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Abstract

In  this  paper,  a  dynamic  biomass  gasification  model  was  developed  based  on  the  hybrid

peripheral fragmentation and shrinking-core (HPFS) model. To improve the accuracy of syngas

generation transient prediction, the chemical kinetic model was trained using global surrogate

optimization techniques.  The pre-exponential  factors of kinetic  reactions  are calibrated under

non-catalytic conditions, employing experimental transient data of syngas generation rate and

compositions under different temperatures and gasifying agents. The DYCORS and GOMORS

were employed as the numerical  solvers for finding the global optimum solution of the pre-
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exponential  factors.  The calibrated  kinetic  models  based on both single-objective  and multi-

objective  approaches  have  been  validated  by  experimental  data  in  four  different  biomass

gasification scenarios. The calibrated kinetic model shows an over 95% decrease in terms of

integrated squared error (ISE)-based model  mismatch  when compared to the original  kinetic

model.

Key words: Biomass gasification, dynamic modelling, experimental calibration, kinetic model.

1. Introduction

Facing the pressure of growing primary energy demand, worldwide attentions on climate change

and  renewable  energy  development  have  been  highlighted.  In  2019,  the  renewable  power

contributes 41% of the increase in energy demand, which is larger than the fossil fuel (oil, gas,

and coal) and nuclear1. Biomass, as a carbon-neutral energy source, is widely explored in energy

production  applications  and  is  considered  as  a  candidate  for  fossil  substitutions  in  energy

production2.  Gasification,  which is  a thermochemical  process to  convert  the solid  fuels (like

biomass) into syngas and biochar, has attracted significant research and commercial interest. The

biomass gasification technology, when compared to a plethora of other technologies,  has the

advantage of more efficient and valuable products and less toxic emissions3.

Modeling is an important tool for both understanding the nature of various chemical and physical

effects  in  biomass  gasification  and  supporting  the  optimization  of  process  design.  Many

modeling  studies  have  been  conducted  for  the  biomass  gasification,  and  the  models  can  be

classified into three different clusters: (i) equilibrium model, (ii) kinetic model, and (iii) data-

driven model. The equilibrium model is based on the assumption of thermochemical equilibrium,

2



and the equilibrium assumption can be derived by specifying  all  the chemical  reactions  and

species (named as stoichiometric approach) or minimizing the Gibbs free energy of the whole

system (named as non-stoichiometric approach)5-9. To precisely predict the biomass gasification

product distributions over a finite time horizon, the kinetic model is required. Several biomass

gasification kinetic models were developed in Aspen Plus to improve the prediction of steady-

state  energy  performances  by  involving  new  kinetic  schemes  and  different  empirical

correlations10-11.  First-principles  kinetic  models  were  also  developed  to  predict  the  syngas

composition, temperature profile, and biochar productions by combining the fuel-bed model with

representative particle model (RPM)12-13. However, the accuracy of kinetic model is difficult to

achieve,  due  to  the  microscopic  evolution  of  particle  distributions  and  complex  gas-solid

contacting processes are hard to model reliably14. In the data-driven modeling approaches, such

as artificial neuron network (ANN), large amounts of experimental data are employed to training

the model endogenous parameters15. However, models based on statistic correlations can hardly

contribute  to a better  understanding of the various chemical  and physical  effects  in biomass

gasification processes. 

From the state  of the art,  most of the available  models can predict  the biomass gasification

steady-state  behaviors.  However,  studies  focused  on  process  dynamic  response,  which  is

important for real-time process operation, are relatively scarce. Boujjat et al. developed a solar

biomass gasification model based on chemical equilibrium assumptions to analyze the hydrogen-

rich  syngas  during  hybrid  autothermal/solar  and  allothermal  operations16.  Mikulandrić  et  al.

established a dynamic ANN model of co-current fixed-bed biomass gasifier, which is trained by

operating data from TU Dresden. The model can predict the syngas composition under changing

operating conditions but there is still room to improve the prediction17. Suárez-Almeida et al.
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developed a dynamic fluidized-bed biomass gasification  model to  analyze the system during

start-up  and  disturbances  in  air  and  fuel  loads.  The  model  is  based  on  a  quasi-equilibrium

approach to keep the compromise between model complexity and prediction capability18. 

In our previous study, a hybrid peripheral fragmentation and shrinking-core (HPFS) model19 was

developed to predict the biochar production, PM emission, and syngas generation of biomass

gasification.  The objective of this  work is  to develop a dynamic biomass gasification model

based  HPFS  model  for  better  transient  prediction  accuracy.  The  pre-exponential  factors  of

kinetic  reactions are trained under non-catalytic  conditions,  employing experimental  transient

data under different temperatures and gasifying agents. The contributions of this work are not

only a calibrated kinetic model of biomass gasification, which can predict the transient outputs of

syngas generation, but also demonstrating a systematic way of training complex thermochemical

kinetic  models  with global  surrogate  optimization  techniques  to  improve transient  prediction

accuracy .

2. Model development

2.1. Model description and assumptions

Figure 1 depicts the developed dynamic biomass gasification model. The fixed bed operation

conditions are employed as the initial and boundary conditions, which are the inputs of the single

particle model. The single particle  model is based on the HPFS approach19.  Specifically,  the

biomass particle porosity builds up with time due to the thermochemical reactions. When the

porosity of biomass particle reaches a critical value, the outer layer of the particle is broken into

fragmentations and detached from the particle. The peripheral fragmentation leads to both the

particle shrinkage and PM emissions. The main assumptions of the model are given as follows:
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1) The gaseous species are assumed to be ideal gas

2) The biomass particles are assumed to be a one-dimensional (radial) porous sphere in a

time-dependent  domain.  The  governing  equations,  including  mass,  energy  and

momentum balances, are derived by finite volume approach.

3) The gas  phase and solid  phase  of  each finite  volume are assumed to  have the  same

temperature and temperature gradient

4) The solid phase is assumed to have constant density

5) There is no pressure difference between the external particle surface and the fixed bed

gas phase.

6) The homogeneous reactions take place in the lacunar of porous particle.

7) The heterogeneous reactions,  which affects  the particle  porosity  evolution,  take place

only on the solid-gas interface.

8) The shrinkage of particles  is due to the peripherical  fragmentation when the porosity

reaches a critical value. 

9) The PM emissions are assumed to be proportional to the detached fragment, which is

represented by the particle volumetric shrinkage.

A two-step biomass pyrolysis model20 is employed in the HPFS framework, including a primary

pyrolysis reaction (Eq. 1) and a tar cracking reaction (Eq.2). 

Volatile→0.268CO+0.295CO2+0.094C H4+0.5H 2+0.255H2O+0.2Primary tar (1)

Primary tar→0.397 Secondary tar+2.6CO+0.441CO 2+0.983C H 4+2.161H 2 (2)
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Figure 1. Schematic of the developed dynamic biomass gasification model.

The solid-phase reaction rate is determined based on the film mass-transfer diffusion20 and the

following 5 heterogeneous reactions are considered to take place on the solid-gas interface:
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RS1: 2C+O2→2CO

RS2: 2C+O2→CO2

RS3: C+H 2O→CO+H2

RS4: C+CO2→2CO

RS5: C+2H 2→C H 4

(3)

The gaseous species are determined based on the turbulent mixing rate using Eddy Dissipation

Model20 and  the  following  7  homogeneous  reactions  in  the  interstitial  gas  phase  of  porous

biomass particles are employed:

RG1: PrimaryTar+O2→H2O+CO

RG2: SecondaryTar+O2→H 2O+CO

RG3: H 2+0.5O2→H 2O

RG4: CO+0.5O2→C O2

RG5: H 2O+CO→H 2+CO2

RG6: CH 4+1.5O2→CO+2H 2O

RG7: C H 4+H2O→3H 2+CO

(4)

The governing equations (mass, momentum, and energy balance) and boundary conditions of the

HPFS model are addressed in the Supplementary Materials. Refer to the HPFS modeling paper19

for more model formulation details,  including the non-dimensionalization,  PDE derivation in

MATLAB, and PM emission model formulation.
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2.2. Kinetic model calibration

The kinetic reaction rates of the reactions19 are derived based on literature data, which are shown

in Tables 1 and 2. The kinetic  reactions rates of RS1, RS3, RS4, RS5 are derived based on

Eyring  equation  (i.e.,  k=ATexp(−E
RT )),  and  the  kinetic  reaction  rates  of  RS2,  RG1-7  are

formulated based on Arrhenius equation (i.e.,  k=Aexp(−E
RT )). However, as shown in Figure 2,

although the steady-state syngas outputs (accumulated over 30 min time horizon) were in good

consistency with the experimental data19, the accuracy of the syngas transient predictions was not

satisfactory.  In this  work,  as depicted  in Figure 1,  the experimental  transient  data  of syngas

generation rate and compositions are employed for training the kinetics of single particle model

to improve the transient prediction accuracy. Without change the activation energy term E, the

pre-exponential factor  A of kinetic reaction rates are calibrated by addressing pre-exponential

correction terms as the following equations: 

k̂=αATexp (−E
RT )for RS1, RS3, RS4, RS5 (5)

k̂=αAexp (−E
RT )for RS2, RG1-7 (6)

in which  α  represents the pre-exponential correction terms. Then, the updated kinetic reaction

rates r̂ i are:

r̂ i=αi ∙ ri (7)
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in which i refers to the reaction index (RS1-5, RG1-7).

(a) (b)

Figure 2. Experimental validation of dry syngas composition under 600  oC with Ar gasifying

agent. (a) accumulated steady-state validation19. (b). transient validation.

Table 1. Kinetics of heterogeneous reactions.

Heterogeneous reactions Kinetic reaction rate [m s-1] Ref.

RS1 r s1=2.3T s exp(
−11100

T s
) [21]

RS2
rs1

rs2

=2512exp(
−6420

T g ) [22]

RS3 r s3=5.714T s exp(
−15600

T s
) [23]

RS4 r s4=589T s exp(
−26800

T s
) [24]
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RS5 r s5=3.42×10
−3T sexp (

−15600
T s

) [25]

Table 2. Kinetics of homogeneous reactions.

Heterogeneous

reactions
Kinetic reaction rate [kmol m-3s-1] Ref.

RG1 r g1=1899T gexp (
−12200

T g
)CPrimaryTar

0.5 CO2
ε [24]

RG2 r g2=1899T gexp (
−12200

T g
)CSecondaryTar

0.5 CO2
ε [24]

RG3 r g3=3.53×10
8.4exp (

−3670
T g

)CH 2

1.1CO 2

1.1 ε [26]

RG4 r g4=1.3×10
11exp(

−15105
T g

)CCO CH 2O
0.5 CO2

0.5 ε [27]

RG5
r g5=2.78exp(

−1511
T g

)[CCOCH 2O
−

exp (−7914T g
)CCO 2

CH 2

0.0265 ]ε [28]

RG6 r g6=1.0×10
11.7 exp(

−24357
T g

)CCH 4

0.7 CO 2

0.8 ε [29]

RG7 r g7=3.0×10
8exp(

−15083
T g

)CCH 4
CH 2O

ε [30]
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2.2.1. Formulation of kinetic model calibration

The  kinetic  model  calibration  is  based  on  solving  the  optimization  problem  over  the  pre-

exponential  correction  α  to minimizing the difference between the predicted syngas transient

results  and  the  experimental  syngas  transient  data  (i.e.  model  mismatch).  The  general

formulation of the optimization problem for the kinetic model calibration,  which is based on

integrated squared error (ISE) approach, is given as follows:

min f ( α )=‖∑t
∑

j
( y j ,t− y j , t )

2

‖2

s . t . α=[αRS1 ,…,αRS5 , αRG1 ,… ,αRG7 ]>0

(8)

in which  y represents the model transient predictions,  y represents the experimental transient

data,  t represents  the  time  horizon,  and  j represents  the  transient  index.  The  exponential

correction α  in Eq. 8 is the decision variable of the optimization problem, which subscripts refer

to the kinetic reaction index shown in Tables 1 and 2.  In this work, the time horizon t is set from

0 to 30 min, and the transient index  j includes the four dry syngas composition (i.e., H2, CO,

CH4, CO2) and total dry syngas generation rate. 

The  calibration  is  first  derived  as  a  single  objective  optimization  problem,  employing  the

experimental  transient  data  on  a  specific  operating  condition.  The  optimization  problem  is

formulated to minimize the model transient mismatch as follows:

min f T , Ag (α T , Ag )=‖∑t
∑

j
( y j , t , T , Ag− y j , t ,T , Ag )

2

‖2
(9)
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s . t . αT , Ag= [αRS1 ,…,αRS5 , αRG1,…,αRG7 ]T , Ag>0

in which the two operating condition parameters  T and  Ag represent the specific gasification

temperature and gasifying agent, respectively. 

Furthermore,  the  calibration  based  on a  multi-objective  optimization  problem is  formulated,

employing  the  experimental  transient  data  on  multiple  operating  conditions  (different

gasification temperatures in this work). The multi-objective problem is derived as follows:

min f Ag (αAg )=f T 1 , Ag (αAg ) , f T 2 , Ag (α Ag) ,…, f Tn , Ag (α Ag )

wheref Tk , Ag (α Ag )=‖∑t
∑

j
( y j ,t ,T k , Ag− y j ,t , Tk , Ag)

2

‖2 , k=1 ,…,n

s . t . αAg=[αRS1 ,…,αRS5 , αRG1 ,…,αRG7 ]Ag>0

(10)

in which T k represents the different objectives associated with the gasification temperatures.

2.2.2. Numerical solver for model calibration optimization problems

The  numerical  solver  for  the  single-objective  optimization  problem  in  Eq.  9  employs  the

DYCORS  (Dynamic  Coordinate  search  using  Response  surface  model)  algorithm31,  which

incorporates  the  idea  of  dynamically  dimensioned  search  (DDS)  algorithm  for  solving

computationally expensive optimization problems. The DYCORS algorithm uses the local metric

stochastic  radial  basis  function  (LMSRBF)  to  build  surrogate  models.  Two  criteria  are

considered in selection of the next iterate from random points (generated about the best previous

solution): the point’s distance from previous evaluated points and the corresponding surrogate

model value. A weighted score combining the two criteria is employed to favor a lower surrogate

approximation  value  and  a  larger  minimum  distance  from  previous  points.  By  cycling  the
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weighted score through a predefined set,  the global  search and local  converge are balanced.

DYCORS code can be obtained from PYSOT in Github or from the authors32.

The main advantage of the DYCORS-LMSRBF algorithm against other nonlinear optimization

solvers is the capability to find the global optimum of an expensive problem with relatively few

objective function evaluations Here the objective function is the developed gasification model,

which  is a first-principles model. Unfortunately, the analytical derivatives between the operating

conditions and the syngas generation outputs are not available, as the kinetic model is highly

compacted with other governing equations over the finite volume of biomass particle. In addition

there is no reason to think the  model is unimodal so a global optimization method is necessary.

Hence, a global optimization algorithm is need that handle the whole gasification model as a

black-box function for objective evaluations. 

Evolutionary algorithms  are not suitable for this problem. The HPFS model is a very

computationally expensive model since the average computational time (simulating the 30 min

experimental operations) is 254 min, over 4 hours for one evaluation. This is a big challenge for

the evolutionary algorithm or genetic algorithm, which typically requires thousands of function

evaluations to reach a satisfactory optimal solution.

 In the DYCORS-LMSRBF algorithm, most of the trial points generated are evaluated by

the RBF interpolation (surrogate model) of the true model, in under a second and only a small

fraction of the trial points  are  used for expensive true  objective function evaluations based on

HPFS model.  Hence the surrogate, which is updated and improved in each iteration  is helping

to guide efficiently  the  optimization search.

For  the calibration  problem based on multi-objective  optimization  formulation  in  Eq.10,  the

numerical  solver  is  derived  based  on  the  GOMORS  (Gap  Optimized  Multi-objective
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Optimization  using  Response  Surfaces)33 framework,  which  is  a  parallel  response  surface-

assisted algorithm approach to multi-objective optimization. Similar to DYCORS, the GOMORS

uses  RBF-based  surrogate  model  to  compute  the  approximation  of  the  expensive  problem

iteratively. In this algorithm, the solutions of single-objective calibration problems are employed

in the multi-objective framework as evaluated points of expensive objectives and a subset of

current best solutions. The optimization result of the multi-objective problem is a non-dominated

best solution set (Pareto set). In the post-Pareto analysis, the solution with minimum sum of all

ISE-based model mismatches is proposed as the optimal solution of the calibration problem. The

code for GOMORS can be obtained from PYSOT in Github32 

2.3. Experimental setup

The biomass feedstock used in this study was wood chips, sourced from Ezhou, Hubei Province,

China in the 2018 autumn. The fresh wood chips were crushing, sieving, and drying to get the

moisture-free fine powders with the particle size of less than 1mm. The densification of raw

biomass powders was carried out in a universal material test unit (CMT5205, MTS, China) to

form the cylindrical  pellets  with a  diameter  of  10 mm and a height  of 10 mm.  The detailed

densification procedure was described in the previous papers34-35. The air-dried pellets were used

for the following gasification experiments. The detailed densification conditions and properties

of air-dried biomass pellet particles are listed in Table 3. 

Table 3. Densification conditions and properties of biomass pellet particle.

Densification conditions

Mass of biomass mixture (g) 0.402 ± 0.003

Water addition for densification (wt%) 10

Holding time for densification (min) 5
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Designed size for cylindrical pellet Diameter: 10 mm; Height: 10 mm

Designed bulk density (kg/m3) 1000

Actual size for cylindrical pellet after air drying
Diameter: 10.35 ± 0.06 mm; Height: 
11.04 ± 0.10 mm

Actual bulk density after air drying (kg/m3) 842± 3

Ultimate analysis after air drying (wt%)

C (ad) H (ad) N (ad) S (ad)

43.18 5.51 1.29 <0.50

Approximate analysis after air drying (wt%)

Moisture (ad) Volatile (d) Fixed carbon (d) Ash (d)

11.29 76.79 17.30 5.91

The gasification of biomass pellets was conducted in a tubular fixed-bed reaction system (Fig. 4),

which contains four parts, namely gas supply and control unit, gasification unit, tar adsorption

and cooling unit, and online gas detection unit. In this study, two gasification agents were used:

Ar (100 mL/min) and Ar (79 mL/min)/O2 (21 mL/min). The gasification temperature was varied

from 600 to 900 oC with a step of 100 oC. For each run, a single pellet particle was first placed

into the quartz tube (inner diameter of 23 mm and height of 550 mm) and purging with Ar (100

mL/min)  for  enough  time  outside  of  the  furnace.  After  heating  the  furnace  to  the  target

temperature, the supplied gas was switched to the gasification agent for pre-mixing with a time

of 15 min. Then the quartz tube was placed into the high-temperature furnace for gasification.

After gasification, the produced gases were adsorbed by degreasing cotton and condensed by ice-

water, then it was purged into the mass spectrometer (MS) (QGA HPR-20, Hiden Analytical,

UK)  for  online  detection.  The  detailed  calibration  and  setting  of  MS  were  described  in

elsewhere36-37.
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Figure 3. A schematic diagram of the lab-scale gasifier with online recording of the transient

concentration of syngas.

3. Result and discussion

3.1. Experimental syngas transient data under different gasification conditions

The experimental transient data of dry syngas production rates and compositions are shown in

Figures  4 and 5.  The experimental  syngas  composition  data  includes  the  four  major  syngas

components:  H2,  CO, CH4,  and  CO.  The H2O was  not  included  in the  experimental  syngas

composition  data  due  to  part  of  the  water  vapor  was  condensed  in  the  degreasing  cotton

adsorption and cooling unit, which was designed for tar removal before the gas analyzer. 

Figure 4a shows the syngas transient data under Ar gasifying agent with 600  oC gasification

temperatures. The dry syngas generation rate has a peak tailing type of transient profile with a

peak maximum of 2.84 mmol/min per gram biomass. CO2 is the major component of dry syngas

during the peak front (60 to 210 s), and the share of CO increases due to the heterogeneous

reactions with the fixed carbon of biomass. The shares of CH4 and H2 increases during the peak
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tail  (210 to  1800 s),  and H2 becomes  the  major  syngas  component  after  510 s.  The syngas

transient profile in the 700 oC scenario (shown in Figure 4b) has the similar peak tailing pattern

of 600  oC, while a shoulder peak can be found in the 800  oC and 900  oC scenarios (shown in

Figures 4c and 4d). When the gasification temperature increase, the peak maximum value of the

dry syngas generation rate increase and the time of peak maximum decreases. The heterogeneous

reaction RS1 (2C+O2→2CO) becomes more active in the 800 and 900 oC scenarios during the

peak tail, resulted in an increased share of CO and a decreased share of CO2 when compared to

the 600 oC scenario. Note that the dry syngas generation rate is zero during the first 60 seconds in

the 600  oC scenario and the duration time of zero dry syngas generation decreases when the

gasification temperature increases. This is because only the vaporization of the moisture content

generates gases during the start-up of gasification and the H2O content is not included in the

experimental syngas transient data.

Figure 5 shows the syngas transient data under Ar/O2 gasifying agent with different gasification

temperatures.  As addressed in subsection 2.3,  the Ar/O2 gasifying agent simulates the air  by

replacing  N2 with  Ar,  which  can  avoid  the  uncertainty  between  N2 and  CO  in  the  mass

spectrometer. The syngas transient data of Ar/O2 in the 600 oC is presented in Figure 5a, which

has a peak (60 to 350 s) and a flat step (350 to 1100 s). The peak is due to the fast pyrolysis of

the biomass volatile content,  and the flat step is due to the combustion of the biomass fixed

carbon content. CO2 is the major component of the dry syngas, which has an over 90% share

during  the  flat  step.  The  peak  maximum  value  of  the  dry  syngas  generation  rate  is  2.84

mmol/min per gram biomass in the 600 oC scenarios. The syngas transient profiles in the 700 oC

and 800 oC scenario (shown in Figures 5b and 5c) have the similar pattern of the 600 oC profile,

while a flat step with higher value and shorter duration time can be found in the 900 oC scenario
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(shown in Figure 5d). Note that the increase of CO content after the flat step does not represent a

large increase of the transient CO generation rate, as the total dry syngas generation rate drops

close to zero. The raise of the CO percentage is mainly due to less CO2 is generated from the

fixed carbon combustion.

Figure  4.  Experimental  syngas  transient  data  under  Ar  gasifying  agent.  (a)  gasification

temperature of 600 oC. (b) gasification temperature of 700 oC. (c) gasification temperature of 800

oC. (d) gasification temperature of 900 oC.
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Figure  5.  Experimental  syngas  transient  data  under  Ar/O2 gasifying  agent.  (a)  gasification

temperature of 600 oC. (b) gasification temperature of 700 oC. (c) gasification temperature of 800

oC. (d) gasification temperature of 900 oC.

3.2. Kinetic model calibration results

In this subsection, the results of 4 case studies associated with the calibrated kinetic model for

the  syngas  transient  prediction  are  presented.  The  first  two  scenarios  consider  the  biomass

gasification under 600 oC (Case 1) and 900 oC (Case 2) with Ar gasifying agent. Figure 6 depicts

the syngas transient predictions of three different calibrated kinetic models in Case 1. The first

calibrated model (Ar_600,  shown in Figure 6b) is based on the single objective optimization
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employing experimental transient data of 600 oC and Ar gasifying agent, which is similar to the

experimental  result  in Figure 6a. The second kinetic  model (Ar_900,  shown in Figure 6c) is

calibrated by a  single-objective  approach with experimental  transient  data  of 900  oC and Ar

gasifying  agent.  The  third  model  (Multi-objective,  shown  in  Figure  6d)  is  based  on  multi-

objective  optimization  employing 4  groups  of  experimental  transient  data:  600  oC under  Ar

gasifying agent, 900 oC under Ar gasifying agent, 600 oC under Ar/O2 gasifying agent, and 900

oC under Ar/O2 gasifying agent. All the three calibrated model show good consistency with the

experimental transient data, and the maximum dry syngas generation rate deviations of the three

calibration models are 0.243, 0.971, and 0.602 mmol/min per gram biomass, respectively. The

Ar_600 model shows better performance in Case 1 when compared with Ar_900, which is due to

the pre-exponential  correction terms of  ar_900 are calibration by experimental  transient data

under a different operating condition (900 oC and Ar gasifying agent). 

Figure 7 depicts the syngas transient predictions of three different calibrated kinetic models in

Case  2.  Similar  to  Case  1,  the  syngas  transient  predictions  of  Ar_600,  Ar_900,  and  Multi-

objective are shown in Figures 7b, 7c, and 7d, respectively. In Case 2, the ar_900 model shows

better  performance  when  compared  with  ar_600.  The  maximum dry  syngas  generation  rate

deviations of the three calibration models in Case 2 are 0.710, 0.689, and 0.922 mmol/min per

gram  biomass,  respectively.  The  pre-exponential  correction  terms  and  ISE-based  model

mismatch of the three calibrated models are shown in Tables 4 and 5. Noted that the maximum

ISE result of the three calibrated models is 12.48 in Case 1, which has an over 95% decrease

when compared to the original transient mismatch shown in Figure 2b (ISE result of 214.35 over

the 30 min horizon).
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Figure 6. Case 1: syngas transient calibration results under 600 oC with Ar gasifying agent. (a).

overall  all  syngas  generation  rates  employing  different  kinetic  models.  (b).  syngas  transient

employing kinetic  model optimized at 600  oC. (c). syngas transient employing kinetic  model

optimized  at  900  oC.  (d).  syngas  transient  employing  kinetic  model  of  multi-objective

optimization.
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Figure 7. Case 2: syngas transient calibration results under 900 oC with Ar gasifying agent. (a).

overall  all  syngas  generation  rates  employing  different  kinetic  models.  (b).  syngas  transient

employing kinetic  model optimized at 600  oC. (c). syngas transient employing kinetic  model

optimized  at  900  oC.  (d).  syngas  transient  employing  kinetic  model  of  multi-objective

optimization.

Table 4. Pre-exponential correction terms of Ar_600, Ar_900, and Multi-objective models

Ar_600 Ar_900 Multi-objective
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αRS1 0.99 1 1

αRS2 1 0.99 0.99

αRS3 2.15×10−2 3.95×10−2 2.57×10−2

αRS4 32.6 3.82 8.21

αRS5 5.74×103 1.17×102 6.85×102

αRG1 1.68 7.54 5.22

αRG2 0.98 2.15 1.49

αRG3 7.91 6.2×103 4.7×103

αRG 4 0.49 9.05 2.17

αRG5 9.74×102 3.74×103 2.11×103

αRG6 6.12 8.44 6.26

αRG7 3.83×10−2 0.57 0.17

Table 5. ISE-based model mismatches of Ar_600, Ar_900, and Multi-objective models

ISE analysis result Ar_600 Ar_900 Multi-objective

Case 1 4.75 12.48 7.85
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Case 2 17.26 8.22 10.74

The Cases 3 and 4 consider the biomass gasification under 600 oC and 900 oC with Ar/O2 (air)

gasifying agent, respectively. Figure 8 depicts the syngas transient predictions of three calibrated

kinetic  models  in  Case  3.  The  Ar/O2_600 and  Ar/O2_900 models  are  based  on  the  single

objective approach employing experimental transient data of 600  oC and 900  oC under Ar/O2

gasifying agent, respectively.  The  Multi-objective model,  as shown in Figure 8d, is the same

calibrated model used in Cases 1 and 2. The maximum dry syngas generation rate deviations of

the  three  calibration  models  are  1.161,  0.448,  and  0.823  mmol/min  per  gram  biomass,

respectively. Similar to Case 1, the Ar/O2_600 model shows better performance in Case 3 when

compared with Ar/O2_900. 

Figures 9 depicts the syngas transient predictions of three different calibrated kinetic models in

Case 4. The syngas transient predictions of Ar/O2_600,  Ar/O2_900, and Multi-objective models

are shown in Figures 9b, 9c, and 9d, respectively. In Case 4, the  air_900 model shows better

performance  when  compared  with  Ar/O2_600.  The  maximum  dry  syngas  generation  rate

deviations of the three calibration models in Case 4 are 0.401, 1.341, and 0.859 mmol/min per

gram  biomass,  respectively.  The  pre-exponential  correction  terms  and  ISE-based  model

mismatch of the three calibrated models are shown in Tables 6 and 7. The Multi-objective model

shows satisfactory robustness for predicting syngas transient responses in all four gasification

scenarios.
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Figure 8. Case 3: syngas transient calibration results under 600 oC with Ar/O2 gasifying agent.

(a). overall  all syngas generation rate employing different kinetic kinetic models. (b). syngas

transient employing kinetic model optimized at 600 oC, (c). syngas transient employing kinetic

model optimized at  900  oC, (d). syngas transient employing kinetic  model of multi-objective

optimization.

25



Figure 9. Case 4: syngas transient calibration results under 900 oC with Ar/O2 gasifying agent.

(a). overall  all syngas generation rate employing different kinetic kinetic models. (b). syngas

transient employing kinetic model optimized at 600 oC, (c). syngas transient employing kinetic

model optimized at  900  oC, (d). syngas transient employing kinetic  model of multi-objective

optimization.

Table 6. Pre-exponential correction terms of Ar/O2_600, Ar/O2_900, and Multi-objective models

Ar/O2_600 Ar/O2_900 Multi-objective
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αRS1 0.99 1 1

αRS2 1 0.99 0.99

αRS3 2.05×10−2 5.22×10−2 2.57×10−2

αRS4 17.4 2.96 8.21

αRS5 5.11×103 62.5 6.85×102

αRG1 4.91 10.35 5.22

αRG2 0.98 2.19 1.49

αRG3 6.75 9.88×103 4.7×103

αRG 4 0.23 3.05 2.17

αRG5 1.64×103 1.74×104 2.11×103

αRG6 1.72 25.3 6.26

αRG7 9.89×10−3 0.18 0.17

Table 7. ISE-based model mismatch of Ar/O2_600, Ar/O2_900, and Multi-objective models

ISE analysis result Ar/O2_600 Ar/O2_900 Multi-objective

Case 3 14.28 50.04 27.51
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Case 4 60.36 22.24 36.18

Conclusions

In  this  work,  the  kinetic  model  based  on literature  data  was trained  by optimizing  the  pre-

exponential correction terms of both homogeneous and heterogeneous reactions. The calibrated

kinetic models based on both single-objective and multi-objective global surrogate optimization

with  DYCORS  and  GOMORS  approaches  successfully  predict  the  experimental  syngas

generation transient responses in four different biomass gasification scenarios, and have an over

95% decrease in terms of ISE-based transient mismatch when compared to the original model.

The proposed calibration method provides a systematic way of training complex thermochemical

kinetic  models  to  improve  transient  prediction  accuracy.  The  calibrated  dynamic  biomass

gasification model can be further employed for real-time optimization and advanced operation

control in the gasification processes.
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Notations

A pre-exponential factor -

C mole concentration mol m-3

E activation energy J mol-1

f objective function -

k reaction rate constant depends on reaction order

R gas constant 8.314 J mol-1 K-1

r original reaction rate 
mol m-3s-1 for RG1-7

mol m-2s-1 for RS1-5

r̂i trained reaction rate
mol m-3s-1 for RG1-7

mol m-2s-1 for RS1-5

T temperature K

y the experimental data -

y model outputs -

Greek letters

α pre-exponential correction factors -

ε porosity -

Subscripts

Ag gasifying agent index

g pertains to gas phase

i
pertains to specie or component in gas phase

with index i

j the model output index
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k
pertains to reaction number or gasification

condition with index k

s pertains to solid phase

t transient variables

T gasification temperature index
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