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SEVERAL VARIABLES
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Abstract. Cesaro polynomials were introduced and investigated in 1978, and
then have been cited in several articles [1, 2]. In this sequel, by modifying Lin
at el. show how to generalize the Cesaro polynomials in one variables to present
two generating functions of the generalized Cesaro polynomials g(s)n (�; x) [6].
Very recently, M. A. Malik introduced and investigated Cesaro polynomials in
two and three variables to give their generating functions [3]. Subsequently, N.
Özmen investigated the generating functions for the q-analogue of generalized
Cesaro polynomials [7]. In this paper, new multivariate generalized Cesaro
polynomials will be obtained. Two new generating functions will be given and
some special properties of this polynomial will be examined.

1. Introduction

Special functions, with its various sub-branches, provide a very wide �eld of
study that arises not only in various �elds of mathematics, but also in the solutions
of important problems in many disciplines such as physics, chemistry and biology.
This topic is e¤ective enough to make sense of ambiguous questions, especially in
physical problems, thus encouraging many people to make notable improvements
in this area. As in other sciences, however, outstanding problems are discussed
in many disciplines and more general results are attempted. Function generation
theory is used in the analysis of discrete problems involving sequences of numbers
or sequences of functions and polynomials. This theory has useful applications in
many areas of study. In recent years, various interesting applications of various
methods of obtaining linear, bilinear, bilateral or mixed multilateral generation
functions of special functions (and polynomials) in one, two and more variables
have also been explored.
In 2011, Lin et. al. introduced the generalized Cesàro polynomials as follows [6]:

g(s)n (�; x) =

�
s+ n

n

�
2F1

�
�n; �;

�s� n; x
�
: (1.1)

Here, 2F1 denotes the Gauss hypergeometric function. It is noted that the special
case � = 1 of (1.1) reduces immediately to the second one of the generalized Cesàro
polynomials g(s)n (�; x) in g(s)n (x) [10].
A further generalization of the familiar Kampé de Fériet hypergeometric function

in two variables, which is called the generalized Lauricella function, was introduced
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by Srivastava and Daoust [15]:

FA:B
(1);:::;B(n)

C:D(1);:::;D(n)

0BB@
h
(a) : �(1); :::; �(n)

i
:
h
(b(1)) : �(1)

i
;

h
(c) :  (1); :::;  (n)

i
:
h
(d(1)) : �(1)

i
;

:::;
h
(b(n)) : �(n)

i
;

z1; :::; zn

:::;
h
(d(n)) : �(n)

i
;

1CCA
=

1P
m1;:::;mn=0


(m1; :::;mn)
zm1
1

m1!
:::
zmn
n

mn!
;

where for convenience


(m1; :::;mn) :=

AY
j=1

(aj)m1�
(1)
j +:::+mn�

(n)
j

CY
j=1

(cj)m1 
(1)
j +:::+mn 

(n)
j

B(1)Y
j=1

(b
(1)
j )

m1�
(1)
j

D(1)Y
j=1

(d
(1)
j )

m1�
(1)
j

:::

B(n)Y
j=1

(b
(n)
j )

mn�
(n)
j

D(n)Y
j=1

(d
(n)
j )

mn�
(n)
j

:

Here, the coe¢ cients

�
(j)
k (k = 1; :::; A; j = 1; :::; n) and �(j)k (k = 1; :::; B(j); j = 1; :::; n);

 
(j)
k (k = 1; :::; C; j = 1; :::; n) and �(j)k (k = 1; :::; D(j); j = 1; :::; n)

are real constants and
�
b
(j)

B(j)

�
abridges the array of B(j) parameters b(j)k (k =

1; :::; B(j); j = 1; :::; n) with similar commentarys for other sets of parameters [11].
As usual (�)v denotes the Pochhammer symbol by

(�)v :=
�(� + v)

�(�)
=

�
1 (v = 0; � 2 C= f0g)

�(� + 1):::(� + n� 1) (v = n 2 N; � 2 C) ;

it being understood conventionally that (0)0 := 1:
In recent years, many researchers have studied multilinear and multilateral gen-

erating functions for di¤erent type of polynomials. For example, in [12], Liu in-
troduced bilateral generating functions for Lagrange polynomials and Lauricella
functions. Similarly, in [13] the authors obtained bilateral generating functions for
Chan�Chyan�Srivastava polynomials and generalized Lauricella functions. In 2012,
they derived bilateral generating functions for Erkuş�Srivastava polynomials and
generalized Lauricella functions (see [11]).We have very recently obtained bilateral
generating functions for generalized Cesàro polynomials and generalized Lauricella
functions (see [16]). Various generating functions can be found with the [4], [5],
[14] and [17] methods.
The main object of this paper is to study several properties of generalized Cesàro

polynomials in several variables. Various families of multilinear and multilateral
generating functions, their miscellaneous properties and also some special cases are
given. In addition, we derive a result giving certain families of bilateral generating
functions for generalized Cesàro polynomials in several variables and generalized
Lauricella functions.
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2. Generalized Cesàro polynomials in several variables and their
generating functions

De�nition 2.1. We de�ne an extension of the generalized Cesàro polynomials
g
(s)
n (�; x) in m variables by

g
(s)
n (�1; :::; �m; x1; :::; xm) =

nP
r1=0

n�r1P
r2=0

n�r1�r2P
r3=0

:::
n�r1�r2�:::�rm�1P

rm=0

�
s+n
n

�
�

(�n)�m
mQ
j=1

(�j)rj

(�s�n)�m

mQ
j=1

(xj)
rj

mQ
j=1

(rj)!

(2.1)

where m;n 2 N and

�m =
mX
j=1

rj : (2.2)

It is noted that the special case m = 1 of (2.1) reduces immediately to the second
one of the generalized Cesàro polynomials g(s)n (�; x) in (1.1).

Now, we will present two generating functions for the multivariable Cesàro poly-
nomials g(s)n (�1; :::; �m; x1; :::; xm):

Theorem 2.1. The following generating function holds true:
1X
n=0

g(s)n (�1; :::; �m; x1; :::; xm)t
n = (1� t)�s�1

mY
j=1

(1� xjt)��j ; (m 2 N): (2.3)

Proof. Let�s start by remembering a formal manipulation of the double series:
1X
n=0

nX
k=0

A(k; n) =
1X
n=0

1X
k=0

A(k; n+ k): (2.4)

Let S show the �rst member of the (2.3) claim. If we substitute for the multivari-
able Cesàro polynomials from the de�nition (2.1) into the left hand-side of (2.3)
and we apply (2.4) to the resulting expression with k = r1; :::; rm consecutively,
then we have

S =
1X
r1=0

:::
1X

rm=0

1X
n=0

�
s+ (n+ �m)

(n+ �m)

� (� (n+ �m))�m mQ
j=1

(�j)rj

(�s� (n+ �m))�m

mQ
j=1

(xj)
rj

mQ
j=1

(rj)!
tn+�m :

If we use the identity

(�m� p)p = (�1)p
(m+ p)!

m!
(m; p 2 N0)

to the �rst factor of the denominator of the last fraction, we get

S =
1X
n=0

�
s+ n

n

�
tn

1X
r1=0

:::
1X

rm=0

mQ
j=1

(�j)rj

mQ
j=1

(xj)
rj

mQ
j=1

(rj)!
t�m

=
1X
n=0

(s+ 1)n
tn

n!

1X
r1=0

(�1)r1 (x1t)
r1

r1!
:::

1X
rm=0

(�m)rm (xmt)
rm

rm!
;
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where �m is given by (2.2).
By applying the generalized binomial theorem

(1� z)�� =
1X
n=0

(�)n
zn

n!
(jzj < 1)

to the last resulting equation, we attain our aim. �

Remark 2.1. In the case of m = 1, Theorem 2.1 for the multivariable Cesàro
polynomials reduces to the generating function of the generalized Cesàro polynomials
given in [16].

Theorem 2.2. The following generating function for the multivariable Cesàro poly-
nomials holds true:

1X
n=0

�
n+m

n

�
g
(s)
n+m(�1; :::; �k; x1; :::; xk)t

n

= (1� t)�s�m�1
kY
j=1

(1� xjt)��jg(s)m
�
�1; :::; �k;

x1(1� t)
1� x1t

; :::;
xk(1� t)
1� xkt

�
;

where jtj < min fjx1j ; :::; jxkjg :

Proof. Replacing t by t+ u in (2.3), we get

1X
n=0

g(s)n (�1; :::; �k; x1; :::; xk)(t+ u)
n = (1� t� u)�s�1

kY
j=1

(1� xjt� xju)��j :

If we use the binomial expansion the left hand-side of the last relation, we have

1X
n=0

g(s)n (�1; :::; �k; x1; :::; xk)
nX

m=0

�
n

m

�
tn�mum

= (1� t)�s�1
�
1� u

1� t

��s�1
�

kY
j=1

(1� xjt)��j
kY
j=1

�
1� xju

1� xjt

���j
:

After some calculations, we get

1X
n=0

1X
m=0

�
n+m

m

�
g
(s)
n+m(�1; :::; �k; x1; :::; xk)t

num

= (1� t)�s�1
kY
j=1

(1� xjt)��j
1X
m=0

(1� t)�m

�g(s)m
�
�1; :::; �k;

x1(1� t)
1� x1t

; :::;
xk(1� t)
1� xkt

�
um:

From the coe¢ cients of um on the both sides of the last equality, one can get the
desired result. �
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3. Bilinear and Bilateral Generating Functions

In this section, we give theorems which derive several substantially families of
bilinear and bilateral generating functions for the multivariable Cesàro polynomials
by using the similar method considered in [8], [9], [16], [17].

Lemma 3.1. We have the following summation formula for the multivariable
Cesàro polynomials:

g(s1+s2+1)n (�1 + �1; :::; �k + �k; x1; :::; xk)

=
nX
k=0

g
(s1)
n�k(�1; :::; �k; x1; :::; xk)g

(s2)
k (�1; :::; �k; x1; :::; xk): (3.1)

Proof. If we take s = s1 + s2 +1, �i = �i + �i in Theorem 2.1 and then we use the
relation

1X
n=0

1X
k=0

A (k; n) =
1X
n=0

nX
k=0

A (k; n� k) ; (3.2)

we have
1X
n=0

g(s1+s2+1)n (�1 + �1; :::; �k + �k; x1; :::; xk)t
n

= (1� t)�s1�s2�2
kY
j=1

(1� xjt)��j��j

= (1� t)�s1�1
kY
j=1

(1� xjt)��j (1� t)s2�1
kY
j=1

(1� xjt)��j

=
1X
n=0

g(s1)n (�1; :::; �k; x1; :::; xk)t
n
1X
k=0

g
(s2)
k (�1; :::; �k; x1; :::; xk)t

k

=
1X
n=0

1X
k=0

g(s1)n (�1; :::; �k; x1; :::; xk)g
(s2)
k (�1; :::; �k; x1; :::; xk)t

n+k

=

1X
n=0

nX
k=0

g
(s1)
n�k(�1; :::; �k; x1; :::; xk)g

(s2)
k (�1; :::; �k; x1; :::; xk)t

n: (3.3)

Equating the coe¢ cients of the same powers of t in both sides of equation (3.3), we
are led to assertion (3.1). �

Theorem 3.2. For a non-vanishing function 
�(y1; :::; yr ) of r complex variables
y1; :::; yr (r 2 N) and for ak 6= 0 ; �;  2 C, let

��; (y1; :::; yr; �) :=
1X
k=0

ak
�+ k(y1; :::; yr)�
k

and

��; n;p (�1; :::; �k; x1; :::; xk; y1; :::; yr; �)

: =

[n=p]X
k=0

akg
(s)
n�pk (�1; :::; �k; x1; :::; xk) 
�+ k(y1; :::; yr)�

k:
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Then, we have

1P
n=0

��; n;p
�
�1; :::; �k; x1; :::; xk; y1; :::; yr;

�
tp

�
tn

= (1� t)�s�1
kY
j=1

(1� xjt)��j��; (y1; :::; yr; �):
(3.4)

Proof. For convenience, let S denote the �rst member of the assertion (3.4). Then,

S =
1X
n=0

[n=p]X
k=0

akg
(s)
n�pk (�1; :::; �k; x1; :::; xk)
�+ k(y1; :::; yr)�

ktn�pk

Replacing n by n+ pk; we may write that

S =

1X
n=0

1X
k=0

ak g
(s)
n (�1; :::; �k; x1; :::; xk) 
�+ k(y1; :::; yr)�

ktn

=
1X
n=0

g(s)n (�1; :::; �k; x1; :::; xk) t
n
1X
k=0

ak
�+ k(y1; :::; yr)�
k

= (1� t)�s�1
kY
j=1

(1� xjt)��j��; (y1; :::; yr; �)

which completes the proof. �

Theorem 3.3. For a non-vanishing function 
�(y1; :::; yr ) of r complex variables
y1; :::; yr (r 2 N) and for an 6= 0 ; � 2 C, let

��;p;q [�1; :::; �k; x1; :::; xk; y1; :::; yr; t]

: =
1X
n=0

ang
(s)
m+qn(�1; :::; �k; x1; :::; xk)
�+pn(y1; :::; yr)t

n;

and

�n;p;q(y1; :::; yr; z) :=

[n=q]X
k=0

�
m+ n

n� qk

�
ak
�+pk(y1; :::; yr)z

k:

Then, we have

1X
n=0

g
(s)
m+n(�1; :::; �k; x1; :::; xk)�n;p;q(y1; :::; yr; z)t

n (3.5)

= (1� t)�s�m�1
kY
j=1

(1� xjt)��j

���;p;q
�
�1; :::; �k;

x1(1� t)
1� x1t

; :::;
xk(1� t)
1� xkt

; y1; :::; yr; z(
t

1� t )
q

�
:

Proof. By using Theorem 2.2 and similar method in proof of Theorem 3.2, we arrive
at the desired result. �
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Theorem 3.4. For non-vanishing function 
�(y1; :::; yr ) of r complex variables
y1; :::; yr (r 2 N) and for ak 6= 0 ; �;  2 C, let

�n;p�; (�1 + �1; :::; �k + �k; x1; :::; xk; y1; :::; yr; z)

: =

[n=p]X
k=0

akg
(s1+s2+1)
n�pk (�1 + �1; :::; �k + �k; x1; :::; xk)
�+ k(y1; :::; yr)z

k:

Then, for p 2 N; we have

nX
k=0

[k=p]X
l=0

alg
(s1)
n�k(�1; :::; �k; x1; :::; xk)g

(s2)
k�pl(�1; :::; �k; x1; :::; xk)
�+ l(y1; :::; yr)z

l

= �n;p�; (�1 + �1; :::; �k + �k; x1; :::; xk; y1; :::; yr; z): (3.6)

Proof. Applying the well-known equality

nX
k=0

[k=p]X
l=0

A (k; l) =

[n=p]X
l=0

n�plX
k=0

A (k + pl; l)

and then using Lemma 3.1, we get

nX
k=0

[k=p]X
l=0

alg
(s1)
n�k(�1; :::; �k; x1; :::; xk)g

(s2)
k�pl(�1; :::; �k; x1; :::; xk)
�+ l(y1; :::; yr)z

l

=

[n=p]X
l=0

n�plX
k=0

alg
(s1)
n�k�pl(�1; :::; �k; x1; :::; xk)g

(s2)
k (�1; :::; �k; x1; :::; xk)
�+ l(y1; :::; yr)z

l

=

[n=p]X
l=0

al

 
n�plX
k=0

g
(s1)
n�k�pl(�1; :::; �k; x1; :::; xk)g

(s2)
k (�1; :::; �k; x1; :::; xk)

!

�+ l(y1; :::; yr)z

l

=

[n=p]X
l=0

alg
(s1+s2+1)
n�pl (�1 + �1; :::; �k + �k; x1; :::; xk)
�+ l(y1; :::; yr)z

l

= �n;p�; (�1 + �1; :::; �k + �k; x1; :::; xk; y1; :::; yr; z)

which completes the proof. �

Notice that, when the multivariable function 
�+ k(y1; :::; yr), r 2 N is expressed
as an appropriate product of several simpler functions of one or more variables, then
each suitable choice of the coe¢ cients ak (k 2 N0) in Theorems 3:1; 3:2 and 3:3
can be shown to yield various families of multilinear and multilateral generating
functions for the multivariable Cesàro polynomials de�ned by (2.1).

4. The multivariable Cesàro polynomials and the generalized
Lauricella functions

Now, for a suitable bounded non-vanishing multiple sequence f
(m1; :::;ms)gm1;:::;ms2N0
(real or complex) parameters, a function �n(u1;u2; :::; us) of s (real or complex)
variables u1; :::; us is de�ned by [11]



8 NEJLA ÖZMEN

�n(u1;u2; :::; us)

: =
nX

m1=0

1X
m2;:::;ms=0

(�n)m1
((b))m1�

((d))m1�

 (f(m1; :::;ms);m2; :::;ms)

um1
1

m1!
:::
ums
s

ms!
:

Here for convenience ((b))m1� =
BY
j=1

(bj)m1�j and ((d))m1� =
DY
j=1

(dj)m1�j :

Theorem 4.1. The following bilateral generating function relationship applies:

1X
n=0

g(s)n (�1; :::; �k; x1; :::; xk)�n(u1;u2; :::; ur)t
n

= (1� t)�s�1
kY
j=1

(1� xjt)��j

�
1X

k1;:::;kk;m1;:::;mr=0

((b))(k1+:::+kk+m1)�

((d))(k1+:::+kk+m1)�

�
 (f (k1 + :::+ kk +m1) ;m2; :::;mr) (�1)k1 :::(�k)kk(s+ 1)m1

�
( u1x1tx1t�1 )

k1

k1!
:::
( u1xktxkt�1 )

kk

kk!

�
u1t
t�1

�m1

m1!

um2
2

m2!
:::
umr
r

mr!
:

Proof. By using the relation in the statement of Theorem 2.2, we get

1X
n=0

g(s)n (�1; :::; �k; x1; :::; xk)�n(u1;u2; :::; ur)t
n

=
1X
n=0

g(s)n (�1; :::; �k; x1; :::; xk)
nX

m1=0

1X
m2;:::;mr=0

(�n)m1
((b))m1�

((d))m1�

�
 (f(m1; :::;mr);m2; :::;mr)
um1
1

m1!
:::
umr
r

mr!
tn

=
1X

m1;:::;mk=0

((b))m1�

((d))m1�

 (f(m1; :::;mr);m2; :::;mr)

�(�u1t)m1
um2
2

m2!
:::
umr
r

mr!
(1� t)�s�m1�1

kY
j=1

(1� xjt)��j

�g(s)m1

�
�1; :::; �k;

x1(1� t)
1� x1t

; :::;
xk(1� t)
1� xkt

�
:
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Using the de�nition (2.1), it is easily observed that

1X
n=0

g(s)n (�1; :::; �k; x1; :::; xk)�n(u1;u2; :::; ur)t
n

= (1� t)�s�1
kY
j=1

(1� xjt)��j
1X

m1;:::;mr=0

((b))m1�

((d))m1�

 (f(m1; :::;mr);m2; :::;mr)

�(�u1t
1� t )

m1
um2
2

m2!
:::
umr
r

mr!

m1X
k1=0

m1�k1X
k2=0

m1�k1�k2X
k3=0

:::

m1�k1�k2�:::�kk�1X
kk=0

�
s+m1

m1

�

�
(�m1)k1+:::+kk

kQ
j=1

(�j)kj

(�s�m1)k1+:::+kk
kQ
j=1

(kj)!

kY
j=1

�
xj(1� t)
1� xjt

�kj

whence the result. �

By appropriately choosing the multiple sequence 
(m1; :::;mr) in Theorem 4.1,
we obtain several results including, for example, the following bilateral generating
functions:

Example 4.1. By letting


 (f(m1; :::;mr);m2; :::;mr)

=

AY
j=1

(aj)m
1
�
(1)
j +:::+mr �

(r)
j

EY
j=1

(cj)m1 
(1)
j +:::+mr 

(r)
j

B(2)Y
j=1

(b
(2)
j )

m
2
�
(2)
j

D(2)Y
j=1

(d
(2)
j )

m2�
(2)
j

:::

B(r)Y
j=1

(b
(r)
j )mr�

(r)
j

D(r)Y
j=1

(d
(r)
j )mr�

(r)
j
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in Theorem 4.1,we obtain the following bilateral generating function:

1X
n=0

g(s)n (�1; :::; �k; x1; :::; xk)

�FA:B+1;B
(2);:::;B(r)

E:D;D(2);:::;D(r)

0BB@
h
(a) : �(1); :::; �(r)

i
: [�n : 1]; [(b) : �];

h
(c) :  (1); :::;  (r)

i
: [(d) : �];

[(b(2)) : �(2)]; :::; [(b(r)) : �(r)];

[(d(2)) : �(2)]; :::; [(d(r)) : �(r)];
u1; :::; ur

1A tn

= (1� t)�s�1
kY
j=1

(1� xjt)��j

�FA+B:1;:::;1;B
(2);:::;B(r)

E+D:0;:::;0;D(2);:::;D(r)

0B@
�
(e) : '(1); :::; '(k+r)

�
: [�1 : 1]; :::; [�k : 1]; [s+ 1 : 1];h

(f) : �(1); :::; �(k+r)
i
: � ; ::: ; �; �

[(b(2)) : �(2)]; :::; [(b(r)) : �(r)];

[(d(2)) : �(2)]; :::; [(d(r)) : �(r)];
(
u1x1t

x1t� 1
); :::; (

u1xkt

xkt� 1
);

�
u1t

t� 1

�
; u2; :::; ur

1A :

Here, the coe¢ cients are given by

ej =

�
aj (1 � j � A)
bj�A (A < j � A+B)

, fj =

�
cj (1 � j � E)

dj�E (E < j � E +D)
;

'
(s)
j =

8>>><>>>:
�
(1)
j (1 � j � A; 1 � s � k + 1)

�
(s�k)
j (1 � j � A; k + 1 < s � k + r)

�j�A (A < j � A+B; 1 � s � k + 1)
0 (A < j � A+B; k + 1 < s � k + r)

;

�
(s)
j =

8>>><>>>:
 
(1)
j (1 � j � E; 1 � s � k + 1)

 
(s�k)
j (1 � j � E; k + 1 < s � k + r)

�j�E (E < j � E +D; 1 � s � k + 1)
0 (E < j � E +D; k + 1 < s � k + r)

:

Example 4.2. If we set


 (f(m1; :::;mr);m2; :::;mr) =
(a)m1+:::+mr

(b2)m2
:::(br)mr

(c1)m1
:::(cr)mr

and

� = � = 0 (that is, �1 = ::: = �B = �1 = ::: = �D = 0)
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in Theorem 4.1, the following bilateral generating function holds true:
1X
n=0

g(s)n (�1; :::; �k; x1; :::; xk)F
(r)
A [a;�n; b2; :::; br; c1; :::; cr;u1; :::; ur] tn

= (1� t)�s�1
kY
j=1

(1� xjt)��j

�F 1:1;1;:::;1;1;:::;11:0;0;:::;0;1;:::;1

0B@ [(a) : 1; :::; 1] : [�1 : 1]; :::; [�k : 1]; [s+ 1 : 1] ;h
(c1) :  

(1); :::;  (k+r)
i
: � ; ::: ; � ; � ;

[b2 : 1] ; :::; [br : 1] ;

[c2 : 1] ; :::; [cr : 1] ;
(
u1x1t

x1t� 1
); :::; (

u1xkt

xkt� 1
);

�
u1t

t� 1

�
; u2; :::; ur

1A :

Here F (r)A is the Lauricella function and the coe¢ cients  (�) are given by

 (�) =

�
1 (1 � � � k + 1)
0 k + 1 < � � k + r

:

Example 4.3. By letting


 (f(m1; :::;mr);m2; :::;mr) =
(a)m1+:::+mr

(b2)m2
:::(br)mr

(c)m1+:::+mr

and
� = � = 0;

in Theorem 4.1,we obtain the following bilateral generating function:
1X
n=0

g(s)n (�1; :::; �k; x1; :::; xk)F
(r)
D [a;�n; b2; :::; br; c;u1; :::; ur] tn

= (1� t)�s�1
kY
j=1

(1� xjt)��jF (k+r)D [a; �1; :::; �k; s+ 1; b2; :::; br; c;

(
u1x1t

x1t� 1
); :::; (

u1xkt

xkt� 1
);

�
u1t

t� 1

�
; u2; :::; ur

�
:

Here F (r)D is the Lauricella function.

5. Miscellaneous Properties

In this section, we give a theorem which derive an integral representation for
the multivariable Cesàro polynomials de�ned by (2.1) and then we obtain some
recurrence relations for these polynomials.

Theorem 5.1. The multivariable Cesàro polynomials have the following integral
notation:

g(s)n (�1; :::; �k; x1; :::; xk) =
1

�(s+ 1)�(�1):::�(�k)

1Z
0

:::

1Z
0

e�(m+u1+:::+uk)

� (m+ u1x1 + :::+ ukxk)
n

n!
msu�1�11 :::u�k�1k dmdu1:::duk;

where Re (s+ 1) > 0, Re (�i) > 0, i = 1; :::; k:
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Proof. If we use the identity

a�v =
1

�(v)

1Z
0

e�attv�1dt (Re (�) > 0)

on the right hand-side of the generating function (2.3), we have

1X
n=0

g(s)n (�1; :::; �k; x1; :::; xk)t
n

= (1� t)�s�1
kY
j=1

(1� xjt)��j

=
1

�(s+ 1)�(�1):::�(�k)

1Z
0

:::

1Z
0

e�(m+u1+:::+uk)

�e(m+u1x1+:::+ukxk)tmsu�1�11 :::u�k�1k dmdu1:::duk

=
1

�(s+ 1)�(�1):::�(�k)

1Z
0

:::

1Z
0

e�(m+u1+:::+uk)

�
1X
n=0

(m+ u1x1 + :::+ ukxk)
n

n!
tnmsu�1�11 :::u�k�1k dmdu1:::duk:

From the coe¢ cients of tn on the both sides of the last equality, one can get the
desired result. �

We now discuss some miscellaneous recurrence relations for the multivariable
Cesàro polynomials. By di¤erentiating each member of the generating function
relation (2.3) with respect to xj (j = 1; :::; k) and using (3.2), we arrive at the
following (di¤erential) recurrence relation for the multivariable Cesàro polynomials:

@

@xj
g
(s)
n (�1; :::; �k; x1; :::; xk)� xj

@

@xj
g
(s)
n�1(�1; :::; �k; x1; :::; xk)

= �jg
(s)
n�1(�1; :::; �k; x1; :::; xk); (n � 1).

(5.1)

Furthermore, using the similar idea, one can obtain another recurrence relation as
follows:

@

@xj
g(s)n (�1; :::; �k; x1; :::; xk) = �j

n�1X
k=0

xn�k�1j g
(s)
k (�1; :::; �k; x1; :::; xk):

If we compare this equality and (5.1), we obtain

n�1P
k=0

xn�k�1j g
(s)
k (�1; :::; �k; x1; :::; xk)�

n�2P
k=0

xn�k�1j g
(s)
k (�1; :::; �k; x1; :::; xk)

= g
(s)
n�1(�1; :::; �k; x1; :::; xk):

Besides, by di¤erentiating each member of the generating function relation (2.3)
with respect to t, we have the following recurrence relation for the multivariable
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Cesàro polynomials:

(n+ 1)g
(s)
n+1(�1; :::; �k; x1; :::; xk) =

nP
m=0

h
(s+ 1) g

(s)
n�m(�1; :::; �k; x1; :::; xk)

+
kP
j=1

�jx
m+1
j g

(s)
n�m(�1; :::; �k; x1; :::; xk)

#
; (j = 1; :::; k):
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