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Abstract Repeated homoploid hybrid speciation (HHS) events with the same parental
species  have rarely been reported. In this study, we used population transcriptome
data to test paraphyly and HHS events in one conifer Picea brachytyla. All analyses
identified and supported non-sister relationships for the two lineages of P. brachytyla.
The southern lineage was placed within the re-circumscribed P. likiangensis species
complex (PLSC) while P. brachytyla sensu stricto (s.s.), comprising only the northern
lineage, parallels  both PLSC and the closely related  P. wilsonii.  In addition,  both
phylogenetic  and coalescent  analyses  suggested that  P.  brachytyla s.s.  arose from
homoploid  hybrid  speciation  between  the  ancestor  of  the  PLSC  before  its
diversification  (into  the  current  varieties  or  species), and  P.  wilsonii, through an
intermediate hybrid lineage at an early stage and backcrossing to the ancestral PLSC.
These two parental  ancestors  also produced another  homoploid  hybrid species, P.
purpurea, in the same way but at  a later stage, through the same extinct lineage but
backcrossing  to  the  other  parent,  P.  wilsonii.  We  reveal  the  first  case  that
backcrossing to different  parents of the same extinct  hybrid lineage produced two
different  hybrid  species.  Our  results  highlight  the  existence  of  more  reticulate
evolution  during  species  diversification  in the  spruce  genus  and  more  complex
homoploid hybrid events than have previously been identified.

Key words: homoploid hybrid speciation, Picea brachytyla, population transcriptome
data, polyphyly, extinct hybrid lineage     
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Introduction

Hybridization between two distinct species may generate a new species without any

change  in  ploidy  level  (Rieseberg  et  al.,  2003;  Nolte  and  Tautz  2010).  This

phenomenon, homoploid hybrid speciation (HHS), seems to occur more commonly

than  was  previously  assumed  (e.g.  Rieseberg  1997;  Gross  and  Rieseberg  2005;

Mavarez et al., 2006; Hermansen et al., 2011; Nieto Feliner et al., 2017; Lamichhaney

et al., 2018), although only a few of these cases fulfill the strict criterion of Schumer

et  al.,  (2014)  that  hybridization  created  reproductive  isolation  (RI)  of  the  hybrid

species  from its  parents.  However,  such RI may occur  through  inheriting parental

genetic incompatibilities (Schumer et al., 2015; Brennan et al., 2019), although this is

difficult  to  prove,  especially  in  trees,  by  QTL or  other  methods.  Revealing  more

candidate  HHS cases  is  therefore  very  useful  in  increasing  our  understanding  of

reticulate species diversification even when there is no direct evidence of RI caused

by hybridization (Nieto Feliner et al., 2017).

Here we aim to examine the homoploid hybrid origin of Picea brachytyla sensu

stricto (s.s.), from a genus in which all the recognized species or varieties are diploids

(Wright  1955).  The traditional  circumscription of this  species  comprises two non-

sister  lineages,  the  southern  lineage  in  Yunnan  province  and  the  northern  one  in

Sichuan and Chongqing province (Ru  et al., 2016; Lyu  et al., 2020). The southern

lineage (P. brachytyla-southern lineage) shares a recent ancestor with three varieties

(vars. likiangensis, rubescens and linzhiensis) of P. likiangensis as a species complex

(PLSC), and it may have originated from a common radiation with strong gene flow

and historical hybridization (Sun et al., 2018). The northern lineage, which contains

the population where the type specimen was collected, comprises  P. brachytyla s.s.,

paralleling PLSC and P. wilsonii (Lyu et al., 2020). However, phylogenetic analyses

of a few individuals of P. brachytyla s.s. suggested that it is more closely related to P.

likiangensis (species complex), based on nuclear loci, or to P. wilsonii, on the basis of

chloroplast DNA sequences (Ran et al., 2015;  Shen et al., 2019; Shao et al., 2019).

Further  population  genetic  analyses  based  on  more  individuals  supported  these
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inferences (Lyu et al., 2020). In addition, P. brachytyla combines morphological traits

of P. likiangensis and P. wilsonii (Fu et al., 1999; Lyu et al., 2020). Taken together,

the  conflicting  phylogenetic  relationships  and  intermediate  morphological  traits

suggest a likely hybrid origin of P. brachytyla s.s. from two other species (or species

complexes) (Shen et al., 2019; Shao et al., 2019; Lyu et al., 2020). P. brachytyla s.s.

occurs in low-altitude humid valleys while the PLSC is distributed in high-altitude

mountains  and  P.  wilsonii is  found  in  northern  low-altitude  but  relatively  dry

mountains (Fu et al., 1999; Lyu et al., 2020). It should be noted that another species,

P. purpurea,  was shown to have also originated through hybridization  between  P.

likiangensis and P. wilsonii (Sun et al., 2014; Ru et al., 2018). Thus, similar to HHS

in sunflowers (Rieseberg et al., 1997), more than one diploid hybrid species may have

originated  from the  same  parents  in  the group.  In  addition,  var. rubescens of  P.

likiangensis  was found to have species-specific nuclear  ancestry from P. purpurea

based on population genetic structure analyses (Ru  et al., 2018), large-scale shared

genetic variations from introgression (Sun et al., 2018) and inconsistent phylogenetic

relationships based on different DNA sequences (Shen et al., 2019; Shao et al., 2019).

This variety may be better excluded from the PLCS while the P. brachytyla-southern

lineage should be added  to the PLCS  when modelling likely HHS events betweem

PLSC and  P. wilsonii. All these findings suggest that  the  hybridization history and

circumscription of these lineages and their ancestors are more complex than expected

and that further detailed studies are needed.

In  the  present  study,  we  used  population  transcriptomic  data  to  trace  the

evolutionary origin of P. brachytyla s.s. We present, for the first time, transcriptome

data for  78 individuals  of  P. brachytyla and related species.  We added previously

published transcriptome data from more 114 individuals of all related species to carry

out comprehensive analyses. We aimed to address the following questions: (1) Do

population genomic data support polyphyly of P. brachytyla? How should the PLSC

best be defined? (2) Did P. brachytyla s.s. originate through homoploid hybridization

between the common ancestor of the PLCS and P. wilsonii, or bifurcate from one of
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these with further gene flow from the other? (3) If it originated through HHS, did P.

brachytyla s.s. originate earlier or later than P. purpurea as a result of hybridization

between the same parents?

Material and methods

Material and RNA sequencing

We collected and re-sequenced transcriptomes of 78 individuals (Table S1) for both
lineages of  P. brachytyla and related species or taxa  (P. farreri,  P. wilsonii, and  P.
purpurea) following the methods of Ru  et al., (2018). We used an Illumina HiSeq
2500 platform to generate 150 bp paired-end raw reads and deposited data sets for all
individuals  in  BioSample (average  number  of  raw bases  > 6  Gb;  Table  S1).  We
further  downloaded  transcriptomes  of  108 individuals  of  this  species  and  others
published earlier (three varieties of P. likiangensis, vars. likiangensis, linzhiensis and
rubescens, P. wilsonii and P. purpurea; Ru et al., 2016, 2018; Feng et al., 2019; Shen
et al., 2019; Shao et al., 2019). A total of 186 individuals from the core distribution of
each taxon were used for our subsequent analyses (Fig. 1 and Table 1). For population
sampling, the individuals collected were spaced at least 500 m apart. Individuals from
the regions  of  contact  of any two taxa  likely,  according to  the literature,  to  have
undergone  high  levels  of  gene  flow  in  the  recent  past  were  excluded.  For  all
phylogenetic analyses, P. breweriana was used as outgroup.

Read mapping and individual variant calling

We used “mem” in Burrows-Wheeler Aligner (BWA) version 0.7.10 (Li and Durbin
2009) with default  parameters  to align the high-quality  reads to both the P. abies
reference  transcriptome and  the  chloroplast  (cp)  reference  genome (Nystedt  et  al.,
2013) following our previous methods (Ru et al., 2018). For  the cp genome, PCR
duplicates in the alignments were marked and removed before calling variants using
the  program  MarkDuplicates.jar  from  PICARD  ver.  1.129
(http://broadinstitute.github.io/picard/),  followed  by  local  realignment  around  each
indel  using  Genome  Analysis  Toolkit  (GATK)  (Danecek et  al., 2011).  Single
nucleotide polymorphisms (SNPs) were extracted using “mpileup”  in SAMTOOLS
ver. 1.8 (Li et al., 2009) based on the uniquely mapped reads for all individuals. We
set the minimum base quality (-Q) and mapping quality (-q) to 20 and 30 respectively.
To obtain high quality variants for the two references, we filtered our raw SNPs with
the  following criteria  using  a  custom Perl  script:  (1)  SNPs located  within  a  5-bp
window of an InDel; (2) SNPs with a phred-scaled quality score <20; (3) SNPs with
>20% missing bases within each species. Additionally, bases with depth of coverage
(DP) <10 were set to be missing for each individual (Chapman et al., 2013; Li et al.,
2013;  Wang  et  al.,  2013;  Li  et  al.,  2014).  Finally  we  filtered  variant  sites  with
minimum allele frequency <0.01 (to ensure  that  at least 4 alleles were found in our
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sample set) using VCFTOOLS ver. 0.1.14 (Danecek et al., 2011) to reduce the false
discovery rate. For convenience, we refer to the nuclear transcriptomic sequences and
cpDNA sequences as the N-RNA-seq dataset and C-RNA-seq dataset respectively.

Nucleotide diversity and population Differentiation

The nucleotide diversity π (Nei and Li 1979) and the population differentiation index
FST (Weir  and  Cockerham  1984) between  populations were  calculated  using
VCFTOOLS (Danecek et al., 2011) on the N-RNA-seq dataset. For the calculation of
mean genome-wide FST, the negative values were reassigned to zero. In addition, we
calculated the dXY value (Foote et al., 2016) per locus, which is the average number of
nucleotide substitutions, using a custom Perl script.

Phylogenetic Tree Reconstruction

For  the  N-RNA-seq  dataset,  we  constructed  a  neighbor-joining  (NJ)  tree  using
TreeBeST (http://treesoft.sourceforge.net/treebest.shtml)  with  1,000  bootstrap
replications performed to assess the branch reliability. For the C-RNA-seq dataset, we
used only 69 individuals representing all taxa and their distributions for phylogenetic
analyses  in  order to reduce the time  required  to  identify cp genome (= plastome)
variations.  A maximum-likelihood  (ML)  tree  was  constructed  using  RAxML ver.
8.1.20 (Stamatakis 2014) with the GTRCAT model and 200 bootstrap replicates. The
NJ and ML trees  were  viewed using TreeView ver.  1.6.6 and FigTree  ver.  1.4.0
(http://tree.bio.ed.ac.uk/software/figtree/) respectively.

Population Structure and Admixture Analyses

The  N-RNA-seq  dataset  was  thinned  by  LD  values  to  reduce  the  linkage
disequilibrium effect using PLINK ver.1.07 (Purcell et al., 2007; Danecek et al., 2011)
with the parameter --indep-pairwise 50 5 0.2, resulting in a set of ~0.21 Mb SNPs for
population structure and admixture analyses. A principal component analysis (PCA)
was performed using the smartpca program from the EIGENSOFT package ver. 6.0.1
(Price et al., 2006), while eigenvectors were generated with the R function region. A
Tracy–Widom test  was performed in R to  determine  the  significance  level  of  the
eigenvectors.  ADMIXTURE  ver.  1.23 (Alexander  and  Lange  2011) was  used  to
perform an unsupervised ancestry component analysis, with the  K value (number of
assumed ancestral  components)  ranging from 2 to  10.  For  each  K, 200  bootstrap
replicates  were performed to calculate cross-errors (CV). The optimal  K  value was
indicated by the lowest CV values among the numbers assumed.

Species-level transcriptome assembly

We obtained high quality reads for each sample by trimming adapter sequences, Poly-
N, and low quality bases and discarding reads with fewer than 36 bases after trimming
from  the  raw  data  using Trimmomatic  (Bolger  et  al.,  2014) with  the  following
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parameters:  ILLUMINACLIP:adapter.fa:2:30:10  LEADING:3  TRAILING:3
SLIDINGWINDOW:4:20 MINLEN:36.

We  assembled  the  species-level  transcriptome of  P.  brachytyla s.s.  using  14
randomly selected individuals from each of the populations examined (marked with a
dark green color in Table S1) using Trinity ver. 2.6.6  (Grabherr et  al., 2011) with
default parameters based on pooled libraries to reduce the gene loss caused by random
variation in expression as much as possible. Similarly, the species-level transcriptome
of P. wilsonii was obtained by the same method as before (Ru et al., 2018). For the P.
likiangensis species complex  (PLSC), we selected one individual from each of the
sampled  populations  of  two  varieties  of  P.  likiangensis (var. linzhiensis and  var.
likiangensis),  the  P. brachytyla southern lineage in Yunnan and  P. farreri (marked
with  a  light green color in Table S1). We excluded  P. likiangensis var. rubescens
from  PLSC because  our  preliminary  ADMIXTURE analyses  suggested  that  this
variety shared many species-specific nuclear elements from another hybrid species, P.
purpurea, because  of  the  second  hybridization  history.  To  obtain  a  high-quality
transcriptome, the following analyses were performed:  (1) A set of non-redundant,
representative sequences for the assembled transcriptome was retained by CD-HIT
ver. 4.6.1 (Huang et al., 2010) with a threshold value of 0.95; (2) Coding and peptide
sequences in the open reading frame were predicted by TransDecoder ver. 2.0.1 (Haas
et  al.,  2013) following  the  instructions  described  in  the  relevant  wiki
(https://github.com/TransDecoder/TransDecoder/wiki).  This  involved (1)  extracting
the long open reading frames, (2) identifying ORFs with homology to known proteins
via Blast or Pfam (Finn et  al., 2016) searches, and (3) predicting the likely coding
regions. In addition, the high-quality transcriptome generated from  the  above steps
was further processed to remove bacterial contaminants using BLAST ver. 2.2.30+
(Camacho et al., 2009) and the longest transcripts were extracted with a custom Perl
script.  The  completeness  of  assembled  transcriptome  was  assessed  using  BUSCO
analyses with embryophyta database (https://busco.ezlab.org/).

Phylogenetic analyses of the orthologous sequences of four species or species complex 

To identify orthologous genes for phylogenetic analyses, we used OrthoMCL (Li  et
al.,  2003)  to  delineate  gene  families  and  cluster  all  genes  into  paralogous  and
orthologous  groups  based  on  species-level  transcriptomes  of  the  four  species  or
species complex. The results were used to generate a 1:1:1:1 orthologous gene dataset
for P. brachytyla s.s., P. wilsonii, PLSC, and P. breweriana (outgroup) with a custom
Perl script.

The  amino  acid  sequences  for  each  ortholog  group  (OG)  were  aligned  with
MAFFT  ver.  7.313  (Katoh  and  Standley  2013),  and  trimmed  to  exclude  poorly
aligned  regions  using  TrimAl  v1.2  (Capella-Gutierrez  et  al.,  2009) with  “-fasta  -
gappyout -colnumbering”. The protein-coding nucleotide sequences for each OG were
aligned  based  on the  corresponding  amino  acid  alignments  using  PAL2NAL v14
(Suyama et al., 2006) to ensure the correct reading frames.
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We  then  constructed  phylogenies  per  gene  using  RAxML’s  rapid  bootstrap
algorithm under the GTRGAMMA model with 100 bootstrap replicates to find the
best-scoring  ML  tree.  We  restricted  this  analysis  to  those  groups  satisfying  the
following criteria: sequence length great than 300 bp with ‘-’ character excluded. The
gene  trees  obtained that had less than  70% bootstrap support were excluded from
further  analysis.  A custom  R script  was  used  to  count  the  number  of  resulting
phylogenies showing different topologies.

The  3,305  orthologous  gene  trees  with  more  than  70%  bootstrap  support  for
branches were used to infer interspecific relationships with PhyloNet ver. 3.6.1 (Than
et al., 2008; Yu  et al., 2014). Rooted trees were converted into the required input
format  with  a  custom Perl  script.  Maximum likelihood  with  parametric  bootstrap
networks (using the command InferNetwork_MPL) in a coalescent framework, with
both incomplete lineage sorting and gene flow taken into account, was inferred using
PhyloNet allowing 0, 1 and 2 reticulations in 100 runs to return the best network.

We applied a Ks-based method to estimate divergence between species pairs.  Ks

values for each species pair were calculated using the ML method implemented in
codeml of the PAML package  (Yang 1997) under the F3   4 model  (Goldman and
Yang  1994).  All  pairs  with  a  Ks value  of  less  than  0.001,  which  would  include
transcript  isoforms as  well  as recent  tandem duplications,  were discarded and not
considered in the time estimation.

Testing HHS using coalescent simulations based on population genomic data

To  examine  evolutionary  relationships  among  PLSC,  P.  brachytyla s.s.  and  P.
wilsonii,  we  used  fastsimcoal2 ver.  2.6.0.3 (Excoffier et  al., 2013)  to  compare
predefined  demographic  models using  coalescent  simulations based  on  the  site
frequency spectrum of all sampled individuals of these species. We included only the
four-fold Degenerate Synonymous Sites (4DTV) when constructing two-dimensional
joint  site  frequency  spectra  (2D-SFS)  for  each  pair  of  species with  ngsTools
(Fumagalli et al., 2014). As we did not have information about the ancestral state, we
treated the transcriptome of  P. abies as both the reference and the ancestral  state.
After that, we folded all the 2D-SFSs with the ‘fold’ function implemented in  ∂a∂i
ver.  1.7.0. (Gutenkunst  et  al.,  2009).  In  total,  we  used  16  different  evolutionary
models  (Fig.  S3),  of  which  11 (model1-model11)  represented  dichotomous or
radiative  topologies  with  or  without  gene  flow  after  divergence,  five (model12-
model14) represented  classical models of  homoploid hybrid speciation via a single
hybridization event with or without migration/size-change after divergence, and two
(model15-model16)  represented  models  of  hybrid  speciation  involving  a  ghost
intermediate hybrid lineage in the origin of P. brachytyla s.s.

For  each  model,  we  performed 100,000  coalescent  simulations  to estimate the
expected 2D-SFS and computed log-likelihoods based on simulated and observed 2D-
SFS matrixes. Global maximum likelihood estimates for each model were obtained
from 50 independent runs, with 30-50 conditional maximization algorithm cycles. The
relative fit of  each of  the different demographic models to the data was evaluated
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using the Akaike Information Criterion (AIC), and the model with the minimum AIC
value was determined as the optimal. We assumed a mutation rate of 4.01 × 10 -8 per
site per generation and a generation time of 50 years (De La Torre et al., 2017; Li et
al.,  2010).  A  parametric  bootstrapping  approach  was  used  to  construct  95%
confidence intervals with 50 independent runs for each bootstrap. 

We used the reduced PLSC (with var. rubescens excluded) to examine the HHS
origin of P. brachytyla s.s. because var. rubescens contains numerous introgressions
from P. purpurea, which was assumed to originate from the same parents (Ru et al.,
2018). This introgression, and/or  the likely hybrid origin through  P. purpurea, may
complicate the modelling results. We further examined the diploid hybrid origin of P.
purpurea from the  reduced  PLSC and  P.  wilsonii.  We examined  four  alternative
speciation  models  for  the  origin  of  P.  purpurea because  we  had  tested  multiple
models and all models suggested that this species originated through HHS (Ru et al.,
2018) (Fig. S4). We tested which of four HHS models fit the reduced PLSC. Then we
combined the origins of  P. brachytyla  s.s. and  P. purpurea together to outline  the
evolutionary relationships  among the reduced PLSC,  P. wilsonii,  P. brachytyla  s.s.
and P. purpurea.

Ecological niche modelling

Current potential  distributions of the  standard PLSC (including  var. rubescens),  P.
brachytyla s.s. and P. wilsonii were used to examine niche divergences between them
using the maximum entropy method  in MAXENT version 3.4.1 (Phillips, Anderson
and Schapire 2006; Phillips,  Dudík and Schapire 2018) based on 105, 42,  and  63
locations obtained from field observation and herbarium records of, respectively, the
PLSC, P. brachytyla s.s. and P. wilsonii (Table S11). The parameters were set as: 20
replicates, a maximum of 5,000 iterations, 25% random test points, a threshold rule of
10  percentile  training  presence  applied  and  a  convergence  threshold  of  0.00001.
Climate data  at a 2.5 arc minute resolution were downloaded from  the  WorldClim
database  (version  1.4,  http://www.worldclim.org).  Altitude  data  were  downloaded
from  the  SRTM  elevation  database  (https://www2.jpl.nasa.gov/srtm/)  and  then
projected  to  the  same  resolution  as  the  climate  data  with  ARCGIS.  In  total,  20
variables were collected and pairwise Pearson’s correlation coefficients (r) (Dormann,
et  al.,  2013) were  calculated  with ENMTools  version  1.4.4 (Warren  et  al.,  2008;
2010). Over-correlated variables (Pearson’s correlation >=0.7) were excluded to avoid
adverse effects (e.g. bias fitting) on the results. 

Niche  differences  between  each  pair  of  species  were  calculated  based  on
Schoener’s D (Schoener 1968) and Warren’s I statistics (Warren et al., 2008), where a
value of 0 indicates no niche overlap and 1 identical niches.

Results

Sampling, Sequencing and Single Nucleotide Polymorphism (SNP) Calling
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In total, we generated transcriptomes for 78 individuals of P. brachytyla and related
species and downloaded the previously published transcriptomes of 108 individuals
(Table  S1,  sample  IDs starting with  SRR) for  the  present  analyses.  After  quality
control, we retained an average of 46.37 million (M) reads (50.50 M raw reads) with
6.18 gillion (G)  clean  bases per individual (Table S1). The  de novo transcriptome
assemblies for  P.  brachytyla s.s.  and  PLSC produced,  respectively, 222,203  and
313706 transcripts with N50 values of 549 and 667 after redundancy reduction and
open reading frame (ORF) prediction. The numbers of total  assembled bases, total
Trinity transcripts, and genes, and the average contig length, contig N50, and percent
GC, are similar  to  those for  transcriptomes  of P. likiangensis,  P. purpurea and  P.
wilsonii from  previous  work  (Ru  et  al.,  2018)  (Table  S2).  These  assembled
transcriptomes all with more than 80% BUSCO completeness (Table 2), but they have
a larger number of contigs with lower N50 than the transcriptome of P. abies (Table
S2) have a larger number of contigs with lower N50 than the transcriptome of  P.
abies, and we therefore mapped the quality-filtered reads to the revised transcriptome
of P. abies as we did previously (Ru et al., 2016) and called SNPs for each individual.
The average mapping rate for all individuals was 56.6%, with the average coverage of
the reference transcriptome assembly being 73.9% and a 48.50-fold average effective
depth (Table S1).

A total  of  10,237  contigs  with  339,165  SNPs  were  retained  using  our  strict
criteria  after  SAMTools  calling.  P. likiangensis (including all  of the varieties),  P.
brachytyla s.s., P. wilsonii, P. farreri, P. brachytyla-southern lineage and P. purpurea
contained 160,394, 180,329, 160,224, 99,459, 116,558, 140,250 SNPs respectively
(Table S3).  Among  P. likiangensis,  P. brachytyla  s.s. and  P. wilsonii,  31,319 SNPs
were specific to P. brachytyla s.s., 35,314 SNPs to P. wilsonii and 30,505 SNPs to P.
likiangensis (Fig. S1A).  The number of  SNPs shared between P. brachytyla  s.s. and
either P.  likiangensis (119,636) or  P. wilsonii (114,657)  was  higher  than  that
between P. likiangensis and P. wilsonii (95,536)  (Fig. S1A).  Among P. likiangensis,
P.  farreri  and  P.  brachytyla-southern  lineage,  41,626 SNPs  were  specific  to  P.
likiangensis,  2,545 to  P. farreri and  3,898 to  P. brachytyla-southern lineage (Fig.
S1B). About 88.51% SNPs (88,028 of 99,459) of P. farreri were shared between P.
farreri  and P. brachytyla-southern lineage but P. farreri  still  shared more with  P.
likiangensis (94,136 of 99,459) (Fig. S1B). 

Nucleotide Diversity and interspecific Differentiation

Nucleotide  diversities  (π)  of  P.  likiangensis,  P.  brachytyla s.s.,  P.  wilsonii, P.
brachytyla-southern lineage, P. farreri and P. purpurea, were all  similar (Table S4).
Mean genome-wide differentiations (FST) between every pair out of the six taxa were
greater  than  0.05,  except for  that  between  P.  farreri and  P.  likiangensis
(0.043±0.052). The FST value between P. likiangensis and P. wilsonii (0.116±0.093)
was  higher  than  that  between P.  brachytyla s.s.  and  either  P.  likiangensis
(0.089±0.082) or P. wilsonii (0.105±0.092) (Table S5 and Fig. 2B and D). Similarly,
absolute genetic divergence estimated by dXY showed greater divergence between  P.
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likiangensis and P. wilsonii than between P. brachytyla s.s. and either P. likiangensis
or P. wilsonii (Table S5 and Fig. 2A and C). Both FST and dXY indicated that P. wilsonii
and  P. farreri have the greatest divergence among all comparisons,  and P. wilsonii
and  P. brachytyla-southern lineage take second place, while P. brachytyla-southern
lineage is very close to P. farreri (FST: 0.064±0.080; dXY:0.0099±0.013) (Table S5 and
Fig. 2A  and  B).  These  divergences  suggested  a close  relationship  among  P.
likiangensis, P. farreri and P. brachytyla-southern lineage and we tentatively treated
them as the P. likiangensis species complex (PLSC) for convenience.

With  the  transcriptome  of  P.  breweriana used  as  outgroup,  we  reconstructed
genealogies for all 186 individuals using NJ and ML methods based on N-RNA-seq
and C-RNA-seq respectively. From the NJ tree based on N-RNA-seq, seven lineage-
specific clusters were identified and the samples of each taxon clustered together with
the exception of P. brachytyla, for which two clusters, P. brachytyla-southern lineage
and P. brachytyla s.s. were recovered (Fig. 3A).  P. brachytyla-southern lineage was
closely related to var. likiangensis and  P. farreri, and together  they were  related to
var. linzhiensis and var. rubescens. These lineages comprise a monophyletic PLSC
clade, paralleling  P. brachytyla  s.s., P. purpurea and  P. wilsonii.  P. purpurea was
more closely related to  P. wilsonii than to  the  others while  P. brachytyla  s.s. was
sister to the PLSC.

ML phylogenetic analyses based on cpDNA variations, however, recovered only
three well-supported clades: PLSC, P. brachytyla  s.s. and P. wilsonii - P. purpurea.
The latter two clades were sister to each other while no clear delimitation was found
between  P. wilsonii and P. purpurea or between different taxa of the PLSC. These
delimitations  and  phylogenetic  relationships  are  consistent  with  previous  results
(Lookwood et al., 2013; Sun et al., 2014; Ru et al. 2018; Lyu et al., 2020) (Fig. 3B).
It was clearly noticeable that the phylogenetic relationships of P. brachytyla s.s. were
discordant between nuclear genomic and plastome trees. 

Population Structure and ADMIXTURE Analyses

Analyses using ADMIXTURE and PCA clustering revealed similar results to the N-
RNA-seq phylogenetic  trees  apart  from var. rubescens. For  all  individuals,  in  the
ADMIXTURE analysis, as the K value increased from 2 to 4, four taxa of the PLSC,
var. likiangensis,  var. linzhiensis,  P.  farreri and  P.  brachytyla-southern  lineage,
shared the same genetic composition  (Fig. 3C) while var. rubescens shared genetic
ancestry  with the reduced PLSC,  P. wilsonii and  P. purpurea when K = 2 to 4.  P.
brachytyla  s.s.  comprised a separate cluster  when  K = 3 while it  exhibited mixed
ancestry from the reduced PLSC and P. wilsonii when K = 2. Only when K = 4 did P.
purpurea stand as  a separate cluster, while it exhibited mixed genetic ancestry from
both the reduced PLSC and P. wilsonii when K = 2 and 3. If both P. brachytyla s.s.
and P. purpurea originated from the same parents, the reduced PLSC and P. wilsonii,
these ADMIXTURE analyses  suggested  that  P.  purpurea originated  later  than P.
brachytyla  s.s.. Within the  reduced PLSC,  var. linzhiensis separated from  the  other
three  early  while  P.  farreri contained  a  mixture  of genetic  elements  from  var.
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linzhiensis and  var. likiangensis +  P.  brachytyla-southern  lineage.  Both  var.
likiangensis +  P. brachytyla-southern lineage always belonged to the same genetic
pool  without  clear separation  when  K =  5  or  6, even when  var. rubescens had
separated  as  an independent  cluster.  Further  ADMIXTURE analyses of  the PLSC
individuals produced similar results (Fig. S2). 

In the PCA analysis, the first two components (PC1 and PC2) explained 12.43%
and 9.10% of the total variance respectively (Fig. 3D and Table S6), and distinguished
four clear clusters, P. brachytyla s.s., P. wilsonii, P. purpurea and the PLSC. Within
the PLSC, all  individuals  of var. rubescens  comprised a separate  cluster  from  the
other three. 

PhyloNet test of HHS

A total of 6,471 orthologous gene groups across four taxa were identified, and after
filtering, 6,226 of these were used to generate gene trees. A total of 3,305 gene trees
with ≥70% bootstrap support for all branches were subjected to PhyloNet testing. Of
these trees,  1,129 (34.16%) clustered  the  reduced  PLSC  with  P.  brachytyla s.s.
(topo1), 959 (29.02%) showed P. brachytyla s.s. as an isolated clade with P. wilsonii
and the reduced PLSC clustered together (topo2), and 1,217 (36.82%) clustered P.
wilsonii and  P.  brachytyla  s.s.  together  (topo3) (Fig.  4A  and  B). The  resulting
phylogenetic  network  inferred  by  PhyloNet  with  an assumption  of  one  past
hybridization event  (Fig.  4C) indicated  a hybrid origin for  P. brachytyla s.s..  The
contributions from the reduced PLSC (~80%) were more than those from P. wilsonii
(~20%) (Fig. 4C).

Relative divergence time and Ks test of HHS

We  tested  whether  the  divergence  times between  P.  brachytyla s.s. and  its  two
expected parents (P. wilsonii and PLSC) were close to each other based on a Ks-based
method, as the hybrid species separated from the parents at almost the same time. As
expected, the Ks value between P. brachytyla s.s. and PLSC was similar to the value
between  P. brachytyla s.s. and  P. wilsonii, while all  these values were  smaller than
that between PLSC and P. wilsonii (Fig. 4D). 

Coalescent analysis of alternative speciation patterns

The best-fitting model for the origin of P. brachytyla s.s. (with the lowest AIC value,
Table S7) was one involving hybridization and backcrossing (model 15) rather than
bifurcation  followed by introgression.  The model  indicates  that  P. brachytyla  s.s. 
originated  through backcrossing between the reduced PLSC and a hybrid  extinct
‘ghost’  lineage  which  was  initially  formed  through  hybridization  between PLSC
and P. wilsonii (Fig. 5A). We further estimated the effective population size of each
lineage, divergence of  the  two assumed parents and the timescale of the homoploid
hybridization events  (Table 3 and Fig.  5A).  Similarly,  we found that  P.  purpurea
originated through backcrossing, but between P. wilsonii and a hybrid ‘ghost’ lineage
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which  was  initially  also  formed through  hybridization  between the  reduced  PLSC
and P. wilsonii because this model (model4) had the lowest AIC value (Fig. 5B and
Fig. S4 and Table S8). The estimated effective population sizes for both parents and
the timescale  of the origin of the extinct hybrid lineage were similar to those for an
HHS origin of P. brachytyla s.s. (Table 3 and Table S9).

We therefore assumed that two homoploid hybrid species, P. brachytyla s.s. and
P. purpurea, originated through the same extinct intermediate hybrid lineage but  by
backcrossing  to different parents. We combined four taxa together to examine their
evolution by estimating parental contributions and hybrid speciation event timescales.
We  found  that  the  extinct  hybrid  lineage  from the  reduced
PLCS and P. wilsonii originated  ~9.3 Ma  (95%HPDI:  5.5-12.3  Ma)  while  P.
brachytyla  s.s. and P.  purpurea originated  ~1.1  Ma (95%HPDI:  0.8-5.2  Ma)  and
~0.50 Ma (95%HPDI: 0.4-3.4 Ma) through further backcrossing to the reduced PLSC
or  P. wilsonii  (Fig. 5C). The current effective population sizes (Ne) of  the reduced
PLSC, P. wilsonii and P.  brachytyla s.s. were  estimated  to  be  15016  (95%HPDI:
11106-51868),  27194 (95%HPDI:  18162-89603)  and  16340  (95%HPDI:  11700-
57543) respectively, and gene flow from  P. brachytyla s.s. to PLSC was estimated to
be greater than that in the opposite direction, while gene flow from P. brachytyla s.s.
to P. wilsonii  was estimated  to be less than that in the opposite direction, and both
values were greater than that between PLSC and P. wilsonii (Table 3 and Table S10).

The estimated timescale of the extinct hybrid lineage was a little earlier (9.3 Ma
versus 7.3 Ma or 7.9 Ma) than that when only one hybrid species was involved  in
calculations. However, the hybrid origin times for both hybrid species were estimated
to be later than those estimated when only one hybrid species was involved (for P.
brachytyla  s.s.,  1 Ma versus 1.2 Ma while for  P.  purpurea,  the estimates were  0.58
versus  0.49  Ma)  .  This  may  be  a  consequence  of the  changes  in  the  effective
population  sizes  of  the four  lineages  when  all  of  them  were  involved  in  the
estimations.

Ecological niche differences between species

Environmental  niche  modeling  was  carried  out  to  predict  the  current  potential
distributions of the PLSC, P. brachytyla s.s. and P. wilsonii groups (Fig. S5A). Eight
bioclimatic  variables  (alt:  altitude,  bio2:  mean  diurnal  range,  bio4:  temperature
seasonality, bio8: mean temperature of wettest quarter, bio12: annual precipitation,
bio14:  precipitation  of  driest  month,  bio15:  precipitation  seasonality,  bio19:
precipitation of coldest quarter) were retained in our analysis. Mean area under the
receiver  operator  curve  (AUC)  values  were  0.989  for  the  PLSC,  0.984  for  P.
brachytyla s.s. and 0.998 for P. wilsonii, indicating that all models had high predictive
ability.  Identity  tests (D and I) for the comparison between  P. brachytyla s.s.  and
either  PLSC or  P.  wilsonii all  rejected  the  null  hypothesis,  indicating  that  P.
brachytyla s.s. has extinct niche differentiation from both the PLSC and P. wilsonii (P
< 0.001) (Fig. S5B). 
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Discussion

Our population  genomic  analyses  confirmed  the  polyphyly  of  the  previously

circumscribed  P. brachytyla (Ru  et al.,  2016; Lyu  et al., 2020) and two non-sister

lineages were identified: the P. brachytyla-southern lineage and P. brachytyla s.s.. Our

further multiple analyses of population genomic data suggested an HHS origin for P.

brachytyla s.s. through an extinct intermediate hybrid lineage and backcrossing to one

parent. Interestingly, we found that the same parents may have given rise to another

homoploid hybrid species,  P. purpurea, through the same extinct hybrid lineage, but

backcrossing to the other parent. To our knowledge, this is the first case illustrating

that  backcrossing  to  two  parents  produced  two  different  homoploid  species.  Our

findings recovered the high HHS complexity in Picea.

Polyphyly of P. brachytyla

Our  population  genomic  data  clearly  suggest  the  polyphyly  of  the  previously

circumscribed  P.  brachytyla,  consistent  with  previous  studies  based  on  a  few

individuals (Lockwood et al., 2013; Zou  et al., 2016; Ru  et al., 2016; Shao  et al.,

2019; Shen et al., 2019) or population genetic data from a few loci (Lyu et al., 2020).

Phylogenetic  and  population  genetic  analyses  (PCA and  ADMIXTURE structure)

identified two groups: one of them (Fig. 3), the  P.  brachytyla-southern lineage, is

closely related to var.  likiangensis and  P. farreri  while the other,  P.  brachytyla s.s.,

comprises  a  separate  lineage  that  is  independent  of  all  taxa  sampled.  The  P.

brachytyla-southern lineage comprises the PLSC together with another three or four

taxa. Admixture analyses suggested that  P.  brachytyla s.s. originated as a separate

lineage earlier (K = 3) than the P. brachytyla-southern lineage because it could not be

distinguished  from  var.  likiangensis even  when  K =  7. The  two  lineages  of  P.

brachytyla have distinct distributional disjunction in northern and southern regions. In

addition, the stomatal line is almost absent from the abaxial surface of the leaf in the

P.  brachytyla-southern lineage while one or more lines are found for  P.  brachytyla

s.s., similar to P.  likiangensis. It remains unknown why both P.  brachytyla-southern
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lineage and P.  brachytyla s.s. have two white or pale bands of stomatal lines on the

flat adaxial leaf surface (Ru et al., 2016).

Species distinctness and homoploid hybrid origin of P. brachytyla s.s.

P. brachytyla s.s. is genetically and ecologically delimited from both P. wilsonii and
the  PLSC. Niche modelling showed that  P. brachytyla s.s.  occupies  an ecological
niche distinct from those of  both the  PLSC and P. wilsonii (Fig. S5). It should be
noted that our niche modelling added var. rubescens to the PLSC. This taxon, whose
evolutionary origin is unclear, occurs in a distribution close to that of  P. brachytyla
s.s..  Exclusion  of  this  taxon  would  increase  the  ecological  niche  differentiation
between  P. brachytyla s.s. and the PLSC. In our population genomic studies, PCA,
ADMIXTURE  and  phylogenetic  analysis  results  are  highly  consistent  with  one
another and with the niche modelling results, all of which suggests that P. brachytyla
s.s. comprises a distinct genetic group (Fig. 3) with around 31,319 species-specific
SNPs (Fig. S1). 

However, the phylogenetic relationships of P. brachytyla s.s. with the PLSC and
P. wilsonii remain inconsistent. For example, although phylogenetic analyses based on
nuclear-genome  SNPs  suggested  a  close  relationship  to  the  PLSC,  plastome
phylogeny clustered all plastome haplotypes of P. brachytyla s.s. together with those
of P. wilsonii as a separate clade from that of the PLSC. Phylogenetic analyses based
on orthologous genes showed a similar pattern: ~63% of the gene trees showed a
close relationship between P. brachytyla s.s. and PLSC while ~37% indicated that it
was  closer  to  P.  wilsonii (Fig.  4).  In  fact,  such  an  inconsistency  has  also  been
previously  reported  based  on  sequencing  a  few  loci  from  a  few  individuals  or
populations  (Lockwood et al., 2013;  Ran et al., 2015;  Shen et al., 2019; Zou et al.,
2016; Shao  et al., 2019;  Lyu  et al., 2020). In addition,  the specific morphological
traits of the PLSC and P. wilsonii could be seen together in P. brachytyla s.s. (Fu et
al., 1999; Lyu  et al., 2020). All of these analyses suggested that  P. brachytyla s.s.
might have originated from one or more than one hybridization event between PLSC
and P. wilsonii. We further examined this possibility by means of three analyses. First,
Ks analysis based on the shared orthologous genes revealed a similar divergence time
between  P.  brachytyla s.s.  and  either P.  likiangensis or  P.  wilsonii  while  this
divergence is more recent than that between PLSC and P. wilsonii (Fig.  2). Second,
PhyloNet analysis based on the orthologous gene trees revealed a hybrid origin for P.
brachytyla s.s. as expected, with ~81.19% of its nuclear composition derived from
PLCS and  ~19.81%  from  P.  wilsonii (Fig.  4).  Finally,  we  modeled  alternative
speciation events and the coalescent simulation analyses strongly supported a hybrid
origin  for P.  brachytyla s.s.  (Fig.  5A).  According  to  the  best-fitting  model,  P.
brachytyla s.s. originated in two steps with the first intermediate hybrid lineage being
formed between the reduced PLSC and P. wilsonii followed by backcrossing of this
extinct  intermediate  lineage with the PLSC (Table 3).  This  two-step HHS is  very
similar to that found for another closely related species, P. purpura (Ru et al., 2018).
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All of these analyses consistently support a HHS origin for P. brachytyla s.s. from the
PLSC (before its further diversification) and P. wilsonii. 

Two  homoploid  hybrid  species  originated  from  the  same  parents  through  a

‘ghost’ hybrid lineage to backcross different parents

In our previous HHS study of P. purpurea, we used three varieties of P. likiangensis to

represent the PLSC (Sun et al., 2014; Ru et al., 2018). Later studies (Sun et al., 2018;

Lyu  et  al.,  2020)  and  our  present  analyses  suggested  that  both  P.  farreri and  P.

brachytyla-southern  lineage  should  be  included  in  the  PLSC.  In  addition,  var.

rubescens contained  genetic  introgression  from  P.  purpurea,  according  to  our

population structure analyses (Fig. 3C) and previous studies (Sun et al., 2018; Shen et

al.,  2019;  Shao  et al.,  2019).  This  introgression may complicate  the modelling of

hypotheses for the alternative speciation events that may have produced P. purpurea.

We therefore excluded var. rubescens from the PLSC and used the reduced PLSC and

P. wilsonii to model HHS versus an alternative, bifurcating, origin for  P. purpurea.

Similar to previous findings (Ru et al., 2018),  P. purpurea originated through HHS

between the reduced PLSC and  P. wilsonii by a  two-step process  that  formed an

intermediate hybrid lineage, which further backcrossed with P. wilsonii to produce P.

purpurea (Fig. 5B and Fig. S4 and Table S8). Thus both P. purpurea and P. brachytyla

s.s.. originated by HHS from the same parents, PLSC and  P. wilsonii. However,  P.

purpurea originated later than P. brachytyla s.s., accumulating fewer species-specific

mutations and retaining more parental ancestry. The mosaic of parental ancestry in P.

purpurea was always obvious when ADMIXTURE structure analyses were applied to

population genomic data (Fig. 3C). However,  for  P. brachytyla s.s.,  more species-

specific mutations blurred the evidence of a mixed ancestry,  although inconsistent

phylogenies (Fig. 3A and B), PhyloNet suggestions (Fig. 4) and coalescent tests (Fig.

5) together support a HHS origin for this species.     

In  addition,  we  assumed  that  the  two  homoploid  hybrid  species  originated

through the  same extinct  intermediate  hybrid  lineage  but  that  it  backcrossed  with

different  parents  for  two reasons.  First,  this  is  the  most  parsimonious  hypothesis.
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Although it is likely that two ancient hybrid lineages may have originated between

PLSC and P. wilsonii, it is less likely that both of them became extinct. Second, the

time of origin of the extinct hybrid lineage was estimated to be similar (7.3 Ma or 7.9

Ma) when only two parents and one assumed hybrid species, P. brachytyla s.s. or P.

purpurea, was involved (Fig. 5). When all four taxa were involved, the origin of the

extinct hybrid lineage was estimated to be earlier, around 9.3 Ma (Fig. 5), while the

two hybrid species,  P. purpurea and P. brachytyla s.s., originated 1 Ma or 0.49 Ma

(Fig. 5). These speciation events occurred from the late Miocene to the Quaternary

when the Qinghai-Tibet Plateau (QTP), where the four taxa focused on in this study

mainly occur, experienced extensive geological and climatic oscillations  (Deng and

Ding 2015; Mulch and Chamberlain 2006). During these oscillations numerous new

species originated and interspecific hybridizations occurred (Liu  et al., 2013; Du  et

al., 2017; Ma et al., 2019). These extensive changes may therefore have helped the

two ancestral parents come into direct contact, resulting in inter-lineage hybridizations

and backcrosses, which led to the origin of the intermediate hybrid lineage and the

two extant hybrid species. It remains unknown how the intermediate hybrid lineage

was extinguished. It is likely that environmental changes or adaptive advantages of

the  newly formed  hybrid  species  resulted  in  the  extinction  or  replacement  of  the

intermediate hybrid lineage (Ru et al., 2018). 

To our knowledge, this is the second reported case in which two parents produced

more than one homoploid hybrid species. Two sunflower species hybridized to give

rise  to  three  homoploid  hybrid  species  occurring  in  different  extreme  habitats

(Rieseberg  et  al.,  1997,  2003).  In  our  case,  one  extinct  ‘ghost’  hybrid  lineage

underwent backcrossing events with each of its  parents to produce the two extant

hybrid species (Fig. 5). This finding supports the hypothesis that in the spruce genus,

reticulate species diversification through hybridization ranther than non-bifurcating

divergence seems to be more  frequent  than was previously assumed (Feng  et  al.,

2019).
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Figure legends 

Figure  1.  Distributional  ranges  of  P.  wilsonii,  P.  purpurea,  P. farreri and  P.  likiangensis var.

rubescens,  P. likiangensis var. linzhiensis,  P. likiangensis var.  likiangensis, P. brachytyla  sensu

stricto (s.s.) and P. brachytyla-southern lineage. Different colored circles indicate locations from

which samples of each species were collected for RNA-seq.

Figure 2. (A, B) Comparison of dXY and FST among 10 population pairs evaluated for the nuclear

SNP data set. (C, D) Distribution of genetic differentiation (dXY and FST) among 3 population pairs

based on the nuclear SNP data set.

Figure 3. (A) Neighbor Joining tree based on all 186 transcriptome sequences with P. breweriana

as the outgroup. (B) Maximum Likelihood (ML) tree based on 69 transcriptome sequences with P.

breweriana as  the  outgroup. (C)  Bar  plots  indicative  of  assignment  probabilities  from

ADMIXTURE analysis  of  184  transcriptomes from K =2 to  K=6.  (D)  Principal  component

analysis (PCA) plots showing the first two principal components.

Figure 4. (A) Relationships between  P. likiangensis species complex (PLSC),  P. brachytyla s.s.

and P. wilsonii (using P. breweriana as outgroup) according to ML analysis of 3,305 orthologous

gene sequences identified by OrthoMCL as having a ratio of 1:1:1:1. (B) The proportion of each

topology is based on the ortholog groups. (C) ML-bootstrap network for 3,305 orthologous gene

trees generated by PhyloNet after runs allowing 0, 1 or 2 reticulations. Reticulations are shown in

blue with inheritance probabilities. Note: Only trees with branch bootstrap values >70% were

analysed. (D) KS age distributions for one-to-one orthologs between PLSC and P. brachytyla s.s.

and P. wilsonii.

Figure 5. (A) Simplified graphical summary of the best-fitting demographic model inferred by

fastsimcoal2 for the reduced PLSC, P. brachytyla s.s., and  P. wilsonii. (B) Simplified graphical

summary of the best-fitting demographic model inferred by fastsimcoal2 for the reduced PLSC,  P.

purpurea,  and  P.  wilsonii. (C)  Simplified graphical  summary  of  the  best-fitting  demographic

model  inferred  by  fastsimcoal2  for  the  reduced  PLSC, P.  brachytyla s.s.,  P. purpurea and  P.

wilsonii. The percentages indicate nuclear genomic compositions contributed from parents to the

hybrid offspring. The right-hand axis indicates the timescale in years before the present.
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Table legends

Table 1 Locations of Picea individuals sampled for this study

Table 2 BUSCO results for assembly completeness of four spruce transcriptomes

Table 3 Inferred demographic parameters of the best-fitting demographic model in Fig. S3
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Supporting Information

Figure S1. Venn diagram summarizing the number of shared and exclusive nuclear SNPs called

across (A) P. likiangensis, P. brachytyla s.s. and P. wilsonii and (B) P. likiangensis, P. farreri and

P. brachytyla-southern lineage.

Figure  S2.  ADMIXTURE  analysis  of  P.  likiangensis  var. rubescens,  P.  likiangensis var.

linzhiensis, P. likiangensis var. likiangensis, P. brachytyla s.s., P. brachytyla-southern lineage and

P. farreri.

Figure S3. Schematic of 16 different demographic models analysed using fastsimcoal2. Note: the

gray bars indicate the joint past population and arrows indicate asymmetric gene flow. The red,

green,  dark blue and khaki bars  represent  PLSC,  P. wilsonii,  P. brachytyla s.s.  and the ghost

lineage respectively. Models 1-2, radiative divergences of three species without/with gene flow

with T as the radiative time from a common ancestor; Models 3-11: stepwise bifurcating models of

three species without/with gene flow with T1 and T2 as the divergence times;  models  12-14,

hybrid origin of  P. brachytyla s.s. between the other two without/with gene flow with T1 as the

time of divergence between PLSC and P. wilsonii, and T2 as the time of origin of P. brachytyla

s.s.; models 15-16, hybrid origin of  P. brachytyla s.s. between the other two with an additional

ghost lineage (in khaki) and asymmetric gene flow and T1 as the time of divergence between

PLSC and P. wilsonii, T2 as the time of origin of the ghost lineage and T3 as the time of origin of

P. brachytyla s.s..

Figure S4. Schematic of 4 different demographic models analysed using fastsimcoal2. Note: the

gray bars indicate the joint past population and arrows indicate asymmetric gene flow. The red,

green, pink and khaki bars represent PLSC, P. wilsonii, P. purpurea and ghost lineage respectively.

Models 1-2, stepwise bifurcating models of three species with gene flow with T1 and T2 as the

divergence times; Model 3, hybrid origin of  P. purpurea between the other two with gene flow

with T1 as the time of divergence time PLSC and P. wilsonii, and T2 as the time of origin of P.

purpurea; Model 4, hybrid origin of P. purpurea between the other two with an additional ghost

lineage (in khaki) and asymmetric gene flow and T1 as the time of divergence between PLSC and

P. wilsonii,  T2  as the  time of origin of  the  ghost  lineage  and  T3 as the  time of origin of  P.

purpurea.

Figure S5. Environmental niche models for three species, and results of identity tests between

paired  groups.  (A)  Current potential  distributions  of  PLSC,  P. brachytyla s.s.  and  P. wilsonii

groups, predicted by Maxent. (B) Results of identity tests for three comparisons (PLSC vs.  P.

brachytyla s.s., P. brachytyla s.s. vs. P. wilsonii, PLSC vs. P. wilsonii). The pink bars indicate the

null distributions of I, while the light blue bars indicate D. Arrows indicate values of I (pink) and

D (light blue) in actual Maxent runs.

Table S1 Summary statistics of Illumina transcriptome data for each sample.
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Table S2 Transcriptome assembly statistics for the Picea species including revised P. abies.

Table S3 SNPs information for six Picea species.

Table S4 π±SD with P. abies as the reference.

Table S5 Summary statistics for FST and dXY with P. abies as the reference.

Table S6 Tracy-Widom statistics for the first four eigenvalues in PCA analysis.

Table S7 Relative likelihoods of the different demographic models shown in Fig. S3.

Table S8 Relative likelihoods of the different demographic models shown in Fig. S4.

Table S9 Inferred demographic parameters of the best-fitting demographic model in Fig. S4.

Table S10 Inferred demographic parameters with PLSC, P. wilsonii, P. brachytyla s.s. and P. 

purpurea included in the analysis.

Table S11 Species occurrences collected for ecological niche modeling analysis.
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Figure  1.  Distributional  ranges  of  P.  wilsonii,  P.  purpurea,  P. farreri and  P.  likiangensis var.

rubescens,  P. likiangensis var. linzhiensis,  P. likiangensis var.  likiangensis, P. brachytyla  sensu

stricto (s.s.) and P. brachytyla-southern lineage. Different colored circles indicate locations from

which samples of each species were collected for RNA-seq.
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Figure 2. (A, B) Comparison of dXY and FST among 10 population pairs evaluated for the nuclear

SNP data set. (C, D) Distribution of genetic differentiation (dXY and FST) among 3 population pairs

based on the nuclear SNP data set.
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Figure 3. (A) Neighbor Joining tree based on all 186 transcriptome sequences with P. breweriana

as the outgroup. (B) Maximum Likelihood (ML) tree based on 69 transcriptome sequences with P.

breweriana as  the  outgroup. (C)  Bar  plots  indicative  of  assignment  probabilities  from

ADMIXTURE analysis  of  184  transcriptomes from K =2 to  K=6.  (D)  Principal  component

analysis (PCA) plots showing the first two principal components.
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Figure 4. (A) Relationships between  P. likiangensis species complex (PLSC),  P. brachytyla s.s.

and P. wilsonii (using P. breweriana as outgroup) according to ML analysis of 3,305 orthologous

gene sequences identified by OrthoMCL as having a ratio of 1:1:1:1. (B) The proportion of each

topology is based on the ortholog groups. (C) ML-bootstrap network for 3,305 orthologous gene

trees generated by PhyloNet after runs allowing 0, 1 or 2 reticulations. Reticulations are shown in

blue with inheritance probabilities. Note: Only trees with branch bootstrap values >70% were

analysed. (D) KS age distributions for one-to-one orthologs between PLSC and P. brachytyla s.s.

and P. wilsonii.
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Figure 5. (A) Simplified graphical summary of the best-fitting demographic model inferred by

fastsimcoal2 for the reduced PLSC, P. brachytyla s.s., and  P. wilsonii. (B) Simplified graphical

summary of the best-fitting demographic model inferred by fastsimcoal2 for the reduced PLSC,  P.

purpurea,  and  P.  wilsonii. (C)  Simplified graphical  summary  of  the  best-fitting  demographic

model  inferred  by  fastsimcoal2  for  the  reduced  PLSC, P.  brachytyla s.s.,  P. purpurea and  P.

wilsonii. The percentages indicate nuclear genomic compositions contributed from parents to the

hybrid offspring. The right-hand axis indicates the timescale in years before the present.
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Tables

Table 1 Locations of Picea individuals sampled for this study

Species Latitude Longitude Altitude(m) Collection site Source n

P. breweriana 1

brew 35.93306 104.15008 1774 Common garden, Gansu Ru et al.,, 2018 1

P. likiangensis 30

MSZ-04 29.99958 100.87139 4178.94 Jianziwan mountain, Sichuan Ru et al.,, 2018 1

MSZ-05 30.28694 99.519222 4252 Heni, Sichuan Ru et al.,, 2018 3

MSZ-06 29.72983 98.62975 4026.58 Zongla mountain, Sichuan Ru et al.,, 2018 3

MSZ-07 29.61128 98.156944 4104.2 Rumei, Tibet Ru et al.,, 2018 2

MSZ-08 29.68322 97.931917 4122.95 Zuogong, Tibet Ru et al.,, 2018 2

MSZ-15 29.18475 93.978556 2988.12 Milin, Linzhi, Tibet Ru et al.,, 2018 1

MSZ-25 29.46339 94.61775 2913.14 Milin, Linzhi, Tibet Ru et al.,, 2018 1

MSZ-30 29.56961 94.557972 3421.91 Sejila mountain, Linzhi, Tibet Ru et al.,, 2018 1

MSZ-31 29.67392 94.720028 3663.2 Sejila mountain, Linzhi, Tibet Ru et al.,, 2018 3

MSZ-33 29.8905 95.523278 2698.53 Bomi, Tibet Ru et al.,, 2018 1

MSZ-34 29.82383 95.711528 3262.82 Bomi, Tibet Ru et al.,, 2018 2

MSZ-40 27.93083 99.616472 3511.8 Napahai, Yunnan Ru et al.,, 2018 1

MSZ-42 27.569 100.02383 3025.85 Pudacuo, Yunnan Ru et al.,, 2018 1

MSZ-46 27.19836 100.27886 3260.41 Daju mountain, Yunnan Ru et al.,, 2018 1

MSZ-47 27.13161 100.23303 2947.51 Yulongxue mountain, Yunnan Ru et al.,, 2018 3

MSZ-48 27.14214 100.2335 3197.45 Yulongxue mountain, Yunnan Ru et al.,, 2018 2

MSZ-50 27.02508 100.20897 2845.13 Yuhu village, Yunnan Ru et al.,, 2018 2

P. purpurea 20
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22-WDL-17 33.07804 102.85164 3568 Hongyuan, Sichuan The present study 5

ZR_08 34.02296 102.73741 3526 Rierlang mountain, Ruoergai, Sichuan Ru et al.,, 2018 3

ZR_10 34.27802 103.00059 3556 Niba,Gansu Ru et al.,, 2018 3

ZR_11 34.45132 102.69788 3132 Duosongben mountain, Gansu Ru et al.,, 2018 3

ZR_14 35.53111 102.24462 3085 Tongren, Qinghai Ru et al.,, 2018 3

ZR_25 33.0443 103.72414 3497 Songpan, Sichuan Ru et al.,, 2018 3

P. wilsonii 46

01-WDL-17 33.621871 104.365875 2380 Wuping, Gansu The present study 1

02-WDL-17 33.617646 104.368253 2360 Wuping, Gansu The present study 3

07-WDL-17 33.549964 104.336308 2142 Majiazhuang, Gansu The present study 3

10-WDL-17 33.576466 104.37523 1745 Jue’er Mountain, Gansu The present study 1

18_WDL-17 32.913075 104.154777 2450 Pingwu, Sichuan The present study 6

ZR_09 34.04897 103.2207 2390 Diebu, Gansu Ru et al.,, 2018 5

ZR_15 36.95562 102.46394 2306 Huzhu, Qinghai Ru et al.,, 2018 6

ZR_16 35.78197 104.05484 2304 Yuzhong, Gansu Ru et al.,, 2018 7

ZR_24 33.29427 104.47862 2389 Longnan, Gansu Ru et al.,, 2018 7

ZR_26 34.1588 102.90655 2769 Ruoergai, Sichuan Ru et al.,, 2018 7

P. brachytyla s.s. 54

06-WDL-17 33.552535 104.336832 2120 Heilingou, Gansu The present study 6

12-WDL-17 32.92212 104.3258 2250 Lianghekou, Gansu The present study 4

14-WDL-17 32.641667 104.819167 2290 Tangjiahe, Sichuan The present study 6

15-WDL-17 32.603561 104.662272 1997 Huangjiawan, Sichuan The present study 5

21-WDL-17 32.952329 104.127202 2536 Pingwu, Sichuan The present study 5

WDL-17-CQ 31.63194 108.71 2243 Congziping, Chongqing The present study 4

23-WDL-17 30.440295 102.558357 2323 Dongla grand canyon, Sichuan The present study 3

26-WDL-17 30.183056 102.475278 2020 Tianquan, Sichuan The present study 1



WDL-17-HLG 29.580833 102.0175 2780 Hailuogou, Sichuan The present study 6

28-WDL-17 30.1765 102.47528 2010 Tianquan, Sichuan The present study 1

W17-01 29.03865 102.98435 2062 Heizhugou, Sichuan The present study 1

W17-02 28.90082 102.99892 2287 Kejuenapa mountain, Sichuan The present study 3

W17-03 28.73573 103.05202 2461 Shengliping, Sichuan The present study 6

YS-1 28.71222 103.21398 2370 Meigu, Sichuan The present study 3

P. brachytyla-southern lineage 10

NPH 27.927778 99.614222 3506 Napahai, Yunnan Ru et al.,, 2018 1

XGLL 27.8 99.65 3329 Xianggelila, Yunnan Ru et al.,, 2018 2

XSQ 26.457167 99.313833 2925 Xinshengqiao, Yunnan Ru et al.,, 2018 4

Zhong 27.45665 99.893133 3128 Xiaozhongdian, Yunnan Ru et al.,, 2018 3

P. farreri 5

ML2019350-1 27.7871 98.51 3070 Bingzhongluo, Yunnan The present study 1

ML2019350-2 27.7841 98.5101 3060 Bingzhongluo, Yunnan The present study 1

ML2019351 27.8484 98.4662 2880 Bingzhongluo, Yunnan The present study 1

ML2019382 28.16275 98.2556 2210 Bingzhongluo, Yunnan The present study 1

ML2019408 27.7567 98.59003 2750 Bingzhongluo, Yunnan The present study 1
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Table 2 BUSCO results for assembly completeness of four spruce transcriptomes

Species Classification BUSCO results

PLSC Spermatophytes
C: 84.4% [S: 47.1%, D: 37.3%], F: 2.7%, M:12.9%, n:

1440

P. brachytyla s.s. Spermatophytes
 C: 81.2% [S: 71.7%, D: 9.5%], F: 3.0%, M: 15.8%, n:

1440

P. wilsonii Spermatophytes
C: 86.1% [S: 15.5%, D: 70.6%], F: 2.3%, M:11.6%, n:

1440

P. breweriana Spermatophytes
C: 85.1% [S: 10.1%, D: 75.0%], F: 2.4%, M:12.5%, n:

1440
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Table 3 Inferred demographic parameters of the best-fitting demographic model in Fig. S3 

Parameters Point estimation 95% CI Lower bound 95% CI Upper bound

Ne-PLSC 16614 11301 22342

Ne-P. wilsonii 32321 21375 36121

Ne-P. brachytyla s.s. 18111 13031 21685

Ne-ghost 78107 10442 172368

m1
PLSC->P. wilsonii 2.48e-06 1.29e-08 9.83e-04

m1
P. wilsonii->PLSC 3.37e-06 2.22e-08 9.25e-04

m2
PLSC->P. wilsonii 2.63e-03 6.85e-04 4.84e-02

m2
P. wilsonii->PLSC 1.36e-07 6.99e-09 2.58e-02

mPLSC->P. brachytyla s.s. 4.84e-05 2.65e-05 9.42e-05

mP. brachytyla s.s.>PLSC 6.09e-05 1.59e-05 1.31e-04

mP. wilsonii-> P. brachytyla s.s. 7.70e-05 3.22e-05 1.21e-04

mP. brachytyla s.s.->P. wilsonii 1.27e-05 9.32e-07 2.87e-05

mP. wilsonii->PLSC 2.94e-05 7.73e-06 2.31e-02

mPLSC->P. wilsonii 1.42e-05 2.34e-07 6.82e-05

TADM1 1222440 1005800 5478200

TADM2 7375440 5817900 13122100

TDIV 12246120 10157600 16086500

Ne-PLSC,  Ne-P.  brachytyla  s.s, Ne-P.  wilsonii, Ne-ghost indicate the effective population sizes of the reduced  P.

likiangensis  species complex  (PLSC),  P.  brachytyla  s.s.,  P.  wilsonii,  the  ghost intermediate

lineage and ancestral population respectively. m1
PLSC->P.  wilsonii, m1

P.  wilsonii->PLSC,  m2
PLSC->P.  wilsonii, m2

P.

wilsonii->PLSC indicate migration per generation before and after hybridization between PLSC and P.

wilsonii;  mPLSC->ghost:  migration  per  generation  from PLSC to  the  ghost  lineage  and  mghost->PLSC

migration per generation from ghost lineage to PLSC. mPLSC->P. brachytyla s.s., mP. brachytyla s.s.>PLSC, mP. wilsonii-

> P.  brachytyla s.s.  and mP. brachytyla  s.s.->P. wilsonii indicate,  respectively, migration per generation between  P.

brachytyla  s.s.  and PLSC or  P. wilsonii  in  both directions.  TADM1 indicates time (years)  of

backcrossing of the ghost lineage to P. wilsonii that gave rise to P. brachytyla s.s., while TADM2

indicates time (years) of formation of the ghost lineage between PLSC and  P. wilsonii.  TDIV

indicates the estimated  divergence time (years)  between PLSC and  P. wilsonii obtained  from

fastsimcoal2.
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