequency graph for the iron-chromium test case 

 

Morel-Morgan test case 
The Morel-Mogran test case is the largest test used here. It can be seen on Figure 7 that the Inner fixed 
point algorithm solves quite fast 40 % of the simulations using less than 200 iteration each. But this 
algorithm needs more and more iterations to solve 40 % of the other simulation and fails to converge 
for 17.91 % of the cases (Table 5). The Full Newton algorithm produces more regular results succeeding 
to solve easiest simulation within less than 100 iteration and using all the 1000 iterations to solve some 
of the hardest simulations. It fails to converge at the rate of 3.87 % (Table 5). The Outer fixed point 
algorithm is very efficient for this test case too, solving all the cases within less than 300 Newton 
iteration each. 
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Figure 8: Frequency graph for the Morel-Morgan test case 

 

Comparison of CPU times and failure ratios 
As expected, the CPU times for one iteration loop increase as the number of species increases in the 
test case and as the complexity of the algorithm increases (see Table 4). We show that the outer fixed-
point algorithm is the fastest and that the full Newton algorithm is the slowest. Moreover, the 
recursive formulation of the full Newton algorithm is the slowest. For this reason, we strongly 
recommend not using the recursive formulation, and we prefer the explicit formulation. 

 

Table 4: CPU times for 1 loop (ms) 

 Outer fixed-point Inner fixed-point Full explicit Full recursive 
Only I 1.76 10-6 2.18 10-6 4.70 10-6 1.74 10-4 
Phosphoric acid 2.34 10-6 2.97 10-6 4.72 10-6 2.91 10-4 
Gallic acid 2.03 10-6 2.68 10-6 6.30 10-6 6.23 10-4 
Iron-chromium 3.04 10-4 1.15 10-5 3.59 10-5 1.29 10-3 
Morel-Morgan 2.56 10-2 2.68 10-2 4.16 10-2 1.27 10-1 

 

We find that the only algorithm that solves all the test cases with a 100 % success rate is the outer 
fixed-point algorithm. The inner fixed-point algorithm is less robust and fails to solve the iron-
chromium test 1.62 % of the time. The weakest algorithm is the full Newton algorithm, which fails at a 
0.05 % rate for gallic acid test and at a 91.35 % rate for the iron-chromium test. 
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Table 5: Failure ratio after 1,000 iterations 

 Only-I Phosphoric acid Gallic acid Iron-Chromium Morel-Morgan 
Inner 0.00 % 0.00 % 0.00 % 1.62 % 17.91 % 
Outer 0.00 % 0.00 % 0.00 % 0.00 % 0.00 % 
Full 0.00 % 0.00 % 0.05 % 91.35 % 3.87 % 
 

 

Conclusion 
We compared 3 algorithms based on their ability to handle activity correction in equilibrium chemistry 
solvers. 

The full Newton algorithm is the most integrated algorithm from a mathematical point of view. 
Nevertheless, we found it to be the slowest and weakest algorithm. We suppose this algorithm 
increases the nonlinearity of the chemical system by injecting activity corrections into the mass action 
equations and conservation laws. It increases the condition number of the Jacobian matrix, as shown 
by comparing (46) and (44). It has been shown [34, 39] that a condition number that is too high leads 
to inaccurate steps   (17) in the Newton methods, leading to numerical difficulties or 
nonconvergence. Because chemical equilibrium computation is still a highly nonlinear problem, 
increasing its nonlinearity by injecting activity correction seems to be an inefficient choice. 

The inner fixed-point algorithm includes an intermediate integration of activity correction into the 
Newton loop. Both loops, Newton for the mass action equations and conservation laws and fixed-point 
for activity correction, run together. In this way, changes induced by activity correction disturb the 
Newton minimization. This point explains the convergence difficulties of the inner fixed-point 
algorithm when activity correction becomes important. 

The outer fixed-point algorithm proposes a complete separation between the Newton and activity 
correction loops. In this way, nonlinearity induced by activity correction cannot disturb the Newton 
convergence, and the condition number of the Jacobian matrix is lower than that obtained by the full 
Newton algorithm. This leads to a more stable and robust algorithm. We found that the outer fixed-
point algorithm is the fastest in terms of CPU times for one Newton iteration, usually faster than or 
equivalent to the other algorithms in terms of the number of required Newton iterations and the most 
robust. 

We have thus shown that the external fixed point algorithm provides greater robustness and speed 
than the other two. The influence of the choice of the activity correction algorithm is amplified in this 
work, because the general geochemical equilibrium resolution algorithm used here is extremely 
simple. The use of specific numerical methods to reduce or overcome the strong non-linearities of 
geochemical systems, as implemented in modern codes, will obviously make this influence less visible. 
Nevertheless, and according to the results presented here, we recommend the outer fixed-point 
algorithm. This algorithm is the least time consuming for one Newton iteration, it usually requires the 
fewest number of iterations, and it is the most robust and least sensitive to the initial guess. Moreover, 
its implementation with existing geochemical algorithms is very simple and requires very few 
modifications.   
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