References
Adlassnig W., Weiss Y.S., Sassmann S., Steinhauser G., Hofhansl F.,
Baumann N., Lichtscheidl I.K.,& Lang I. (2016). The copper spoil heap
Knappenberg, Austria, as a model for metal habitats – Vegetation,
substrate and contamination. Science of The Total Environment, 563–564:
1037-1049
Aikawa Y., Nagano I., Sakamoto S., Nishiyama M., & Matsumoto S. (1999).
Contents of heavy metal elements in copper mosses: Scopelophila
ligulata , Scopelophila cataractae , and Mielichhoferia
japonica and their substrates. Soil Sci. Plant Nutr., 45: 835–842
Anderson J.T., Willis J.H., & Mitchell-Olds T. (2011). Evolutionary
genetics of plant adaptation. Trends Genet., 27(7): 258-266.
Antonovics J., Bradshaw A.D., & Turner R.G. (1971). Heavy metal
tolerance in plants. Adv Ecol Res 7:1–85.
Antreich S., Sassmann S., & Lang I. (2016). Limited accumulation of
copper in heavy metal adapted mosses. Plant Physiology and Biochemistry,
101: 141-148.
Ares A., Aboal J.R., Carballeira A., Giordano S., Adamo P., Fernandez
J.A. (2014). Moss bag biomonitoring: A methodological review. Science of
the Total Environment, 475: 153-154
Ares Á., Itouga M., Kato Y., & Sakakibara H. (2018). Differential metal
tolerance and accumulation patterns of Cd, Cu, Pb and Zn in the
liverwort Marchantia polymorpha L. Bull. Environ. Contam.
Toxicol., 100(3): 444‐450
Arnold P.A., Kruuk L.E.B., & Nicotra A.B. (2019). How to analyse plant
phenotypic plasticity in response to a changing climate. New Phytol,
222: 1235-1241.
Atherton I., Bosanquet S., Lawley M. (2010). Mosses and Liverworts of
Britain and Ireland – a field guide. Eds: Atherton I., Bosanquet S.,
Lawley M. Latimer Trend & Co. Ltd, Plymouth, pp 354.
Baker A.J.M. (1981). Accumulators and excluders-strategies in the
response of plants to heavy metals. J. Plant Nutr., 3: 643–654.
Baker A.J.M. (1987). Metal tolerance. New Phytologist, 106: 93-111.
Balkan M.A. (2016). Sex-specific fungal communities of the dioicous mossCeratodon purpureus . Dissertations and Theses. Paper 2658.
Benjamini Y. & Hochberg Y. (1995). Controlling the false discovery
rate: a practical and powerful approach to multiple testing. Journal of
the Royal Statistical Society Series B, 57, 289–300.
Bell G., Lechowicz M.J., Appenzeller A., Chandler M., DeBlois E.,
Jackson L., Mackenzie B., Preziosi R., Schallenberg M., & Tinker N.
(1993). The spatial structure of the physical environment. Oecologia,
96: 114-121.
Bellini E., Maresca V., Betti C., Castiglione M. R., Fontanini D.,
Capocchi A., Sorce C., Borsò M., Bruno L., Sorbo S., Basile,A., Sanità
di Toppi L. (2020). The moss Leptodictyum riparium counteracts
severe cadmium stress by activation of glutathione transferase and
phytochelatin synthase, but slightly by phytochelatins. International
Journal of Molecular Sciences, 21(5): 1583.
Bisang I., & Hedenäs L. (2005). Sex ratio patterns in dioicous
bryophytes re-visited. Journal of Bryology 27: 207–219.
Bothe H., & Slomka A. (2017). Divergent biology of facultative heavy
metal plants. Journal of Plant Physiology, 219: 45-61.
Box GE.P. & Cox D.R. (1964). An Analysis of Transformations. Journal of
the Royal Statistical Society. Series B (Methodological), 26(2): 211-252
Bowker M.A., Stark L.R., McLetchie D.N., & Mishler B.D. (2000). Sex
expression, skewed sex ratios, and microhabitat distribution in the
dioecious desert moss Syntrichia caninervis (Pottiaceae). Am. J.
Bot., 87(4): 517‐526.
Boyd R.S. (2004). Ecology of metal hyperaccumulation. New Phytologist,
162: 563–567.
Bradl H., editor (2002). Heavy Metals in the Environment: Origin,
Interaction and Remediation Volume 6. London: Academic Press.
Bradshaw A.D. (1965). Evolutionary significance of phenotypic plasticity
in plants. Adv. Genet., 13: 115–155.
Bradshaw A.D. (2006). Unravelling phenotypic plasticity – why should we
bother? New Phytologist 170: 644–648.
Briggs D. (1972). Population differentiation in Marchantia
polymorpha L. in various lead pollution levels. Nature 238:166-167
Brooks R.R., & Malaisse F. (1985). The heavy metal‐tolerant flora of
southcentral Africa - a multidisciplinary approach. Balkema, Rotterdam,
The Netherlands.
Brown D.H. & House K.L. (1978). Evidence of a copper tolerant ecotype
of the hepatic Solenostomum crenulatum . Ann. Bot., 42:1383-1392.
Brümelis G., & Brown D.H. (1997). Movement of metals to new growing
tissue in the moss Hylocomium splendens (Hedw.) BSG. Ann. Bot.
79: 679-686.
Burtscher W.P., List M.A., Payton A.C., McDaniel S.F., & Carey S.B.
(2020). Area from image analyses accurately estimates dry-weight biomass
of juvenile moss tissue. bioRxiv 2020.03.20.000539
Cappa J.J., & Pilon-Smits E.A.H. (2014). Evolutionary aspects of
elemental hyperaccumulation. Planta, 239: 267-275.
Carginale V., Sorbo S., Capasso C., Trinchella F., Cafiero G., Basile A.
(2004). Accumulation, localisation, and toxic effects of cadmium in the
liverwort Lunularia cruciata . Protoplasma, 223: 53-61.
Catalá M., Gasulla F., Pradas del Real A.E., García-Breijo F.,
Reig-Armiñana J., Barreno E. (2010). Fungal-associated NO is involved in
the regulation of oxidative stress during rehydration in lichen
symbiosis. BMC Microbiol. 10: 297.
Cogolludo J., Estébanez B., & Medina N.G. (2017). The effects of
experimentally supplied lead nitrate on three common moss Mediterranean
moss species. Environm. Sci. Poll. Res., 24: 26194-26205.
Cove D.J., Perroud P.F., Charron A.J., McDaniel S.F., Khandelwal A., &
Quatrano R.S. (2009). Culturing the moss Physcomitrella patens .
Cold Spring Harbor Laboratory Press, New York, NY.
Cuming A.C. (2009). Moss as a model system for plant stress responses.
Chapter 2, In: Plant stress biology: from genomics to systems biology.
Ed.: Hirt H. WILLEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Crum H.A., & Anderson L.E. (1981). Mosses of eastern North America.
Columbia University Press, New York, NY.
Dos Santos W. L., Alvarenga L.D.P., & PôrtO K. C. (2018). Sexual
dimorphism, vegetative growth and reproductive investment in the
rhizautoicous moss Fissidens flaccidus (Fissidentaceae,
Bryopsida). Cryptogamie, Bryologie, 39 (2): 271-281.
Drenovsky R.E., Grewell B.J., D’Antonio C.M., Funk J.L., James J.J.,
Molinari N., Parker I.M. & Richards C.L. (2012). A functional trait
perspective on plant invasion: invasiveness to impacts in a changing
world. Annals of Botany 110(1): 141-153.
Du Z.Y. & Bramlage W.J. (1992). Modified thiobarbituric acid assay for
measuring lipid oxidation in sugar-rich plant-tissue extracts. J. Agric.
Food Chem., 40: 1566-1570.
Dunham E.M. (1951). How to know the mosses: a popular guide to the
mosses of the United States. Boston, MA: The Mosher Press.
Ernst W.O. (2006). Evolution of metal tolerance in higher plants. For.
Snow Landsc. Res. 80, 3: 251–274
Esposito S., Loppi S., Monaci F., Paoli L., Vannini A., Sorbo S.,
Maresca V., Fusaro L., Asadi karam E., Lentini M., De Lillo A., Conte
D., Cianciullo P., Basile A. (2018). In-field and in-vitro study of the
moss Leptodictyum riparium as bioindicator of toxic metal
pollution in the aquatic environment: ultrastructural damage, oxidative
stress and HSP70 induction. PloS One, 13 (4): e0195717
Fernández J.A., Boquete M.T., Carballeira A., & Aboal J.R. (2015). A
critical review of protocols for moss biomonitoring of atmospheric
deposition: sampling and sample preparation. Science of the Total
Environment, 517: 132-150
Geng Y., Pan X., Xu C., Zhang W.J., Li B., Chen J.K, Lu B.R:, Song Z.P.
(2007). Phenotypic plasticity rather than locally adapted ecotypes
allows the invasive alligator weed to colonize a wide range of habitats.
Biol. Invasions, 9: 245-256.
Glime, J. M. (2017a). Limiting Factors and Limits of Tolerance. Chapt.
6-1. In: Glime, J. M. Bryophyte Ecology. Volume 1.http://www.bryoecol.mtu.edu/
Glime, J. M. (2017b). Life Cycles: Surviving Change. Chapt. 2-2. In:
Glime, J. M. Bryophyte Ecology. Volume 1.http://www.bryoecol.mtu.edu/
Goolsby E.W., & Mason C.M. (2015). Toward a more physiologically and
evolutionarily relevant definition of metal hyperaccumulation in plants.
Front Plant Sci., 6: 33.
He Z.L., Yang X.E., & Stoffella P.J. (2005). Trace elements in
agroecosystems and impacts on the environment. J Trace Elem Med Biol,
19(2-3): 125-40.
Heath R.L. & Packer K. (1968). Photoperoxidation in isolated
chloroplast. I. Kinetics and stoichiometry of fatty acid peroxidation.
Arch. Biochem. Biophys. 125, 189.
Henn J.J., Buzzard V., Enquist B.J., Halbritter A.H., Klanderud K.,
Maitner B.S., Michaletz S.T., Pötsch C., Seltzer L., Telford R.J., Yang
Y., Zhang L., Vandvik V. (2018). Intraspecific trait variation and
phenotypic plasticity mediate alpine plant species response to climate
change. Frontiers in Plant Science, 9: 1548
Holá E., Vesalainen T., Těšitel J., & Laaka-Lindberg S. (2014). Sex
ratio, sex-specific pattern in vegetative growth and gemma production in
an aquatic liverwort, Scapania undulata (Marchantiophyta:
Scapaniaceae). Botanical journal of the linnean society, 175(2):
229-241.
Horsley K., Stark L.R., & Mcletchie D.N. (2011). Does the silver mossBryum argenteum exhibit sex-specific patterns in vegetative
growth rate, asexual fitness or prezygotic reproductive investment?
Annals of Botany, 107(6): 897-907.
Hothorn T., Bretz F., & Westfall P. (2008). Simultaneous inference in
general parametric models. Biometrical Journal 50(3): 346-363.
Itouga M., Hayatsu M., Sato M., Tsuboi Y., Kato Y., Toyooka K., Suzuki
S., Nakatsuka S., Kawakami S., Kikuchi, J., Sakakibara H. (2017).
Protonema of the moss Funaria hygrometrica can function as a lead
(Pb) adsorbent. PLoS One, 12(12): e0189726.
Ireland R.R. (1982). Moss flora of the Maritime Provinces. Publications
in Botany No. 13. [Ottawa, ON]: National Museum of Natural Sciences.
738 p. [18662]
Jarup L. (2003). Hazards of heavy metal contamination. Br. Med. Bull.
68, 167–182.
Jules E.S, & Shaw A.J. (1994). Adaptation to metal-contaminated soils
in populations of the moss, Ceratodon purpureus : vegetative
growth and reproductive expression. American Journal of Botany, 81(6):
791-797.
Kelly S.A., Panhuis T.M., & Stoehr A.M. (2012). Phenotypic plasticity:
molecular mechanisms and adaptive significance. Compr. Physiol., 2(2):
1417-1439.
Kobayashi F., Kofuji R., Yamashita Y., & Nakamura Y. (2006). A novel
treatment system of wastewater contaminated with copper by a moss,
Biochem. Eng. J. 28: 295–298.
Konno H., Nakashima S., & Katoh K. (2010). Metal-tolerant mossScopelophila cataractae accumulates copper in the cell wall
pectin of the protonema. J Plant Physiol.,167(5): 358‐364
Kovácik J., Dresler S., & Babula P. (2020). Long-term impact of cadmium
in protonema cultures of Physcomitrella patens . Ecotoxicology and
Environmental Safety, 193: 110333.
Kruckeberg A.R. & Kruckeberg, A.L. (1990). Endemic metallophytes: their
taxonomic, genetic, and evolutionary attributes. In: Heavy metal
tolerance in plants: evolutionary aspects, Ed. Shaw A.J. pp.301-312
Krzeslowska M., Lenartowska M., Mellerowicz E.J., Samardakiewicz S.,
Wozny A. (2009). Pectinous cell wall thickenings formation – a response
of moss protonemata cells to lead. Environ Exp Bot, 65: 119–31.
Lázaro-Nogal A., Matesanz S., Godoy A., Pérez-Trautman F., Gianoli E.
and Valladares F. (2015). Environmental heterogeneity leads to higher
plasticity in dry-edge populations of a semi-arid Chilean shrub:
insights into climate change responses. J Ecol, 103: 338–350.
DOI:10.1111/1365-2745.12372
Lewis S.L., & Maslin, M.A. (2015). Defining the Anthropocene. Nature,
519(7542): 171–180
Liang L., Tang H., Deng Z., Liu Y., Chen X., Wang H. (2018). Ag
nanoparticles inhibit the growth of the bryophyte, Physcomitrella
patens . Ecotoxicol Environ Saf., 164: 739‐748.
Macnair M.R. (1987). Heavy metal tolerance in plants: a model
evolutionary system. Trends in Ecology and Evolution, 2(12): 354-359.
Maestri E., Marmiroli M., Visioli G., & Marmiroli N. (2010) Metal
tolerance and hyperaccumulation: costs and trade-offs between traits and
environment. Environ Exp Bot 68:1–13
Marks R.A., Burton J.F., & Mcletchie D.N. (2016). Sex differences and
plasticity in dehydration tolerance: insight from a tropical liverwort.
Annals of Botany, 118(2): 347-356
McDaniel S.F., Atwood J., & Burleigh J.G. (2012). Recurrent evolution
of dioecy in bryophytes. Evolution, 67(2): 567–572.
McIntyre P.J., & Strauss S.Y. (2014). Phenotypic and transgenerational
plasticity promote local adaptation to sun and shade environments. Evol.
Ecol., 28: 229-246.
Melo V.F., Batista A.H., Gilkes R.J., & Rate A.W. (2016). Relationship
between heavy metals and minerals extracted from soil clay by standard
and novel acid extraction procedures. Environ. Monit. Assess., 188, 668.
Moore J.D. (2017). Sexual dimorphism in the moss Bryum argenteumand its implications for sex ratio bias. Theses and Dissertations,
Biology, 43.
Nakajima H., Itoh K., Otake H., & Fujimoto K. (2011). Spectral
properties of the Cu-hyperaccumulating moss Scopelophila
cataractae . Journal of Photochemistry and Photobiology B: Biology,
104(3): 467-472
Nicotra A.B., Atkin O.K., Bonser S.P., Davidson A.M., Finnegan E.J.,
Mathesius U., Poot P., Purugganan M.D., Richards C.L., Valladares F.,
van Kleunen M. (2010). Plant phenotypic plasticity in a changing
climate. Trends in Plant Science 15: 684–692
Nomura T., & Haezawa S. (2011). Regulation of gemma formation in the
copper moss Scopelophila cataractae by environmental copper
concentrations. J. Plant Res., 124: 631-638.
Onianwa P.C. (2001) Monitoring atmospheric metal pollution: a review of
the use of mosses as indicators. Environ Monit Assess 71:13–50
Parmesan C., & Hanley M.E. (2015). Plants and climate change:
complexities and surprises. Annals of Botany, 11(6): 849-864.
Pauwels M., Frérot H., Bonnin I., & Saumitou-Laprade P. (2006). A
broad-scale analysis of population differentiation for Zn tolerance in
an emerging model species for tolerance study, Arabidopsis
halleri (Brassicaceae). Journal of Evolutionary Biology, 19: 1838–180.
Pigliucci M. (2001). Environmental Heterogeneity: Temporal and Spatial.
eLS. DOI: 10.1038/npg.els.0001766.
R Core Team, 2018. R: A language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna, Austria.
https://www.R-project.org/
RStudio Team (2019). RStudio: Integrated Development for R. RStudio,
Inc., Boston, MA URLhttp://www.rstudio.com/
Reeves D.R., Baker A.J.M., Borhidi A., & Berazaín R. (1996).
Nickel-accumulating plants from the ancient serpentine soils of Cuba.
New Phytologist, 133: 217-224
Reeves D.R., Baker A.J., Jaffré T., Erskine P.D., Echevarria G., & van
der Ent A. (2017). A global database for plants that hyperaccumulate
metal and metalloid trace elements. New Phytologist, 218: 407-411.
Renzaglia K.S., Duff R.J.T., Nickrent D.L., & Garbary D.J. (2000).
Vegetative and reproductive innovations of early land plants:
implications for a unified phylogeny. Philos Trans R Soc Lond B Biol
Sci., 355(1398): 769‐793.
Renzaglia K.S., Schuette S., Duff R.J., Ligrone R., Shaw A.J., Mishler
B.D., & Duckett J.G. (2007). Bryophyte phylogeny: advancing the
molecular and morphological frontiers. The Bryologist 110(2): 179–213
Richards C.L., Bossdorf O., Muth N.Z., Gurevitch J., & Pigliucci M.
(2006). Jack of all trades, master of some? On the role of phenotypic
plasticity in plant invasions. Ecology Letters, 9: 981-993.
Richards C.L., Walls R., Bailey J.P., Parameswaran R., George T., &
Pigliucci M. (2008). Plasticity in salt tolerance traits allows for
invasion of salt marshes by Japanese knotweed s.l. (Fallopia
japonica and F. xbohemica , Polygonaceae). American Journal of
Botany 95: 931-942.
Richards C.L., White S.N., McGuire M.A., Franks S.J., Donovan L.A.,
Mauricio R. (2010). Plasticity, not adaptation to salt level, explains
variation along a salinity gradient in a salt marsh perennial. Estuaries
and Coasts: Special Feature on Genetic Structure and Adaptation in
Coastal Ecosystems 33: 840-852.
Richter C., & Dainty J. (1989). Ion behaviour in plant cell walls.
Characterization of the Sphagnum russowii cell wall ion
exchanger. Can J Bot, 67: 451–9.
Rosenstiel T., Shortlidge E., Melnychenko A., Pankow J.F., & Eppley
S.M. (2012). Sex-specific volatile compounds influence
microarthropod-mediated fertilization of moss. Nature, 489: 431–433.
Sandhi A., Landberg T., & Greger M. (2018). Phytofiltration of arsenic
by aquatic moss (Warnstorfia fluitans ). Environ. Pollut., 237:
1098-1105.
Satake K., Shibata K., Nishikawa M., & Fuwa K. (1998). Copper
accumulation and location in the moss Scopelophila cataractae , J.
Bryol. 15: 353–376.
Schlichting C.D. (1986). The evolution of phenotypic plasticity in
plants. Annu. Rev. Ecol. Syst. 17: 667–693.
Schneider C.A., Rasband W.S., & Eliceiri K.W. (2012). NIH Image to
ImageJ: 25 years of image analysis. Nature methods 9(7): 671-675.
Shaw A.J. (1987). Evolution of heavy metal tolerance in bryophytes. II.
An ecological and experimental investigation of the ”Copper Moss,”Scopelophila cataractae (Pottiaceae). Amer. J. Bot. 74(6):
813-821. 1987
Shaw A.J., Antonovics J., & Anderson L.E. (1987). Inter- and
intraspecific variation of mosses in tolerance to copper and zinc.
Evolution, 41(6): 1312-1325.
Shaw A.J. (1988). Genetic variation for tolerance to copper and zinc
within and among populations of the moss, Funaria hygrometricaHedw. New Phytologist, 109: 211-222.
Shaw A. J. (1990). Heavy metal tolerance in plants: evolutionary
aspects. CRC Press, Boca Raton, Florida.
Shaw A.J., Jules E.S., & Beer S.C. (1991). Effects of metals on growth,
morphology, and reproduction of Ceratodon purpureus . The
Bryologist, 94(3): 270-277.
Shaw A.J. & Gaughan J.F. (1993). Control of sex ratios in haploid
populations of the moss, Ceratodon purpureus . American Journal of
Botany, 80(5): 584-591.
Shaw A.J. (1993a). Population biology of the rare copper mossScopelophila cataractae . Am J Bot 80(9):1034–1041
Shaw A.J. (1993b). Morphological uniformity among widely disjunct
populations of the rare ”copper moss,” Scopelophila cataractae(Pottiaceae). Systematic Botany, 18(3): 525-537
Shaw A.J. (1994). Adaptation to metals in widespread and endemic plants.
Environmental health perspectives, 102 Suppl 12(Suppl 12), 105–108.
Shaw A.J. (1995). Genetic biogeography of the rare “copper moss”Scopelophila cataractae (Pottiaceae). Pl. Syst. Evol., 197:
43-58.
Shaw A.J. & Beer S.C. (1999). Life-history variation in gametophyte
populations of the moss Ceratodon purpureus (Ditrichaceae). Am.
J. Bot., 86: 512–521
Sidhu M., & Brown D.H. (1996). A new laboratory technique for studying
the effects of heavy metals on bryophyte growth. Ann. Bot. 78: 711-717.
Simms E.L. (2000). Defining tolerance as a norm of reaction.
Evolutionary Ecology, 14: 563-570.
Singh O.V., Labana S., Pandey G., Budhiraja R., & Jain R.K. (2003).
Phytoremediation: an overview of metallic ion decontamination from soil.
Appl Microbiol Biotechnol 61: 405–412.
Slate M.L., Rosenstiel T.N., & Eppley S.M. (2017). Sex-specific
morphological and physiological differences in the moss Ceratodon
purpureus (Dicranales). Ann Bot., 120(5): 845‐854.
Stanković J.D., Sabovljević A.D., & Sabovljević M.S. (2018). Bryophytes
and heavy metals: a review, Acta Botanica Croatica, 77(2), 109-118
Stark L.R., Mcletchie D.N., & Mishler B. (2001). Sex expression and sex
dimorphism in sporophytic populations of the desert mossSyntrichia caninervis . Plant Ecology, 157(2): 183-196.
Steinnes E., Rühling Å., Lippo H., & Makinen A. (1997). Reference
materials for large scale metal deposition surveys. Accred. Qual. Assur.
2: 243-249.
Stieha C.R., Middleton A.R., Stieha J.K., Trott S.H., & Mcletchie D.N.
(2014). The dispersal process of asexual propagules and the contribution
to population persistence in Marchantia inflexa (Marchantiaceae).
American Journal of Botany, 101: 348–356
Sultan S. E. (1987). Evolutionary implications of phenotypic plasticity
in plants. Evol. Biol. 21: 127–178.
Sultan S.E. (2000). Phenotypic plasticity for plant development,
function and life history. Trends in Plant Science, 5(12): 537-542.
Sut-Lohmanna M., Jonczakb J., & Raaba T. (2020). Phytofiltration of
chosen metals by aquarium liverwort (Monosoleum tenerum ).
Ecotoxicology and Environmental Safety, 30: 109844.
Tilman D. & Lehman C. (2001). Human-caused environmental change: impact
on plant diversity and evolution. Proc. Natl. Acad. Sci. USA 98(10):
5433-5440.
Turner K.G., Fréville H., & Rieseberg L.H. (2015). Adaptive plasticity
and niche expansion in an invasive thistle. Ecol. Evol., 5: 3183-3197.
Vallack,H.W., & Rypdal K. (2019). The Global Atmospheric Pollution
Forum Air Pollutant Emission Inventory Manual. Version 6.0 May 2019
revision.
Vanderpoorten A., & Goffinet B. (2009). Introduction to Bryophytes.
Eds. Vanderpoorten A. and Goffinet B. Cambridge University Press.
Verbruggen N., Hermans C., & Schat H. (2009). Molecular mechanisms of
metal hyperaccumulation in plants. New Phytologist, 181: 759–776.
Vitousek P.M., Mooney H.A., Lubchenco J., & Melillo J.M. (1997). Human
domination of Earth’s ecosystems. Science, 277: 494-499.
Wells J.M., & Brown D.H. (1996). Mineral nutrient recycling within
shoots of the moss Rhytidiadelphus squarrosus in relation to
growth. J. Bryol. 19: 1-17.
Whiting, S.N., Reeves, R.D., Richards, D., Johnson, M.S., Cooke, J.A.,
Malaisse, F., Paton, A., Smith, J.A.C., Angle, J.S., Chaney, R.L.,
Ginocchio, R., Jaffré, T., Johns, R., McIntyre, T., Purvis, O.W., Salt,
D.E., Schat, H., Zhao, F.J. & Baker, A.J.M. (2004), Research priorities
for conservation of metallophyte biodiversity and their potential for
restoration and site remediation. Restoration Ecology, 12: 106-116.
Wickland D.E. (1984). Vegetation patterns in derelict heavy metal mine
sites in the North Carolina Piedmont. Ph.D. dissertation, University of
North Carolina, Chapel Hill.
Willi Y. & Hoffmann A.A. (2009). Demographic factors and genetic
variation influence population persistence under environmental change.
Journal of Evolutionary Biology, 22: 124-133.
Williams D.G., Mack R.N., & Black R.A. (1995). Ecophysiology of
introduced Pennisetum setaceum on Hawaii: the role of phenotypic
plas- ticity. Ecology 76: 1569–1580.
Wright J.W., Stanton M.L., & Scherson R. (2006) Local adaptation to
serpentine and non-serpentine soils in Collinsiasparsiflora . Evol Ecol Res 8:1–21
Table 1: Summary of the statistical analyses carried out for each of the
datasets in this study. For the common garden experiments, tests were
done by comparing the controls with each of the treatments performed,i.e. controls vs Cu-treated plants in common garden-Cu, and
controls vs Cd-treated plants in common garden-Cd. glm: generalized
linear model; NA(KW): no glm performed (due to the low number of
replicates), instead, a kruskal wallis (KW) test was used to compare
control vs. treated plants without considering the population effect.