References
Adlassnig W., Weiss Y.S., Sassmann S., Steinhauser G., Hofhansl F., Baumann N., Lichtscheidl I.K.,& Lang I. (2016). The copper spoil heap Knappenberg, Austria, as a model for metal habitats – Vegetation, substrate and contamination. Science of The Total Environment, 563–564: 1037-1049
Aikawa Y., Nagano I., Sakamoto S., Nishiyama M., & Matsumoto S. (1999). Contents of heavy metal elements in copper mosses: Scopelophila ligulata , Scopelophila cataractae , and Mielichhoferia japonica and their substrates. Soil Sci. Plant Nutr., 45: 835–842
Anderson J.T., Willis J.H., & Mitchell-Olds T. (2011). Evolutionary genetics of plant adaptation. Trends Genet., 27(7): 258-266.
Antonovics J., Bradshaw A.D., & Turner R.G. (1971). Heavy metal tolerance in plants. Adv Ecol Res 7:1–85.
Antreich S., Sassmann S., & Lang I. (2016). Limited accumulation of copper in heavy metal adapted mosses. Plant Physiology and Biochemistry, 101: 141-148.
Ares A., Aboal J.R., Carballeira A., Giordano S., Adamo P., Fernandez J.A. (2014). Moss bag biomonitoring: A methodological review. Science of the Total Environment, 475: 153-154
Ares Á., Itouga M., Kato Y., & Sakakibara H. (2018). Differential metal tolerance and accumulation patterns of Cd, Cu, Pb and Zn in the liverwort Marchantia polymorpha L. Bull. Environ. Contam. Toxicol., 100(3): 444‐450
Arnold P.A., Kruuk L.E.B., & Nicotra A.B. (2019). How to analyse plant phenotypic plasticity in response to a changing climate. New Phytol, 222: 1235-1241.
Atherton I., Bosanquet S., Lawley M. (2010). Mosses and Liverworts of Britain and Ireland – a field guide. Eds: Atherton I., Bosanquet S., Lawley M. Latimer Trend & Co. Ltd, Plymouth, pp 354.
Baker A.J.M. (1981). Accumulators and excluders-strategies in the response of plants to heavy metals. J. Plant Nutr., 3: 643–654.
Baker A.J.M. (1987). Metal tolerance. New Phytologist, 106: 93-111.
Balkan M.A. (2016). Sex-specific fungal communities of the dioicous mossCeratodon purpureus . Dissertations and Theses. Paper 2658.
Benjamini Y. & Hochberg Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B, 57, 289–300.
Bell G., Lechowicz M.J., Appenzeller A., Chandler M., DeBlois E., Jackson L., Mackenzie B., Preziosi R., Schallenberg M., & Tinker N. (1993). The spatial structure of the physical environment. Oecologia, 96: 114-121.
Bellini E., Maresca V., Betti C., Castiglione M. R., Fontanini D., Capocchi A., Sorce C., Borsò M., Bruno L., Sorbo S., Basile,A., Sanità di Toppi L. (2020). The moss Leptodictyum riparium counteracts severe cadmium stress by activation of glutathione transferase and phytochelatin synthase, but slightly by phytochelatins. International Journal of Molecular Sciences, 21(5): 1583.
Bisang I., & Hedenäs L. (2005). Sex ratio patterns in dioicous bryophytes re-visited. Journal of Bryology 27: 207–219.
Bothe H., & Slomka A. (2017). Divergent biology of facultative heavy metal plants. Journal of Plant Physiology, 219: 45-61.
Box GE.P. & Cox D.R. (1964). An Analysis of Transformations. Journal of the Royal Statistical Society. Series B (Methodological), 26(2): 211-252
Bowker M.A., Stark L.R., McLetchie D.N., & Mishler B.D. (2000). Sex expression, skewed sex ratios, and microhabitat distribution in the dioecious desert moss Syntrichia caninervis (Pottiaceae). Am. J. Bot., 87(4): 517‐526.
Boyd R.S. (2004). Ecology of metal hyperaccumulation. New Phytologist, 162: 563–567.
Bradl H., editor (2002). Heavy Metals in the Environment: Origin, Interaction and Remediation Volume 6. London: Academic Press.
Bradshaw A.D. (1965). Evolutionary significance of phenotypic plasticity in plants. Adv. Genet., 13: 115–155.
Bradshaw A.D. (2006). Unravelling phenotypic plasticity – why should we bother? New Phytologist 170: 644–648.
Briggs D. (1972). Population differentiation in Marchantia polymorpha L. in various lead pollution levels. Nature 238:166-167
Brooks R.R., & Malaisse F. (1985). The heavy metal‐tolerant flora of southcentral Africa - a multidisciplinary approach. Balkema, Rotterdam, The Netherlands.
Brown D.H. & House K.L. (1978). Evidence of a copper tolerant ecotype of the hepatic Solenostomum crenulatum . Ann. Bot., 42:1383-1392.
Brümelis G., & Brown D.H. (1997). Movement of metals to new growing tissue in the moss Hylocomium splendens (Hedw.) BSG. Ann. Bot. 79: 679-686.
Burtscher W.P., List M.A., Payton A.C., McDaniel S.F., & Carey S.B. (2020). Area from image analyses accurately estimates dry-weight biomass of juvenile moss tissue. bioRxiv 2020.03.20.000539
Cappa J.J., & Pilon-Smits E.A.H. (2014). Evolutionary aspects of elemental hyperaccumulation. Planta, 239: 267-275.
Carginale V., Sorbo S., Capasso C., Trinchella F., Cafiero G., Basile A. (2004). Accumulation, localisation, and toxic effects of cadmium in the liverwort Lunularia cruciata . Protoplasma, 223: 53-61.
Catalá M., Gasulla F., Pradas del Real A.E., García-Breijo F., Reig-Armiñana J., Barreno E. (2010). Fungal-associated NO is involved in the regulation of oxidative stress during rehydration in lichen symbiosis. BMC Microbiol. 10: 297.
Cogolludo J., Estébanez B., & Medina N.G. (2017). The effects of experimentally supplied lead nitrate on three common moss Mediterranean moss species. Environm. Sci. Poll. Res., 24: 26194-26205.
Cove D.J., Perroud P.F., Charron A.J., McDaniel S.F., Khandelwal A., & Quatrano R.S. (2009). Culturing the moss Physcomitrella patens . Cold Spring Harbor Laboratory Press, New York, NY.
Cuming A.C. (2009). Moss as a model system for plant stress responses. Chapter 2, In: Plant stress biology: from genomics to systems biology. Ed.: Hirt H. WILLEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Crum H.A., & Anderson L.E. (1981). Mosses of eastern North America. Columbia University Press, New York, NY.
Dos Santos W. L., Alvarenga L.D.P., & PôrtO K. C. (2018). Sexual dimorphism, vegetative growth and reproductive investment in the rhizautoicous moss Fissidens flaccidus (Fissidentaceae, Bryopsida). Cryptogamie, Bryologie, 39 (2): 271-281.
Drenovsky R.E., Grewell B.J., D’Antonio C.M., Funk J.L., James J.J., Molinari N., Parker I.M. & Richards C.L. (2012). A functional trait perspective on plant invasion: invasiveness to impacts in a changing world. Annals of Botany 110(1): 141-153.
Du Z.Y. & Bramlage W.J. (1992). Modified thiobarbituric acid assay for measuring lipid oxidation in sugar-rich plant-tissue extracts. J. Agric. Food Chem., 40: 1566-1570.
Dunham E.M. (1951). How to know the mosses: a popular guide to the mosses of the United States. Boston, MA: The Mosher Press.
Ernst W.O. (2006). Evolution of metal tolerance in higher plants. For. Snow Landsc. Res. 80, 3: 251–274
Esposito S., Loppi S., Monaci F., Paoli L., Vannini A., Sorbo S., Maresca V., Fusaro L., Asadi karam E., Lentini M., De Lillo A., Conte D., Cianciullo P., Basile A. (2018). In-field and in-vitro study of the moss Leptodictyum riparium as bioindicator of toxic metal pollution in the aquatic environment: ultrastructural damage, oxidative stress and HSP70 induction. PloS One, 13 (4): e0195717
Fernández J.A., Boquete M.T., Carballeira A., & Aboal J.R. (2015). A critical review of protocols for moss biomonitoring of atmospheric deposition: sampling and sample preparation. Science of the Total Environment, 517: 132-150
Geng Y., Pan X., Xu C., Zhang W.J., Li B., Chen J.K, Lu B.R:, Song Z.P. (2007). Phenotypic plasticity rather than locally adapted ecotypes allows the invasive alligator weed to colonize a wide range of habitats. Biol. Invasions, 9: 245-256.
Glime, J. M. (2017a). Limiting Factors and Limits of Tolerance. Chapt. 6-1. In: Glime, J. M. Bryophyte Ecology. Volume 1.http://www.bryoecol.mtu.edu/
Glime, J. M. (2017b). Life Cycles: Surviving Change. Chapt. 2-2. In: Glime, J. M. Bryophyte Ecology. Volume 1.http://www.bryoecol.mtu.edu/
Goolsby E.W., & Mason C.M. (2015). Toward a more physiologically and evolutionarily relevant definition of metal hyperaccumulation in plants. Front Plant Sci., 6: 33.
He Z.L., Yang X.E., & Stoffella P.J. (2005). Trace elements in agroecosystems and impacts on the environment. J Trace Elem Med Biol, 19(2-3): 125-40.
Heath R.L. & Packer K. (1968). Photoperoxidation in isolated chloroplast. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 125, 189.
Henn J.J., Buzzard V., Enquist B.J., Halbritter A.H., Klanderud K., Maitner B.S., Michaletz S.T., Pötsch C., Seltzer L., Telford R.J., Yang Y., Zhang L., Vandvik V. (2018). Intraspecific trait variation and phenotypic plasticity mediate alpine plant species response to climate change. Frontiers in Plant Science, 9: 1548
Holá E., Vesalainen T., Těšitel J., & Laaka-Lindberg S. (2014). Sex ratio, sex-specific pattern in vegetative growth and gemma production in an aquatic liverwort, Scapania undulata (Marchantiophyta: Scapaniaceae). Botanical journal of the linnean society, 175(2): 229-241.
Horsley K., Stark L.R., & Mcletchie D.N. (2011). Does the silver mossBryum argenteum exhibit sex-specific patterns in vegetative growth rate, asexual fitness or prezygotic reproductive investment? Annals of Botany, 107(6): 897-907.
Hothorn T., Bretz F., & Westfall P. (2008). Simultaneous inference in general parametric models. Biometrical Journal 50(3): 346-363.
Itouga M., Hayatsu M., Sato M., Tsuboi Y., Kato Y., Toyooka K., Suzuki S., Nakatsuka S., Kawakami S., Kikuchi, J., Sakakibara H. (2017). Protonema of the moss Funaria hygrometrica can function as a lead (Pb) adsorbent. PLoS One, 12(12): e0189726.
Ireland R.R. (1982). Moss flora of the Maritime Provinces. Publications in Botany No. 13. [Ottawa, ON]: National Museum of Natural Sciences. 738 p. [18662]
Jarup L. (2003). Hazards of heavy metal contamination. Br. Med. Bull. 68, 167–182.
Jules E.S, & Shaw A.J. (1994). Adaptation to metal-contaminated soils in populations of the moss, Ceratodon purpureus : vegetative growth and reproductive expression. American Journal of Botany, 81(6): 791-797.
Kelly S.A., Panhuis T.M., & Stoehr A.M. (2012). Phenotypic plasticity: molecular mechanisms and adaptive significance. Compr. Physiol., 2(2): 1417-1439.
Kobayashi F., Kofuji R., Yamashita Y., & Nakamura Y. (2006). A novel treatment system of wastewater contaminated with copper by a moss, Biochem. Eng. J. 28: 295–298.
Konno H., Nakashima S., & Katoh K. (2010). Metal-tolerant mossScopelophila cataractae accumulates copper in the cell wall pectin of the protonema. J Plant Physiol.,167(5): 358‐364
Kovácik J., Dresler S., & Babula P. (2020). Long-term impact of cadmium in protonema cultures of Physcomitrella patens . Ecotoxicology and Environmental Safety, 193: 110333.
Kruckeberg A.R. & Kruckeberg, A.L. (1990). Endemic metallophytes: their taxonomic, genetic, and evolutionary attributes. In: Heavy metal tolerance in plants: evolutionary aspects, Ed. Shaw A.J. pp.301-312
Krzeslowska M., Lenartowska M., Mellerowicz E.J., Samardakiewicz S., Wozny A. (2009). Pectinous cell wall thickenings formation – a response of moss protonemata cells to lead. Environ Exp Bot, 65: 119–31.
Lázaro-Nogal A., Matesanz S., Godoy A., Pérez-Trautman F., Gianoli E. and Valladares F. (2015). Environmental heterogeneity leads to higher plasticity in dry-edge populations of a semi-arid Chilean shrub: insights into climate change responses. J Ecol, 103: 338–350. DOI:10.1111/1365-2745.12372
Lewis S.L., & Maslin, M.A. (2015). Defining the Anthropocene. Nature, 519(7542): 171–180
Liang L., Tang H., Deng Z., Liu Y., Chen X., Wang H. (2018). Ag nanoparticles inhibit the growth of the bryophyte, Physcomitrella patens . Ecotoxicol Environ Saf., 164: 739‐748.
Macnair M.R. (1987). Heavy metal tolerance in plants: a model evolutionary system. Trends in Ecology and Evolution, 2(12): 354-359.
Maestri E., Marmiroli M., Visioli G., & Marmiroli N. (2010) Metal tolerance and hyperaccumulation: costs and trade-offs between traits and environment. Environ Exp Bot 68:1–13
Marks R.A., Burton J.F., & Mcletchie D.N. (2016). Sex differences and plasticity in dehydration tolerance: insight from a tropical liverwort. Annals of Botany, 118(2): 347-356
McDaniel S.F., Atwood J., & Burleigh J.G. (2012). Recurrent evolution of dioecy in bryophytes. Evolution, 67(2): 567–572.
McIntyre P.J., & Strauss S.Y. (2014). Phenotypic and transgenerational plasticity promote local adaptation to sun and shade environments. Evol. Ecol., 28: 229-246.
Melo V.F., Batista A.H., Gilkes R.J., & Rate A.W. (2016). Relationship between heavy metals and minerals extracted from soil clay by standard and novel acid extraction procedures. Environ. Monit. Assess., 188, 668.
Moore J.D. (2017). Sexual dimorphism in the moss Bryum argenteumand its implications for sex ratio bias. Theses and Dissertations, Biology, 43.
Nakajima H., Itoh K., Otake H., & Fujimoto K. (2011). Spectral properties of the Cu-hyperaccumulating moss Scopelophila cataractae . Journal of Photochemistry and Photobiology B: Biology, 104(3): 467-472
Nicotra A.B., Atkin O.K., Bonser S.P., Davidson A.M., Finnegan E.J., Mathesius U., Poot P., Purugganan M.D., Richards C.L., Valladares F., van Kleunen M. (2010). Plant phenotypic plasticity in a changing climate. Trends in Plant Science 15: 684–692
Nomura T., & Haezawa S. (2011). Regulation of gemma formation in the copper moss Scopelophila cataractae by environmental copper concentrations. J. Plant Res., 124: 631-638.
Onianwa P.C. (2001) Monitoring atmospheric metal pollution: a review of the use of mosses as indicators. Environ Monit Assess 71:13–50
Parmesan C., & Hanley M.E. (2015). Plants and climate change: complexities and surprises. Annals of Botany, 11(6): 849-864.
Pauwels M., Frérot H., Bonnin I., & Saumitou-Laprade P. (2006). A broad-scale analysis of population differentiation for Zn tolerance in an emerging model species for tolerance study, Arabidopsis halleri (Brassicaceae). Journal of Evolutionary Biology, 19: 1838–180.
Pigliucci M. (2001). Environmental Heterogeneity: Temporal and Spatial. eLS. DOI: 10.1038/npg.els.0001766.
R Core Team, 2018. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/
RStudio Team (2019). RStudio: Integrated Development for R. RStudio, Inc., Boston, MA URLhttp://www.rstudio.com/
Reeves D.R., Baker A.J.M., Borhidi A., & Berazaín R. (1996). Nickel-accumulating plants from the ancient serpentine soils of Cuba. New Phytologist, 133: 217-224
Reeves D.R., Baker A.J., Jaffré T., Erskine P.D., Echevarria G., & van der Ent A. (2017). A global database for plants that hyperaccumulate metal and metalloid trace elements. New Phytologist, 218: 407-411.
Renzaglia K.S., Duff R.J.T., Nickrent D.L., & Garbary D.J. (2000). Vegetative and reproductive innovations of early land plants: implications for a unified phylogeny. Philos Trans R Soc Lond B Biol Sci., 355(1398): 769‐793.
Renzaglia K.S., Schuette S., Duff R.J., Ligrone R., Shaw A.J., Mishler B.D., & Duckett J.G. (2007). Bryophyte phylogeny: advancing the molecular and morphological frontiers. The Bryologist 110(2): 179–213
Richards C.L., Bossdorf O., Muth N.Z., Gurevitch J., & Pigliucci M. (2006). Jack of all trades, master of some? On the role of phenotypic plasticity in plant invasions. Ecology Letters, 9: 981-993.
Richards C.L., Walls R., Bailey J.P., Parameswaran R., George T., & Pigliucci M. (2008). Plasticity in salt tolerance traits allows for invasion of salt marshes by Japanese knotweed s.l. (Fallopia japonica and F. xbohemica , Polygonaceae). American Journal of Botany 95: 931-942.
Richards C.L., White S.N., McGuire M.A., Franks S.J., Donovan L.A., Mauricio R. (2010). Plasticity, not adaptation to salt level, explains variation along a salinity gradient in a salt marsh perennial. Estuaries and Coasts: Special Feature on Genetic Structure and Adaptation in Coastal Ecosystems 33: 840-852.
Richter C., & Dainty J. (1989). Ion behaviour in plant cell walls. Characterization of the Sphagnum russowii cell wall ion exchanger. Can J Bot, 67: 451–9.
Rosenstiel T., Shortlidge E., Melnychenko A., Pankow J.F., & Eppley S.M. (2012). Sex-specific volatile compounds influence microarthropod-mediated fertilization of moss. Nature, 489: 431–433.
Sandhi A., Landberg T., & Greger M. (2018). Phytofiltration of arsenic by aquatic moss (Warnstorfia fluitans ). Environ. Pollut., 237: 1098-1105.
Satake K., Shibata K., Nishikawa M., & Fuwa K. (1998). Copper accumulation and location in the moss Scopelophila cataractae , J. Bryol. 15: 353–376.
Schlichting C.D. (1986). The evolution of phenotypic plasticity in plants. Annu. Rev. Ecol. Syst. 17: 667–693.
Schneider C.A., Rasband W.S., & Eliceiri K.W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature methods 9(7): 671-675.
Shaw A.J. (1987). Evolution of heavy metal tolerance in bryophytes. II. An ecological and experimental investigation of the ”Copper Moss,”Scopelophila cataractae (Pottiaceae). Amer. J. Bot. 74(6): 813-821. 1987
Shaw A.J., Antonovics J., & Anderson L.E. (1987). Inter- and intraspecific variation of mosses in tolerance to copper and zinc. Evolution, 41(6): 1312-1325.
Shaw A.J. (1988). Genetic variation for tolerance to copper and zinc within and among populations of the moss, Funaria hygrometricaHedw. New Phytologist, 109: 211-222.
Shaw A. J. (1990). Heavy metal tolerance in plants: evolutionary aspects. CRC Press, Boca Raton, Florida.
Shaw A.J., Jules E.S., & Beer S.C. (1991). Effects of metals on growth, morphology, and reproduction of Ceratodon purpureus . The Bryologist, 94(3): 270-277.
Shaw A.J. & Gaughan J.F. (1993). Control of sex ratios in haploid populations of the moss, Ceratodon purpureus . American Journal of Botany, 80(5): 584-591.
Shaw A.J. (1993a). Population biology of the rare copper mossScopelophila cataractae . Am J Bot 80(9):1034–1041
Shaw A.J. (1993b). Morphological uniformity among widely disjunct populations of the rare ”copper moss,” Scopelophila cataractae(Pottiaceae). Systematic Botany, 18(3): 525-537
Shaw A.J. (1994). Adaptation to metals in widespread and endemic plants. Environmental health perspectives, 102 Suppl 12(Suppl 12), 105–108.
Shaw A.J. (1995). Genetic biogeography of the rare “copper moss”Scopelophila cataractae (Pottiaceae). Pl. Syst. Evol., 197: 43-58.
Shaw A.J. & Beer S.C. (1999). Life-history variation in gametophyte populations of the moss Ceratodon purpureus (Ditrichaceae). Am. J. Bot., 86: 512–521
Sidhu M., & Brown D.H. (1996). A new laboratory technique for studying the effects of heavy metals on bryophyte growth. Ann. Bot. 78: 711-717.
Simms E.L. (2000). Defining tolerance as a norm of reaction. Evolutionary Ecology, 14: 563-570.
Singh O.V., Labana S., Pandey G., Budhiraja R., & Jain R.K. (2003). Phytoremediation: an overview of metallic ion decontamination from soil. Appl Microbiol Biotechnol 61: 405–412.
Slate M.L., Rosenstiel T.N., & Eppley S.M. (2017). Sex-specific morphological and physiological differences in the moss Ceratodon purpureus (Dicranales). Ann Bot., 120(5): 845‐854.
Stanković J.D., Sabovljević A.D., & Sabovljević M.S. (2018). Bryophytes and heavy metals: a review, Acta Botanica Croatica, 77(2), 109-118
Stark L.R., Mcletchie D.N., & Mishler B. (2001). Sex expression and sex dimorphism in sporophytic populations of the desert mossSyntrichia caninervis . Plant Ecology, 157(2): 183-196.
Steinnes E., Rühling Å., Lippo H., & Makinen A. (1997). Reference materials for large scale metal deposition surveys. Accred. Qual. Assur. 2: 243-249.
Stieha C.R., Middleton A.R., Stieha J.K., Trott S.H., & Mcletchie D.N. (2014). The dispersal process of asexual propagules and the contribution to population persistence in Marchantia inflexa (Marchantiaceae). American Journal of Botany, 101: 348–356
Sultan S. E. (1987). Evolutionary implications of phenotypic plasticity in plants. Evol. Biol. 21: 127–178.
Sultan S.E. (2000). Phenotypic plasticity for plant development, function and life history. Trends in Plant Science, 5(12): 537-542.
Sut-Lohmanna M., Jonczakb J., & Raaba T. (2020). Phytofiltration of chosen metals by aquarium liverwort (Monosoleum tenerum ). Ecotoxicology and Environmental Safety, 30: 109844.
Tilman D. & Lehman C. (2001). Human-caused environmental change: impact on plant diversity and evolution. Proc. Natl. Acad. Sci. USA 98(10): 5433-5440.
Turner K.G., Fréville H., & Rieseberg L.H. (2015). Adaptive plasticity and niche expansion in an invasive thistle. Ecol. Evol., 5: 3183-3197.
Vallack,H.W., & Rypdal K. (2019). The Global Atmospheric Pollution Forum Air Pollutant Emission Inventory Manual. Version 6.0 May 2019 revision.
Vanderpoorten A., & Goffinet B. (2009). Introduction to Bryophytes. Eds. Vanderpoorten A. and Goffinet B. Cambridge University Press.
Verbruggen N., Hermans C., & Schat H. (2009). Molecular mechanisms of metal hyperaccumulation in plants. New Phytologist, 181: 759–776.
Vitousek P.M., Mooney H.A., Lubchenco J., & Melillo J.M. (1997). Human domination of Earth’s ecosystems. Science, 277: 494-499.
Wells J.M., & Brown D.H. (1996). Mineral nutrient recycling within shoots of the moss Rhytidiadelphus squarrosus in relation to growth. J. Bryol. 19: 1-17.
Whiting, S.N., Reeves, R.D., Richards, D., Johnson, M.S., Cooke, J.A., Malaisse, F., Paton, A., Smith, J.A.C., Angle, J.S., Chaney, R.L., Ginocchio, R., Jaffré, T., Johns, R., McIntyre, T., Purvis, O.W., Salt, D.E., Schat, H., Zhao, F.J. & Baker, A.J.M. (2004), Research priorities for conservation of metallophyte biodiversity and their potential for restoration and site remediation. Restoration Ecology, 12: 106-116.
Wickland D.E. (1984). Vegetation patterns in derelict heavy metal mine sites in the North Carolina Piedmont. Ph.D. dissertation, University of North Carolina, Chapel Hill.
Willi Y. & Hoffmann A.A. (2009). Demographic factors and genetic variation influence population persistence under environmental change. Journal of Evolutionary Biology, 22: 124-133.
Williams D.G., Mack R.N., & Black R.A. (1995). Ecophysiology of introduced Pennisetum setaceum on Hawaii: the role of phenotypic plas- ticity. Ecology 76: 1569–1580.
Wright J.W., Stanton M.L., & Scherson R. (2006) Local adaptation to serpentine and non-serpentine soils in Collinsiasparsiflora . Evol Ecol Res 8:1–21
Table 1: Summary of the statistical analyses carried out for each of the datasets in this study. For the common garden experiments, tests were done by comparing the controls with each of the treatments performed,i.e. controls vs Cu-treated plants in common garden-Cu, and controls vs Cd-treated plants in common garden-Cd. glm: generalized linear model; NA(KW): no glm performed (due to the low number of replicates), instead, a kruskal wallis (KW) test was used to compare control vs. treated plants without considering the population effect.