REFERENCES
1.
Allen, G. (1999). Marine fishes of south-east Asia. Periplus
Editions (HK) LTD .
2.
Allgeier, J.E., Burkepile, D.E. & Layman, C.A. (2017). Animal pee in
the sea: consumer-mediated nutrient dynamics in the world’s changing
oceans. Global Change Biology , 23, 2166-2178.
3.
Azzurro, E., Tuset, V.M., Lombarte, A., Maynou, F., Simberloff, D.,
Rodríguez-Pérez, A. et al. (2014). External morphology explains
the success of biological invasions. Ecology Letters , 17,
1455-1463.
4.
Barrett, N. (1995). Short- and long-term movement patterns of six
temperate reef fishes (Families Labridae and Monacanthidae).Marine and Freshwater Research , 46, 853-860.
5.
Bates, A.E., Pecl, G.T., Frusher, S., Hobday, A.J., Wernberg, T., Smale,
D.A. et al. (2014). Defining and observing stages of
climate-mediated range shifts in marine systems. Global
Environmental Change , 26, 27-38.
6.
Bates, D., Maechler, M., Bolker, B., Walker, S., R.H.B, C., Signmann, H.et al. (2020). Package ’lme4’: Linear Mixed-Effects Models using
’Eigen’ and S4.
7.
Bennett, S., Wernberg, T., Harvey, E.S., Santana-Garcon, J. & Saunders,
B.J. (2015). Tropical herbivores provide resilience to a
climate-mediated phase shift on temperate reefs. Ecol Lett , 18,
714-723.
8.
Bulleri, F., Marzinelli, E.M., Voerman, S.E. & Gribben, P.E. (2020).
Propagule composition regulates the success of an invasive seaweed
across a heterogeneous seascape. Journal of Ecology , 108,
1061-1073.
9.
Castro, L.C., Cetina-Heredia, P., Roughan, M., Dworjanyn, S., Thibaut,
L., Chamberlain, M.A. et al. (2020). Combined mechanistic
modelling predicts changes in species distribution and increased
co-occurrence of a tropical urchin herbivore and a habitat-forming
temperate kelp. Diversity and Distributions , 26, 1211-1226.
10.
Chen, I.-C., Hill, J.K., Ohlemüller, R., Roy, D.B. & Thomas, C.D.
(2011). Rapid Range Shifts of Species Associated with High Levels of
Climate Warming. Science , 333, 1024-1026.
11.
Clavel, J., Julliard, R. & Devictor, V. (2011). Worldwide decline of
specialist species: toward a global functional homogenization?Frontiers in Ecology and the Environment , 9, 222-228.
12.
Daskalova, G.N., Myers-Smith, I.H., Bjorkman, A.D., Blowes, S.A., Supp,
S.R., Magurran, A.E. et al. (2020). Landscape-scale forest loss
as a catalyst of population and biodiversity change. Science ,
368, 1341-1347.
13.
Di Lorenzo, M., Guidetti, P., Di Franco, A., Calò, A. & Claudet, J.
(2020). Assessing spillover from marine protected areas and its drivers:
A meta-analytical approach. Fish and Fisheries , 21, 906-915.
14.
Dornelas, M., Gotelli, N.J., Shimadzu, H., Moyes, F., Magurran, A.E. &
McGill, B.J. (2019). A balance of winners and losers in the
Anthropocene. Ecology Letters , 22, 847-854.
15.
Du, F., Xu, X., Zhang, X., Sui, Y., SHAO, M., Hu, L. et al.(2012). The relationship between aboveground biomass and voronoi area od
coexisting species in an old-field community. Polish Journal of
Ecology , 60, 479-489.
16.
Edgar, G.J., Barrett, N.S. & Morton, A.J. (2004). Patterns of Fish
Movement on Eastern Tasmanian Rocky Reefs. Environmental Biology
of Fishes , 70, 273-284.
17.
Farré, M., Tuset, V.M., Maynou, F., Recasens, L. & Lombarte, A. (2013).
Geometric morphology as an alternative for measuring the diversity of
fish assemblages. Ecological Indicators , 29, 159-166.
18.
Filbee-Dexter, K. & Wernberg, T. (2018). Rise of Turfs: A New
Battlefront for Globally Declining Kelp Forests. BioScience , 68,
64-76.
19.
Finderup Nielsen, T., Sand-Jensen, K., Dornelas, M. & Bruun, H.H.
(2019). More is less: net gain in species richness, but biotic
homogenization over 140 years. Ecology Letters , 22, 1650-1657.
20.
Froese, R. & Pauly, D. (2000). FishBase 2000: concepts, design and data
sources. ICLARM, Los Baños, Laguna, Philippines , 344.
21.
Fulton, C.J., Noble, M.N., Radford, B., Gallen, C. & Harasti, D.
(2016). Microhabitat selectivity underpins regional indicators of fish
abundance and replenishment. Ecological Indicators , 70, 222-231.
22.
Graham, N.A.J., Wilson, S.K., Jennings, S., Polunin, N.V.C., Robinson,
J., Bijoux, J.P. et al. (2007). Lag Effects in the Impacts of
Mass Coral Bleaching on Coral Reef Fish, Fisheries, and Ecosystems.Conserv Biol , 21, 1291-1300.
23.
Harasti, D. & Malcolm, H. (2013). Distribution, relative abundance and
size composition of the threatened serranid Epinephelus daemelii in New
South Wales, Australia. Journal of Fish Biology , 83, 378-395.
24.
Hay, M.E. (1991). Fish-seaweed interactions on Coral Reefs: Effects of
herbivorous Fishes and Adaptations of Their Prey. The Ecology of
Fishes on Coral Reefs , 69-119.
25.
Hiddink, J.G. & Ter Hofstede, R. (2008). Climate induced increases in
species richness of marine fishes. Global Change Biology , 14,
453-460.
26.
Hobday, A.J. & Pecl, G.T. (2014). Identification of global marine
hotspots: sentinels for change and vanguards for adaptation action.Reviews in Fish Biology and Fisheries , 24, 415-425.
27.
Holland, M.M., A., E.J., Verges, A. & Suthers, I.M. (2020). Latitudinal
patterns in trophic structure of temperate reef-associated fishes and
predicted consequences of climate change. Fish and Fisheries , In
Press.
28.
Horta e Costa, B., Assis, J., Franco, G., Erzini, K., Henriques, M.,
Gonçalves, E.J. et al. (2014). Tropicalization of fish
assemblages in temperate biogeographic transition zones. Marine
Ecology Progress Series , 504, 241-252.
29.
Hughes, T.P., Carpenter, S., Rockström, J., Scheffer, M. & Walker, B.
(2013). Multiscale regime shifts and planetary boundaries. Trends
in Ecology & Evolution , 28, 389-395.
30.
Jackson, M.C. & Britton, J.R. (2014). Divergence in the trophic niche
of sympatric freshwater invaders. Biological Invasions , 16,
1095-1103.
31.
Kassen, R. (2002). The experimental evolution of specialists,
generalists, and the maintenance of diversity. Journal of
Evolutionary Biology , 15, 173-190.
32.
Krumhansl, K.A. & Scheibling, R.E. (2012). Production and fate of kelp
detritus. Marine Ecology Progress Series , 467, 281-302.
33.
Laliberté, E. & Legendre, P. (2010). A distance-based framework for
measuring functional diversity from multiple traits. Ecology , 91,
299-305.
34.
Laliberté, E., Legendre, P. & Shipley, B. (2014). FD: measuring
functional diversity from multiple traits, and other tools for
functional ecology. R package version 1.0-12 .
35.
Last, P.R., White, W.T., Gledhill, D.C., Hobday, A.J., Brown, R., Edgar,
G.J. et al. (2011). Long-term shifts in abundance and
distribution of a temperate fish fauna: a response to climate change and
fishing practices. Global Ecology and Biogeography , 20, 58-72.
36.
Magurran, A.E., Dornelas, M., Moyes, F., Gotelli, N.J. & McGill, B.
(2015). Rapid biotic homogenization of marine fish assemblages.Nature Communications , 6, 8405.
37.
Malcolm, H.A. & Ferrari, R. (2019). Strong fish assemblage patterns
persist over sixteen years in a warming marine park, even with tropical
shifts. Biological Conservation , 232, 152-163.
38.
Malcolm, H.A., Gladstone, W., Lindfield, S., Wraith, J. & Lynch, T.P.
(2007). Spatial and temporal variation in reef fish assemblages of
marine parks in New South Wales, Australia—baited video
observations. Marine Ecology Progress Series , 350, 277-290.
39.
Malcolm, H.A., Jordan, A. & Smith, S.D.A. (2010). Biogeographical and
cross-shelf patterns of reef fish assemblages in a transition zone.Marine Biodiversity , 40, 181-193.
40.
Morton, J.K., Platell, M.E. & Gladstone, W. (2008). Differences in
feeding ecology among three co-occurring species of wrasse (Teleostei:
Labridae) on rocky reefs of temperate Australia. Marine Biology ,
154, 577-592.
41.
Pacioglu, O., Theissinger, K., Alexa, A., Samoilă, C., Sîrbu, O.-I.,
Schrimpf, A. et al. (2020). Multifaceted implications of the
competition between native and invasive crayfish: a glimmer of hope for
the native’s long-term survival. Biological Invasions , 22,
827-842.
42.
Pecl, G.T., Araujo, M.B., Bell, J.D., Blanchard, J., Bonebrake, T.C.,
Chen, I.C. et al. (2017). Biodiversity redistribution under
climate change: Impacts on ecosystems and human well-being.Science , 355.
43.
Pinsky, M.L. (2019). Species coexistence through competition and rapid
evolution. Proceedings of the National Academy of Sciences , 116,
2407-2409.
44.
Poloczanska, E.S., Brown, C.J., Sydeman, W.J., Kiessling, W., Schoeman,
D.S., Moore, P.J. et al. (2013). Global imprint of climate change
on marine life. Nature Climate Change , 3, 919.
45.
RCoreTeam (2020). R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna .
46.
Ridgway, K.R. & Hill, J.K. (2012). East Australian Current. In A Marine
Climate Change Impacts and Adaptation Report for Australia 2012.
47.
Robinson, L.M., Gledhill, D.C., Moltschaniwskyj, N.A., Hobday, A.J.,
Frusher, S., N.Barrett et al. (2015). Rapid assessment of an
ocean warming hotspot reveals “high” confidence in potential species’
range extensions. Global Environmental Change , 31, 28-37.
48.
Rohlf, F.J. (2004). tpsDig2 2.31 and tpsUtil. Department of
ecology and evolution. Stony Brook, NY: State University of New York .
49.
Rohlf, F.J. (2015). tps Relative Warps v1.70. Department of
ecology and evolution. Stony Brook, NY: State University of New York. .
50.
Savage, J. & Vellend, M. (2015). Elevational shifts, biotic
homogenization and time lags in vegetation change during 40 years of
climate warming. Ecography , 38, 546-555.
51.
Smith, S.M., Fox, R.J., Donelson, J.M., Head, M.L. & Booth, D.J.
(2016). Predicting range-shift success potential for tropical marine
fishes using external morphology. Biology Letters , 12, 20160505.
52.
Sunday, J.M., Pecl, G.T., Frusher, S., Hobday, A.J., Hill, N., Holbrook,
N.J. et al. (2015). Species traits and climate velocity explain
geographic range shifts in an ocean-warming hotspot. Ecol Lett ,
18, 944-953.
53.
Svenning, J.-C., Gravel, D., Holt, R.D., Schurr, F.M., Thuiller, W.,
Münkemüller, T. et al. (2014). The influence of interspecific
interactions on species range expansion rates. Ecography , 37,
1198-1209.
54.
Troast, B., Paperno, R. & Cook, G.S. (2020). Multidecadal shifts in
fish community diversity across a dynamic biogeographic transition zone.Diversity and Distributions , 26, 93-107.
55.
Truong, L., Suthers, I.M., Cruz, D.O. & Smith, J.A. (2017). Plankton
supports the majority of fish biomass on temperate rocky reefs.Marine Biology , 164, 73.
56.
Tupper, M. & Boutilier, R.G. (1997). Effects of habitat on settlement,
growth, predation risk and survival of a temperate reef fish.Marine Ecology Progress Series , 151, 225-236.
57.
Turner, R. (2020). Package ’deldir’. Delaunay Triangulation and
Dirichlet (Voronoi) Tesselation.
58.
Tuya, F., Wernberg, T. & Thomsen, M.S. (2009). Habitat structure affect
abundances of labrid fishes across temperate reefs in south-western
Australia. Environmental Biology of Fishes , 86, 311-319.
59.
van Kleunen, M., Weber, E. & Fischer, M. (2010). A meta-analysis of
trait differences between invasive and non-invasive plant species.Ecol Lett , 13, 235-245.
60.
Vergés, A., Doropoulos, C., Malcolm, H.A., Skye, M., Garcia-Pizá, M.,
Marzinelli, E.M. et al. (2016). Long-term empirical evidence of
ocean warming leading to tropicalization of fish communities, increased
herbivory, and loss of kelp. Proceedings of the National Academy
of Sciences , 113, 13791-13796.
61.
Vergés, A., McCosker, E., Mayer-Pinto, M., Coleman, M.A., Wernberg, T.,
Ainsworth, T. et al. (2019). Tropicalisation of temperate reefs:
Implications for ecosystem functions and management actions.Functional Ecology , 33, 1000-1013.
62.
Vergés, A., Tomas, F., Cebrian, E., Ballesteros, E., Kizilkaya, Z.,
Dendrinos, P. et al. (2014). Tropical rabbitfish and the
deforestation of a warming temperate sea. J Ecol , 102, 1518-1527.
63.
Wallingford, P.D., Morelli, T.L., Allen, J.M., Beaury, E.M., Blumenthal,
D.M., Bradley, B.A. et al. (2020). Adjusting the lens of invasion
biology to focus on the impacts of climate-driven range shifts.Nature Climate Change , 10, 398-405.
64.
Walther, G.-R., Roques, A., Hulme, P.E., Sykes, M.T., Pyšek, P., Kühn,
I. et al. (2009). Alien species in a warmer world: risks and
opportunities. Trends in Ecology & Evolution , 24, 686-693.
65.
Wardle, D.A., Bardgett, R.D., Callaway, R.M. & Van der Putten, W.H.
(2011). Terrestrial Ecosystem Responses to Species Gains and Losses.Science , 332, 1273-1277.
66.
Wernberg, T., Coleman, M.A., Babcock, R.C., Bell, S.Y., Bolton, J.J.,
Connell, S.D. et al. (2019). Chapter 6 Biology and Ecology of the
Globally Significant Kelp Ecklonia radiatanull. Taylor & Francis.
67.
Wilson, S.K., Bellwood, D.R., Choat, J.H. & Furnas, M.J. (2003).
Detritus in the epilithic algal matrix and its use by coral reef fishes.Oceanography and Marine Biology: an Annual Review 2003 , 41,
279-309.