REFERENCES
1.
Allen, G. (1999). Marine fishes of south-east Asia. Periplus Editions (HK) LTD .
2.
Allgeier, J.E., Burkepile, D.E. & Layman, C.A. (2017). Animal pee in the sea: consumer-mediated nutrient dynamics in the world’s changing oceans. Global Change Biology , 23, 2166-2178.
3.
Azzurro, E., Tuset, V.M., Lombarte, A., Maynou, F., Simberloff, D., Rodríguez-Pérez, A. et al. (2014). External morphology explains the success of biological invasions. Ecology Letters , 17, 1455-1463.
4.
Barrett, N. (1995). Short- and long-term movement patterns of six temperate reef fishes (Families Labridae and Monacanthidae).Marine and Freshwater Research , 46, 853-860.
5.
Bates, A.E., Pecl, G.T., Frusher, S., Hobday, A.J., Wernberg, T., Smale, D.A. et al. (2014). Defining and observing stages of climate-mediated range shifts in marine systems. Global Environmental Change , 26, 27-38.
6.
Bates, D., Maechler, M., Bolker, B., Walker, S., R.H.B, C., Signmann, H.et al. (2020). Package ’lme4’: Linear Mixed-Effects Models using ’Eigen’ and S4.
7.
Bennett, S., Wernberg, T., Harvey, E.S., Santana-Garcon, J. & Saunders, B.J. (2015). Tropical herbivores provide resilience to a climate-mediated phase shift on temperate reefs. Ecol Lett , 18, 714-723.
8.
Bulleri, F., Marzinelli, E.M., Voerman, S.E. & Gribben, P.E. (2020). Propagule composition regulates the success of an invasive seaweed across a heterogeneous seascape. Journal of Ecology , 108, 1061-1073.
9.
Castro, L.C., Cetina-Heredia, P., Roughan, M., Dworjanyn, S., Thibaut, L., Chamberlain, M.A. et al. (2020). Combined mechanistic modelling predicts changes in species distribution and increased co-occurrence of a tropical urchin herbivore and a habitat-forming temperate kelp. Diversity and Distributions , 26, 1211-1226.
10.
Chen, I.-C., Hill, J.K., Ohlemüller, R., Roy, D.B. & Thomas, C.D. (2011). Rapid Range Shifts of Species Associated with High Levels of Climate Warming. Science , 333, 1024-1026.
11.
Clavel, J., Julliard, R. & Devictor, V. (2011). Worldwide decline of specialist species: toward a global functional homogenization?Frontiers in Ecology and the Environment , 9, 222-228.
12.
Daskalova, G.N., Myers-Smith, I.H., Bjorkman, A.D., Blowes, S.A., Supp, S.R., Magurran, A.E. et al. (2020). Landscape-scale forest loss as a catalyst of population and biodiversity change. Science , 368, 1341-1347.
13.
Di Lorenzo, M., Guidetti, P., Di Franco, A., Calò, A. & Claudet, J. (2020). Assessing spillover from marine protected areas and its drivers: A meta-analytical approach. Fish and Fisheries , 21, 906-915.
14.
Dornelas, M., Gotelli, N.J., Shimadzu, H., Moyes, F., Magurran, A.E. & McGill, B.J. (2019). A balance of winners and losers in the Anthropocene. Ecology Letters , 22, 847-854.
15.
Du, F., Xu, X., Zhang, X., Sui, Y., SHAO, M., Hu, L. et al.(2012). The relationship between aboveground biomass and voronoi area od coexisting species in an old-field community. Polish Journal of Ecology , 60, 479-489.
16.
Edgar, G.J., Barrett, N.S. & Morton, A.J. (2004). Patterns of Fish Movement on Eastern Tasmanian Rocky Reefs. Environmental Biology of Fishes , 70, 273-284.
17.
Farré, M., Tuset, V.M., Maynou, F., Recasens, L. & Lombarte, A. (2013). Geometric morphology as an alternative for measuring the diversity of fish assemblages. Ecological Indicators , 29, 159-166.
18.
Filbee-Dexter, K. & Wernberg, T. (2018). Rise of Turfs: A New Battlefront for Globally Declining Kelp Forests. BioScience , 68, 64-76.
19.
Finderup Nielsen, T., Sand-Jensen, K., Dornelas, M. & Bruun, H.H. (2019). More is less: net gain in species richness, but biotic homogenization over 140 years. Ecology Letters , 22, 1650-1657.
20.
Froese, R. & Pauly, D. (2000). FishBase 2000: concepts, design and data sources. ICLARM, Los Baños, Laguna, Philippines , 344.
21.
Fulton, C.J., Noble, M.N., Radford, B., Gallen, C. & Harasti, D. (2016). Microhabitat selectivity underpins regional indicators of fish abundance and replenishment. Ecological Indicators , 70, 222-231.
22.
Graham, N.A.J., Wilson, S.K., Jennings, S., Polunin, N.V.C., Robinson, J., Bijoux, J.P. et al. (2007). Lag Effects in the Impacts of Mass Coral Bleaching on Coral Reef Fish, Fisheries, and Ecosystems.Conserv Biol , 21, 1291-1300.
23.
Harasti, D. & Malcolm, H. (2013). Distribution, relative abundance and size composition of the threatened serranid Epinephelus daemelii in New South Wales, Australia. Journal of Fish Biology , 83, 378-395.
24.
Hay, M.E. (1991). Fish-seaweed interactions on Coral Reefs: Effects of herbivorous Fishes and Adaptations of Their Prey. The Ecology of Fishes on Coral Reefs , 69-119.
25.
Hiddink, J.G. & Ter Hofstede, R. (2008). Climate induced increases in species richness of marine fishes. Global Change Biology , 14, 453-460.
26.
Hobday, A.J. & Pecl, G.T. (2014). Identification of global marine hotspots: sentinels for change and vanguards for adaptation action.Reviews in Fish Biology and Fisheries , 24, 415-425.
27.
Holland, M.M., A., E.J., Verges, A. & Suthers, I.M. (2020). Latitudinal patterns in trophic structure of temperate reef-associated fishes and predicted consequences of climate change. Fish and Fisheries , In Press.
28.
Horta e Costa, B., Assis, J., Franco, G., Erzini, K., Henriques, M., Gonçalves, E.J. et al. (2014). Tropicalization of fish assemblages in temperate biogeographic transition zones. Marine Ecology Progress Series , 504, 241-252.
29.
Hughes, T.P., Carpenter, S., Rockström, J., Scheffer, M. & Walker, B. (2013). Multiscale regime shifts and planetary boundaries. Trends in Ecology & Evolution , 28, 389-395.
30.
Jackson, M.C. & Britton, J.R. (2014). Divergence in the trophic niche of sympatric freshwater invaders. Biological Invasions , 16, 1095-1103.
31.
Kassen, R. (2002). The experimental evolution of specialists, generalists, and the maintenance of diversity. Journal of Evolutionary Biology , 15, 173-190.
32.
Krumhansl, K.A. & Scheibling, R.E. (2012). Production and fate of kelp detritus. Marine Ecology Progress Series , 467, 281-302.
33.
Laliberté, E. & Legendre, P. (2010). A distance-based framework for measuring functional diversity from multiple traits. Ecology , 91, 299-305.
34.
Laliberté, E., Legendre, P. & Shipley, B. (2014). FD: measuring functional diversity from multiple traits, and other tools for functional ecology. R package version 1.0-12 .
35.
Last, P.R., White, W.T., Gledhill, D.C., Hobday, A.J., Brown, R., Edgar, G.J. et al. (2011). Long-term shifts in abundance and distribution of a temperate fish fauna: a response to climate change and fishing practices. Global Ecology and Biogeography , 20, 58-72.
36.
Magurran, A.E., Dornelas, M., Moyes, F., Gotelli, N.J. & McGill, B. (2015). Rapid biotic homogenization of marine fish assemblages.Nature Communications , 6, 8405.
37.
Malcolm, H.A. & Ferrari, R. (2019). Strong fish assemblage patterns persist over sixteen years in a warming marine park, even with tropical shifts. Biological Conservation , 232, 152-163.
38.
Malcolm, H.A., Gladstone, W., Lindfield, S., Wraith, J. & Lynch, T.P. (2007). Spatial and temporal variation in reef fish assemblages of marine parks in New South Wales, Australia—baited video observations. Marine Ecology Progress Series , 350, 277-290.
39.
Malcolm, H.A., Jordan, A. & Smith, S.D.A. (2010). Biogeographical and cross-shelf patterns of reef fish assemblages in a transition zone.Marine Biodiversity , 40, 181-193.
40.
Morton, J.K., Platell, M.E. & Gladstone, W. (2008). Differences in feeding ecology among three co-occurring species of wrasse (Teleostei: Labridae) on rocky reefs of temperate Australia. Marine Biology , 154, 577-592.
41.
Pacioglu, O., Theissinger, K., Alexa, A., Samoilă, C., Sîrbu, O.-I., Schrimpf, A. et al. (2020). Multifaceted implications of the competition between native and invasive crayfish: a glimmer of hope for the native’s long-term survival. Biological Invasions , 22, 827-842.
42.
Pecl, G.T., Araujo, M.B., Bell, J.D., Blanchard, J., Bonebrake, T.C., Chen, I.C. et al. (2017). Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being.Science , 355.
43.
Pinsky, M.L. (2019). Species coexistence through competition and rapid evolution. Proceedings of the National Academy of Sciences , 116, 2407-2409.
44.
Poloczanska, E.S., Brown, C.J., Sydeman, W.J., Kiessling, W., Schoeman, D.S., Moore, P.J. et al. (2013). Global imprint of climate change on marine life. Nature Climate Change , 3, 919.
45.
RCoreTeam (2020). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna .
46.
Ridgway, K.R. & Hill, J.K. (2012). East Australian Current. In A Marine Climate Change Impacts and Adaptation Report for Australia 2012.
47.
Robinson, L.M., Gledhill, D.C., Moltschaniwskyj, N.A., Hobday, A.J., Frusher, S., N.Barrett et al. (2015). Rapid assessment of an ocean warming hotspot reveals “high” confidence in potential species’ range extensions. Global Environmental Change , 31, 28-37.
48.
Rohlf, F.J. (2004). tpsDig2 2.31 and tpsUtil. Department of ecology and evolution. Stony Brook, NY: State University of New York .
49.
Rohlf, F.J. (2015). tps Relative Warps v1.70. Department of ecology and evolution. Stony Brook, NY: State University of New York. .
50.
Savage, J. & Vellend, M. (2015). Elevational shifts, biotic homogenization and time lags in vegetation change during 40 years of climate warming. Ecography , 38, 546-555.
51.
Smith, S.M., Fox, R.J., Donelson, J.M., Head, M.L. & Booth, D.J. (2016). Predicting range-shift success potential for tropical marine fishes using external morphology. Biology Letters , 12, 20160505.
52.
Sunday, J.M., Pecl, G.T., Frusher, S., Hobday, A.J., Hill, N., Holbrook, N.J. et al. (2015). Species traits and climate velocity explain geographic range shifts in an ocean-warming hotspot. Ecol Lett , 18, 944-953.
53.
Svenning, J.-C., Gravel, D., Holt, R.D., Schurr, F.M., Thuiller, W., Münkemüller, T. et al. (2014). The influence of interspecific interactions on species range expansion rates. Ecography , 37, 1198-1209.
54.
Troast, B., Paperno, R. & Cook, G.S. (2020). Multidecadal shifts in fish community diversity across a dynamic biogeographic transition zone.Diversity and Distributions , 26, 93-107.
55.
Truong, L., Suthers, I.M., Cruz, D.O. & Smith, J.A. (2017). Plankton supports the majority of fish biomass on temperate rocky reefs.Marine Biology , 164, 73.
56.
Tupper, M. & Boutilier, R.G. (1997). Effects of habitat on settlement, growth, predation risk and survival of a temperate reef fish.Marine Ecology Progress Series , 151, 225-236.
57.
Turner, R. (2020). Package ’deldir’. Delaunay Triangulation and Dirichlet (Voronoi) Tesselation.
58.
Tuya, F., Wernberg, T. & Thomsen, M.S. (2009). Habitat structure affect abundances of labrid fishes across temperate reefs in south-western Australia. Environmental Biology of Fishes , 86, 311-319.
59.
van Kleunen, M., Weber, E. & Fischer, M. (2010). A meta-analysis of trait differences between invasive and non-invasive plant species.Ecol Lett , 13, 235-245.
60.
Vergés, A., Doropoulos, C., Malcolm, H.A., Skye, M., Garcia-Pizá, M., Marzinelli, E.M. et al. (2016). Long-term empirical evidence of ocean warming leading to tropicalization of fish communities, increased herbivory, and loss of kelp. Proceedings of the National Academy of Sciences , 113, 13791-13796.
61.
Vergés, A., McCosker, E., Mayer-Pinto, M., Coleman, M.A., Wernberg, T., Ainsworth, T. et al. (2019). Tropicalisation of temperate reefs: Implications for ecosystem functions and management actions.Functional Ecology , 33, 1000-1013.
62.
Vergés, A., Tomas, F., Cebrian, E., Ballesteros, E., Kizilkaya, Z., Dendrinos, P. et al. (2014). Tropical rabbitfish and the deforestation of a warming temperate sea. J Ecol , 102, 1518-1527.
63.
Wallingford, P.D., Morelli, T.L., Allen, J.M., Beaury, E.M., Blumenthal, D.M., Bradley, B.A. et al. (2020). Adjusting the lens of invasion biology to focus on the impacts of climate-driven range shifts.Nature Climate Change , 10, 398-405.
64.
Walther, G.-R., Roques, A., Hulme, P.E., Sykes, M.T., Pyšek, P., Kühn, I. et al. (2009). Alien species in a warmer world: risks and opportunities. Trends in Ecology & Evolution , 24, 686-693.
65.
Wardle, D.A., Bardgett, R.D., Callaway, R.M. & Van der Putten, W.H. (2011). Terrestrial Ecosystem Responses to Species Gains and Losses.Science , 332, 1273-1277.
66.
Wernberg, T., Coleman, M.A., Babcock, R.C., Bell, S.Y., Bolton, J.J., Connell, S.D. et al. (2019). Chapter 6 Biology and Ecology of the Globally Significant Kelp Ecklonia radiatanull. Taylor & Francis.
67.
Wilson, S.K., Bellwood, D.R., Choat, J.H. & Furnas, M.J. (2003). Detritus in the epilithic algal matrix and its use by coral reef fishes.Oceanography and Marine Biology: an Annual Review 2003 , 41, 279-309.