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Abstract: 
The objective of this paper is to present the study thermal stresses in an isotropic material disc with rigid
inclusion  and  subjected  to  mechanical  load  and  density  parameter  by  using  transition  theory.  The
transition  theory  includes  classical  macroscopic  solving  problems in  plasticity,  creep  relaxation,  and
semi-empirical yield conditions.  It has been observed that the radial stress has a maximum value at the
internal surface of the disc made of compressible material (i.e. copper) as compared to the disc made of
incompressible material (i.e. rubber). With the introduction of thermal condition, density parameter and
load,  the values of  radial  and circumferential  stress  increase of  the internal  surface of  compressible/
incompressible materials. The displacement component increased on  the outer surface of the disc made
of compressible /incompressible materials and fully plastic stage. Results have been discussed numerical
and depicted graphically. 
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Introduction

Rotating disc plays an important role in machine design.  The isotropic materials disc varying
properties  are  mainly  constructed  to  work  in  high  temperature  environments  that  find  their
application  in turbine  motor,  rotors,  flywheel,  gears,  compressors,  turbojet  engines,  sink fits,
computer’s disc  and many other applications in mechanical, aerospace industries  and chemical
processing. Such disc work under complex thermo-mechanical loading conditions. In the past
two  decades,  there  have  been  numerous  works  identifying  the  investigations  on  isotropic
material disc. Elasto–plastic stress distribution in a rotating disc having variable thickness and
other condition has been investigated extensively by Guven [8, 9]. On the other hand, thermally
induced  elastic–plastic  deformations  of  stationary  heat  generating  disks  have  been  studied
analytically by Guven and Altay [10] employing different boundary conditions.  Eraslan et al.
[11]  investigated  elastic–plastic  Deformation  of  a  Rotating  Disk  Subjected  to  a  Radial
Temperature Gradient by using of Tresca and von Mises criteria. Parmaksizoglu et al. [7] also
investigated plastic stress analysis in a rotating disc with inclusion under a temperature gradient
based on Tresca's yield condition.  Nayak    et al.   [21] obtained   the    stress distribution in elasto-
plastic functionally graded disc  subjected to thermo-mechanically loaded by using  an iterative
variational method. Sethi et al. [17] have investigated Elastoplastic deformation in an isotropic
material  disk with shaft  subjected to mechanical  load and density by using transition theory.
Eldeeb  et  al. [22]  evaluated  the  problem  of  thermo-elastoplastic  behaviors  of  the  rotating
sandwich non-uniform thickness annular disc made of functionally graded materials by using
finite difference method. 
Weighted  Integral  Measures  representations: Cauchy’s  measure  of  uniaxial  is  given  by

∫
s0

s
ds
s0

=
s−s0
s0 ; where s and s0  are deformed and un-deformed lengths respectively. The first

weighted measure of Hencky’s measure can be written as
∫
s0

s

(
s0
s ) dss0 =ln

s
s0 and is widely used

in plasticity problems. But in the creep problems, it is found useful only in the secondary or
stationary creep not in the transient or fracture stages. The second weighted measure of Swainger
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[2]  by is
∫
s0

s

(
s0
s )
2
ds
s0

=
s−s0
s0 . In finite elasticity, Almansi and Green measures, the deformed

and un-deformed states are taken as reference frameworks respectively and are extensively used.

The  third  weighted  measures  are  given  as  

∫
s0

s

( s0s )
3
ds
s0

=
1
2 [1−(

s0
s )

2

]
,

∫
s0

s

(
s
s0 )

3 ds0
s

=
1
2 [( s

s0 )
2

−1]
 and  in  this  case,  the  weighted  functions  are  (s0 /s )

3

 and

(s/ s0 )
3

 respectively.  Obviously,  generalization  of  these  measures  are

∫
s0

s

( s0s )
n+1

ds
s0

=
1
n [1−(

s0
s )

n

]
 in which the weighted function is (s0 /s )

n+1

. Putting n = -2, -1,
0, 1, 2, it gives Green, Cauchy, Hencky, Swainger and Almansi measures respectively. Thus, in

the general case, if the principal Almansi and Green measures are denoted by ε
A

ii and ε
G

ii  then
the generalized measures in Cartesian co-ordinates maybe written in the form:

                    

εii
M=∫

0

ε
A

ii

[1−2 εii
A ]

n
2
−1

d ε
A

ii=
1
n
[1−(1−2 εii

A
)
n
2]

,(i=1,2,3)                             (1)

and
εii
M=∫

0

ε
G

ii

[1+2 εii
G ]

n
2
−1

dεii
G=

1
n
[(1+2 εiiG )

n
2−1]

The main objective of the present paper is to develop a consistent analytical model capable to
resolve a class of control problems rotating disc under thermal effect. The novelty of the current
research is to be including three control factors such as thermal condition, rotating speed, density
and load in the consideration of the optimal performance of the disc. Here, we assumed that the
density of disc varies along the radius in the form:

ρ= ρ0 (r /r 0)
−m

       
(2)

where ρ0  is the constant density  at r=r0  and m is the density variation parameter. Result
obtained have been numerically and depicted graphically.

Mathematical model
Consider a thin disc of isotropic and homogeneous material having variable density with central

bore of inner radius ri  and outer radius r0 . The annular disc is mounted on a rigid shaft. The
disc  is  rotating  with  angular  speed  ω of  gradually  increasing  magnitude  about  an  axis
perpendicular to its plane and passed through the center as shown in Fig. 1. The thickness of disc
is assumed to be constant and sufficiently small so that it is effectively in a state of plane stress.

We assume that steady state temperature Θ0  is applied on the inner surface of the disc.

Formulation of the Problem

Displacement components in cylindrical polar coordinates (r ,θ , z ) , as:



u=r (1−η ) , v=0 , w=dz
(3)                  

where η  is function of r=√x2+ y2  only and d is a constant. The finite strain components
are given by Seth [5]:

ε
A

rr≡
∂u
∂r

−
1
2 (∂u∂ r )

2

=
1
2

[1−(r η'
+η )

2 ]
,

ε
A

θθ≡
u
r
−

u2

2r 2
=
1
2

[1−η2 ]

ε
A

zz≡
∂w
∂ z

−
1
2 (∂w∂ z )

2

=
1
2

[1−(1−d )2 ]
, ε

A

rθ=ε
A

θz=ε
A

zr=0

      (4)    

where η'
=dη /dr  and meaning of superscripts ‘ A ’ is Almansi. Substituting Eq. (3) in Eq.

(1) ,the generalized components of strain which are given by [5]:

εrr=
1
n

[1−( r η'
+η )

n ]
,

εθθ=
1
n

[1−ηn ]
,

ε zz=
1
n

[1−(1−d )n ]
, εrθ=εθz=εzr=0

       
(5)

where η'
=dη /dr . The stress –strain relations for thermo elastic isotropicmaterial are given by

[1]:

τ ij=λδij I 1+2 μεij−ξΘδij
, 

(i , j=1,2,3 )
       (6)

where
τ ij  is the stress components,  λ  and  μ  are Lame’s constants and I1=ekk  is the

first   strain  invariant,  δ ij  is   the   Kronecker’s  delta  and ξ=α (3 λ+2μ ) , α  being  the

coefficient of thermal expansion and Θ  is the rise of temperature. Further, Θ  has to satisfy
[6]: 

∇2Θ=
1
r

d
dr (r dΘ

dr )=0
       (7)

Eq. (6) for this problem become:

τ rr=
2 λμ
λ+2μ [εrr+εθθ ]+2μεrr−

2μξ Θ
( λ+2μ ) ,

τθθ=
2 λμ
λ+2μ [εrr+εθθ ]+2 εθθ−

2 μξ Θ
( λ+2μ ) ,

τ rθ=τθz=τ zr=τ zz=0
      

(8) 
Substituting Eq. (4) in Eq. (6), the strain components in terms of stresses are obtained as [6]:

εrr=
∂ u
∂r

−
1
2 (

∂u
∂r )

2

=
1
2

[1−(r η'
+η )

2]= 1
E [τ rr−( 1−c

2−c )τθθ ]+α Θ ,

εθθ=
u
r
−

u2

2 r2
=
1
2

[1−η2]= 1
E [τθθ−( 1−c

2−c )τθθ ]+α Θ ,

ε zz=
∂w
∂ z

−
1
2 (∂w

∂ z )
2

=
1
2

[1−(1−d )
2 ]=−

(1−c )
E (2−c )

[τ rr−τθθ ]+α Θ,

εrθ=εθz=εzr=0
       

(9)



where  E  is  the Young’s modulus and  c is  compressibility  factor of the material  in term of

Lame’s  constant,  there  are  given  by E=μ (3 λ+2μ )/( λ+μ) and  c=2 μ/( λ+2μ ).
Substituting Eq.(5) in Eq. (8), we get

τrr=
2 μ
n [3−2c−ηn{1−c+ (2−c ) (T+1 )n+

ncξ Θ

2μηn }] ,
τθθ=

2μ
n [3−2c−ηn{2−c+ (1−c ) (T+1 )n+

ncξ Θ

2μηn }] ,
τ rθ=τθz=τ zr=τ zz=0

     
(10)

where r η'
=ηT . The equations of equilibrium are all satisfied except:

d
dr (rτ rr )−τθθ+ ρω2 r2=0

     
(11)

where ρ is variable density of the material of the rotating disc. The temperature field satisfying
Laplace Eq. (7) with boundary condition
Θ=Θ0 at r = ri , Θ=0 at r = r0 where Θ0  is constant,

 is given by:
Θ=Θ0

ln (r /r0 )

ln (ri/r0 )

     

(12)
Using Eqs. (10), (11) and (12), we get a non- linear differential equation in η  as:

(2−c )nηn+1T (T +1 )n−1 dT
dη

=¿¿

         (13)

where
Θ0=Θ0 / ln (ri/r0 ) and r η'

=ηT  (T is function of  η  and  η  is function of  r) and

η'
=dη /dr ( T is function of η and η is function of r only).

Boundary conditions

The disc is considered in the present study having variable density and subjected to thermal load
and inner surface of the disc is assumed to be fixed to a shaft. The outer surface of the disc is free
from mechanical load. Thus, the boundary conditions of the problem are given by: 

 r=ri ,u=0 , r=r0 , τ rr=l0
(14)  

where u and τrr  denote displacement component and stress along the radial direction and l0
load applied at the outer surface of the disc.

Solution through the Problem
For finding the plastic stress, the transition function is taken through  the principal stresses [3,

4, 12 - 20) at the transition point  T→±∞ . The transition function ψ  is defined as:



ψ=
n
2μ [τθθ−cξΘ ]=[(3−2c )−ηn {2−c+(1−c ) (T +1 )n }− nc ξΘ

μ ]
(15)
Taking the logarithmic differentiation of Eq. (15) with respect to r, we get:

d ( logψ )

dr
=−( nη

nT
r )[

2−c+(1−c ) (T +1 )n−1{(T +1 )+η
dT
dη }

(3−2c )−ηn {2−c+ (1−c ) (T +1 )n }−nc ξΘ
μ

]
     

(16)

Substituting the value  dT /dη  from Eq. (13) in Eq. (16) and taking the asymptotic  value
T→±∞  and integrating, one gets:

ψ=Arν−1

     (17)

where ν=1−c /2−c and   is  a  constant  of  integration  can  be  determined  by  boundary
conditions. Eqs. (15) and (17) give:

τθθ=( 2μn )Arν−1+
cξΘ0 ln (r /r 0)

ln (ri /r0)

     

(18)
Substituting Eq. (18) in Eq. (11) then using Eq. (2) and integrating, we get:

τrr=( 2μnν )Arν−1+
cξΘ0 ln (r /r0)

ln (r i/r0 )
−

cξΘ0

ln (ri /r 0 )
−

ρ0ω
2r
0
mr

2−m

(3−m )
+
B
r

     (19)
where B is a constant of integration can be determined by boundary conditions. Substituting Eqs.
(18) and (19) in second equation of Eq. (9), we get:

η=√1−2νE [
ρ0ω

2 r
0
m r2−m

(3−m )
−

B
r
+
αE (2−c )Θ0
ln (ri/r0 )

+
2αE (2−c )Θ0 ln (r /r 0)

(1−c ) ln (ri/r0 ) ]
     (20)

where cξ=αE (2−c ) .Substituting Eq. (20) in Eq. (3), we get:

u=r−r √1− 2νE [
ρ0ω

2r
0
mr

2−m

(3−m )
−

B
r

+
αE (2−c )Θ0
ln (ri /r0)

+
2αE (2−c )Θ0 ln ( r /r0 )

(1−c ) ln (ri /r0) ]
     (21)

where E=2μ (3−2c )/ (2−c )  is the Young’s modulus in term of compressibility factor. Using
boundary condition (14)  and (12) in Eqs. (19) and (21), we get:

A=
nν
2μr

0ν
[l0 r0+

ρ0ω
2r
0
m (r03−m−r

i
3−m)

(3−m )
+
αE (2−c )Θ0
ln (ri /r0)

(r0−r i )−
2 riαE (2−c )Θ0

(1−c ) ]
      (22)



B=

ρ0ω
2r
0
mr

i
3−m

(3−m )
+
α Ea (2−c )Θ0
ln (r i /r 0)

+
2 riαEΘ0 (2−c )

(1−c )

     (23)
Substituting Eqs. (22) and (23) in Eqs. (18), (19), and (21) respectively, we get the transitional
stresses and displacement as:

τθθ=νalignl [l0( r
r0 )

ν−1

+(
r
r0 )

ν ρ0ω
2r
0
m (r 03−m−r

i
3−m )

r (3−m )
+ ¿]¿

¿

¿¿

     (24)

τ rr=¿[ l0( r
r 0 )

ν−1

+
ρ0ω

2r
0
m

r (3−m ) [ (r03−m−r
i
3−m )(

r
r0 )

ν

−r3−m+r
i
3−m]+ ¿]¿

¿

¿¿

     

(25)

u=r−r √1−2 νE ¿[
ρ0ω

2r
0
m

r (3−m ) [r
3−m

−r
i
3−m ]+

αE (2−c )Θ0 (r−r i )

r ln (ri/r0 )
+ ¿]¿

¿

¿¿

                                        (26)
and
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Initial  Yielding  Stage:  The  maximum value
|τ rr−τθθ|   occurs  at  the  radius r=ri  (say),

which depends upon the value of m and c. For yielding at r=ri
 
.Eq. (27) becomes:
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where Y is the yielding stress. The angular speed necessary for initial yielding is given by:

Ωi
2=

ρoωi
2r
02

Y
=

(3−m)

(1−R
03−m )(

ri
r 0 )

ν−1

(1−ν )

¿ [1−(
L0
Y )(

ri
r 0 )

ν−1

(1−ν )− ¿]¿
¿

¿

  
     (28)

We introduce the following non-dimensional components:

R0=ri /r 0 , σ r=τ rr /Y , σθ=τθθ /Y , U=u /r0 , Θ1=αEΘ0 /Y , Ω
2
=ρ0ω

2r
0
2/Y ,

H=Y /E  and  L0=l0/Y .  Elastic-plastic  transitional  stresses,  angular  speed  and
displacement from Eqs. (24), (25), (28) and (26) in non-dimensional form become:

σθ=ν [L0Rν−1+
Ωi
2Rν−1 (1−R0
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Ωi
2

R (3−m )
[(1−R0

3−m )R ν−R3−m+R0
3−m ] ¿ ][+Θ1 (2−c )
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R ] ¿]¿

¿

¿¿
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and
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(32)

Fully Plastic Stage:  For fully-plastic stage  c→0 i.e. ν=1/2  at the outer surface and Eq.
(27) obtained:
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=[ L02 +
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2 r02
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2
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and the angular speed required for fully plastic state is given by:
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where
ωf

¿=
Ωf ¿

r0 √ Y
ρ0 and 

αEΘ0
Y ¿ =Θ1

. 

Using Eq. (33) into Eqs. (29), (30), (32) by taking c→0 i.e. ν=1/2 , we get the stresses and
displacement for the inner surface as:

σ
θ
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1
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+

Ωf ¿
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a

nd  

U f =R−R√1−H [
Ω

f
¿

2

R (3−m )
[R3−m

−R03−m ]+
2Θ1 (R−R0 )

R lnR0
+4Θ1[ ln Rln R0 −

R0
R ]]

(36)

Eqs. (33)-(36) are same as given by Sethi et al. [17] ,when we neglecting thermal condition.

Results and Discussion



For calculating the stresses, angular speed for initial, fully plastic stage and displacement
of the disc made of incompressible  material  (i.e.  c = 0 or  v= 0.5; rubber) and compressible
material (i.e. c = 0.5 or v = 0.33 ; copper) based on the above analysis, the following values have

been  taken  as:  m =  -2,0,2  (density  parameter);  H =  1,  ½;  L0=50 ,75 (load),

α=5 .0×10−5 deg F− 1
 for Methyl Methacrylate [5], Θ0 = 0 

0 F , 10000 0 F , 15000 0 F ;
Θ1=αΘ0=0 .0 .5,0 .75 respectively.

From Table 1, shows that the percentage increase in angular speed required for initial
yielding to fully-plastic stage for the rotating disc made of incompressible material ( i.e. v = 0.5)
and compressible material (i.e. v = 0.333) has been discussed. It can also be seen from the Table
1, that for compressible material (i.e. v = 0.33, copper) required higher percentage values (say P

= 59.36%,  59.37%,  59.38% at  Θ1=0  )  of  the  angular  speed  to  become fully  plastic  in
comparison to the disc made of incompressible material (i.e. v = 0.5, rubber) and the percentage

values are ( say P = 42.64 %, 42.65 %, 42. 66 % at Θ1 = 0) respectively. With increased the
values  of  mechanical  load and temperature,  the ratio  of  angular  speed for  fully-plastic  with
respect to initial plastic are decreased.

Table 1.Values of angular speed for initial yielding Ωi
2

 and fully plastic stage Ωf
2

 : (a) v = 0.5; (b) v = 0.33

Densit
y

Angular
speed

v = 0.5 ; rubber (incompressible material)

Θ1  = 0
Θ1  = 0.5

Θ1 = 0.75
Yielding starts at the bore (r = ri)

Lo= 50 Lo = 75 Lo = 50 Lo = 75 Lo = 50 Lo = 75

m= -2
Ωi
2 121.733 186.249 132.608 197.124 138.046 202.562

Ωf
2 247.7419 376.7742 252.1841 381.2164 254.4052 383.4375

m= 0
Ωi
2 80.8656 123.723 88.0898 130.947 91.702 134.559

Ωf
2 164.5714 250.2857 167.5223 253.2366 168.9978 254.712

m= 2
Ωi
2 47.1716 72.1716 51.3857 76.3857 53.4928 78.4928

Ωf
2 96 146 97.72135 147.7213 98.58202 148.582

m = -2 P % 42.64 42.21 37.88 39.04 35.75 37.58
m = 0 P % 42.65 42.22 37.89 39.05 35.76 37.59

m= 2 P % 42.66 42.23 37.90 39.06 35.77 37.60

(a)

Density Angula
r speed

v = 0.333;copper (compressible material)

Θ1  =0
Θ1  = 0.5

Θ1  = 0.75
Yielding starts at the bore (r = ri)

Lo= 50 Lo = 75 Lo = 50 Lo = 75 Lo = 50 Lo = 75

m= -2
Ωi
2 97.5359 148.742 109.375 160.581 115.294 166.501

Ωf
2 247.7419 376.7742 252.1841 381.2164 254.4052 383.4375



m = 0
Ωi
2 64.7917 98.8074 72.6562 106.672 76.5884 110.604

Ωf
2 164.5714 250.2857 167.5223 253.2366 168.9978 254.712

m = 2
Ωi
2 37.7951 57.6377 42.3828 62.2253 44.6766 64.5191

Ωf
2 96 146 97.72135 147.7213 98.58202 148.582

m= -2 P % 59.36 59.15 51.84 54.07 48.55 51.74
m= 0 P % 59.37 59.16 51.85 54.08 48.56 51.75
m= 2 P % 59.38 59.17 51.86 54.09 48.57 51.76

(b)

where
P=(√Ωf

2/Ωi
2−1)∗100  is the percentage increase in angular speed from initial yielding to

become fully plastic state having density m, Load L0 , 
Θ1  = 0, 0.5, 0.75 and  v = 0.5, 0.33.

In Fig. 2- Fig. 3, curves have been drawn between angular speed required for initial and
fully-plastic stage and radii ratio R = ri/r0 for the disc made of compressible and incompressible
materials and having Possion’s ratio v = 0.5, 0.333, density (m = -2, 0, 2) and mechanical load
(i.e. L0 = 50, 75). It has been seen from Fig. 2, that the rotating disc made of incompressible
material (i.e. v = 0.5: rubber) requires higher angular speed to yield at the internal surface as
compared to the disc made of compressible material.
 

With the introduction of thermal condition, mechanical load and density parameter, the
value of angular speed are increased at the internal surface of the disc made of incompressible
material and also in compressible material. It has been observed from Fig. 3, that the value of
angular speed for fully-plastic state increases at the internal surface with increased the value of
mechanical load, thermal condition and density parameter. Curves are drawn between the stress
distribution along the radii ratios R =r/r0  (see Fig. 4) at the transition stage. From Fig. 4, it has
been seen that the radial stress has a maximum value at the internal surface of the disc made of
compressible  material  as  compare  to  the  disc  made  of  incompressible  material.  With  the
introduction  of  thermal  condition,  density  parameter  and  load,  the  values  of  radial  and
circumferential  stress  increase  in  the  internal  surface  for  compressible  and  incompressible
materials.  Curves are drawn between displacement  component and radii ratio  R  =  r/r0 at  the
transition and fully-plastic stage (see Fig. 5). It has been seen that the value of the displacement
component  increased on the outer  surface of  the disc made of compressible  /incompressible
materials and fully plastic stage. With the increased value of the mechanical load and thermal
conditions, the displacement component is increased on the outer surface but reverse results are
obtained in case of density parameter.

Conclusion
It has been observed that the rotating disc made of incompressible material (i.e. rubber)

requires higher angular speed to yield at the internal surface as compared to the disc made of
compressible material (i.e. copper). With the introduction of thermal condition, mechanical load
and density parameter, the value of angular speed are increased at the internal surface of the disc
made of incompressible material and also in compressible material. The value of radial stress has
a maximum at the internal surface of the disc made of compressible material as compare to the
disc made of incompressible material. 
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Nomenclature
r i , r0 -Inner and outer radii of the disc  [m],

ω -   Angular velocity of rotation,[ ]
u,v,w -Displacement components, [m]

ρ -Density of material,[ ]
ρ0

   - Constant density
c    -Compressibility, [ - ]

λ , μ -Lame’s constants
m -  Density parameter
τ ij , ε ij -Stress and Strain components

Y      -Yield stress,[ ]

Ωi
2

        -Angular speed for initial stage

Ωf
2

-Angular speed for fully plastic stage 

Greek letters
R=r /r0 , R0=ri /r 0 Radii ratio,[-] 
σr  - Radial stress component ( τ rr /Y ),[-]
σθ    - Circumferential stress component (

τθθ /Y ),[-]
Θ     - Temperature,[ ]

-Constants of integration,[ - ]
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