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Abstract

In general, it is accepted that gap formation significantly affects the placement of scatter-hoarded seeds

by small  rodents,  but the effects  of different forest  gap sizes on the seed-eating and scatter-hoarding

behaviors of small rodents remain unclear. Thus, we examined the effects of a closed canopy forest, forest

edge,  and  gaps  with  different  sizes  on  the  spatial  dispersal of  Quercus  variabilis acorns  and  cache

placement by small rodents using coded plastic tags  in the Taihang Mountains, China.  The seeds were

removed rapidly and there were significant differences in the seed-eating and caching strategies between

the stand types. We found that  Q. variabilis  acorns were usually eaten after being removed from the

closed canopy forest and forest edges. By contrast, the Q. variabilis acorns in the forest gap stands were

more likely to be scatter hoarded. The dispersal distances of Q. variabilis acorns were significantly longer

in the forest gap plots compared with the closed canopy and forest edge plots. However, the proportions

of  scatter-hoarded  seeds  did not increase  significantly as  the gap  size increased. In  small-scale  oak

reforestation projects or research, creating  small  gaps to promote rodent-mediated seed dispersal  may

effectively accelerate forest recovery and successional processes.
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1 INTRODUCTON

Seeds or diaspores rely on agents such as wind and animals for their dispersal to suitable sites away from

the parent  plant,  which  is  a  key  life-history  stage  in  plants.  Various  studies  have  demonstrated  that

animals, especially small rodents, play vital roles in  seed dispersal and they affect  the seed-to-seedling

period of plant regeneration (Abe et al., 2006; Williams-Linera et al., 2011; Yu et al., 2017, 2018; Zhang

et  al.,  2019,  2020).  Indeed,  the  scatter hoarding  of seeds in  suitable  sites by  rodents  enhances the

probability of seedling settlement (Vander Wall, 2001; Steele et al., 2007; Yu et al., 2015, 2017). Many

factors may affect the quality and effectiveness of seed dispersal by animals, such as the microhabitat in

the caching site (Yu et al., 2014; Yang et al., 2016). 

Gaps are frequent in various forest ecosystems and they have been shown to alter the microhabitat

heterogeneity in forest ecosystems, thereby influencing the activity and foraging behavior of rodents, as

well as seed germination and seedling establishment (Levey, 1988). Many studies have investigated plant

regeneration in forest gaps (Arevalo & Fernandez-Palacios, 2007; Albanesi et al., 2008; Burnham & Lee,

2010; Yu et al., 2014; Zhu et al., 2014), but few have considered the interactions between seed predation

and seed dispersal in forest gaps and the associated closed canopy forest.

In  some  cases,  small  rodents can  increase  the  likelihood  of successful regeneration  for  gap-

dependent tree species by carrying the seeds of various tree species into forest gaps (Crawley, 1992; Iida,

2006). Previous studies have indicated that forest specialists avoid gaps (Rail et al., 1997; Rodriguez et

al., 2001; Bakker & Van Vuren, 2004) because there is a higher perceived predation risk in open habitats

(Lima & Dill, 1990). The predation risk is higher for animals in relatively open habitats (e.g., forest gaps)

because they are easier to detected (Lima, 1998; Bélisle  & Desrochers, 2002; Wilkinson et al., 2013).

However, a previous study found that small rodents favor open habitats when selecting cache sites (Steele
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et al., 2014). Canopy gaps are usually beneficial for seed dispersal and they are more favorable sites for

seed storage, thereby contributing to seedling establishment and survival (Hoshizaki, 1997; Iida, 2006).

Previous studies of the effects of gaps on rodent mediated seed dispersal obtained variable results. The

size of forest gaps is important and it affects the maintenance of species diversity and forest regeneration

(Wang et al., 2017). However, it is still not clear whether the sizes of gaps can affect the fate of seeds

removed by rodents. The contradictory results obtained in previous studies may reflect variations in the

stages of the coevolving plant–hoarder relationships.

Seed dispersal depends mainly on seed viability, the dispersal distance, and microhabitat conditions

which can determine the successful  regeneration  of tree species  (Dassot & Collet, 2015;  Perea et al.,

2011, 2012). It is generally considered that heavier seeds are dispersed further compared with light seeds

(Jansen et al., 2004; Xiao et al., 2005a), but the dispersal distance may be affected by other factors, such

as the microhabitat (in both the origin and destination) or the number of dispersal movements (Perea et

al., 2011). The gap size also has important effects on the seed dispersal of seeds produced by tree species

and the success of germination (Van Ulft, 2004; Zhang et al., 2017). Recent studies have focused on the

effects of forest gaps on forest regeneration, but the roles of forest gaps in seed dispersal by granivorous

rodents  are not  fully understood,  especially  the  relationship between the gap size  of  forest gaps and

rodent-mediated seed dispersal (Wang et al., 2017;  Zhang et al., 2017). In particular, it is still unclear

whether microhabitats such as gaps can increase the dispersal distances and seed survival.

In this study, we analyzed the differences in the dispersal and predation of Quercus variabilis seeds

by scatter-hoarding  rodents  in  closed  canopy  forest,  forest  edges,  and  gaps  with  different  sizes.  We

addressed the following two questions. (1) Are the decisions made by small rodents regarding scatter

hoarding and the distribution of caches dependent on gap size dependent? (2) Are large gaps are preferred
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for to rodent-mediated seed dispersal?  We hypothesized that the proportions of scatter-hoarded seeds

would not increase significantly with the gap size. Thus, we aimed to obtain a better understanding of the

effects of gap size on rodent-mediated seed dispersal, thereby facilitating improved forest management. 

2 MATERIALS AND METHODS

2.1 Study Site

We  conducted  the  experiment in  the  Huanglianshu Forest  in  the  Taihang Mountains  (11225 E,

3515N), Jiyuan City, Henan Province, China. The study region is situated in the warm-temperate zone

where  the  annual  precipitation  ranges  from 600 to  700 mm,  most  of  which  falls  between  July  and

September. Snow cover usually lasts five or more months (from November to March),  and the mean

annual temperature was 14.3 °C. The forest was harvested during the 1960s and 1970s, and much of the

area is now covered by secondary forests. The forest in this area has been protected against deforestation

since the Taihang Macaque Natural Reserve was established in 1982. The secondary forest is dominated

by  Q.  variabilis in  the  tree  layer,  and  by Vitex  negundo,  Rosa  xanthina,  and  Vitex  negundo,  Rosa

xanthina, Rhamnus bungeana and Cotinus coggygria in the understory vegetation. Apodemus peninsulae,

Niviventer  confucianus and Père  David's  rock  squirrel  (Sciurotamias  davidianus)  are common  seed

predators in the study region. 

2.2 Seed Marking 

We collected mature and fresh of Q. variabilis seeds (acorns) from the ground outside our experimental

stands for field release. Water flotation and visual inspection were employed to distinguish sound and

insect-damaged or empty acorns. In total, 1500 Q. variabilis acorns (1.97  1.68 cm, 3.58  0.21 g, n =

50) were  randomly selected and labeled according to the tin-tagging methods reported by Zhang and

Wang (2001) and Li and Zhang (2003) with slight modifications. A hole with a diameter of 0.3 mm was
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drilled through the husk near the germinal disk of each seed, but without damaging the cotyledon and

embryo. Flexible plastic tags (3.0  1.0 cm, < 0.1 g) was tied to the seeds by passing thin steel thread with

with a length of 10 cm through the hole. Each seed was marked with a unique numbered tag in order to

ensure that seeds could be readily relocated and identified. The tags were frequently still visible on the

surface of the ground after their burial in the soil or leaf litter by rodents, which made them easy to find. It

has been shown that the  effects of tagging on the seed removal and hoarding behaviors of rodents are

negligible (Zhang & Wang, 2001; Xiao et al., 2006). 

2.3 Seed Release and Seed Removal

To examine the effects of different forest stand types, i.e., closed canopy forest (CCF), forest edge (FE),

and gaps with different sizes, on  the  spatial dispersal of  Q. variabilis acorns and cache placement by

small rodents 10 approximately elliptical gaps with various sizes were selected in secondary forests at the

end of 2015 (winter) with an area of about 10.0 ha, i.e., two large gaps measuring >500 m2 (LG), three

medium gaps measuring 500–150 m2 (MG), and five small gaps measuring <150 m2 (SG).

We set 6 seed stations in CCF and FE, respectively, and set 5 seed stations in LG, MG and SG,

respectively. In total, 27 seed stations were set 50 m apart at the study site. We placed 30 tagged seeds at

each separate seed station. The total number of seeds released was: 27 (stations) × 30 (seeds) = 810 seeds.

We checked the removal of seeds from each station on a daily basis from the day after seed placement

until  all  of the seeds were  removed or  consumed.  We randomly searched  the area  around each  seed

station with equal amounts of effort in order to retrieve the removed seeds and record their fate following

each visit. During each visit, we inspected each seed station as well as the caches found in previous visits.

The post–dispersal seed fates were classified using six categories (Yi  & Zhang 2008): 1) intact in situ

(IIS); 2) eaten in situ (EIS); 3) moved and eaten leaving only plastic tags and seed fragments (EAR); 4)
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intact but not buried after removal (IAR); 5) scatter hoarding after removal (SH); and 6) missing where

their true fates were unknown (M). When a cache was found, we recorded the seed  tag  numbers and

measured the distances of the tagged seeds  from their original seed stations. A chopstick was used to

mark each cache location, which was coded with the same number as the tag and placed 25 cm away from

the seed cache sites. During the next visit, we also surveyed the caches located in previous visits until the

caches were removed or eaten by rodents. The areas around the caches (radius <50 m) were searched in a

haphazard manner with equal amounts of effort when marked cache were re-cached. 

2.3.1 Abundance and Species Composition of Small Rodents

At the experimental site, we used 50 steel-wire live traps (30 cm × 25 cm × 20 cm) baited with peanuts to

capture and identify  the  rodent species that potentially removed the released seeds. Traps  were placed

along each of two transects at 5-m intervals on September  23–26, 2017 (immediately before the seed

release experiment). Traps inspections were performed twice each day at sunrise and sunset. The captured

animals were weighed and released. The total trapping effort = 50 traps  3 days = 150.

2.4 Data Analysis

SPSS for Windows (Version 18.0) was used to conduct the statistical analyses. We compared the numbers

of remaining, eaten, and cached seeds, where each was divided by the total number of seeds released. The

proportions  of  remaining,  eaten,  and  cached  seeds  were  arcsine square-root  transformed  before  the

statistical analyses. Cox  regression analysis was used to test  for  differences  in the seed removal  rates

among the five types. A univariate generalized linear model was employed to identify the effects of stand

types on the seed dispersal distance and the six seed fates. Tukey’s honest significant difference post hoc

tests were performed for multiple comparisons.

3 RESULTS

13

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

14



7

3.1 Identification of Seed-removing Rodents

We captured 31 rodents and Apodemus peninsulae, Sciurotamias davidianus, and Niviventer confucianus

accounted for 64.5%, 9.7%, and 25.8% of all the captures, respectively. We failed to capture the Eurasian

jay  (Garrulus  glandarius Linnaeus), although  it  was  previously  observed  and  it  is  considered as  a

probable species that disperses and forages acorns and pine seeds.

3.2 Removal Rates From Seed Stations

Most of the acorns released in CCF and FE were eaten or removed by small rodents within 7 days of their

placement (Fig. 1). By contrast, only 22.0%, 40.0%, and 52.7% of the seeds released in the SG, MG, and

LG stands, respectively, were eaten or removed by small rodents. The stand type had a significant effect

on the removal rates for the seeds handled by animals (Wald = 36.142, df = 4, P < 0.001). 

Cox regression analysis showed that the seed removal speed was significantly higher in CCF than

those in SG (Wald = 21.491,  df  = 1,  P < 0.001),  MG (Wald = 32.601,  df  = 1,  P < 0.001), LG (Wald =

6.483, df = 1, P = 0.011), and FE (Wald = 5.499, df = 1, P = 0.019), respectively (Fig. 1).

Cox regression analysis indicated that the seed removal speed in FE was significantly higher than

those in SG (Wald = 8.364, df = 1, P = 0.004) and MG (Wald = 9.672, df = 1, P = 0.008) but not different

to that in LG (Wald = 3.362, df = 1, P = 0.067) (Fig. 1). However, Cox regression detected no significant

differences in the seed removal speed between the stands with different gap sizes (Wald = 4.263, df = 2, P

= 0.119). 

Fig. 1

3.3 Seed Fates 

Significant differences were found in the proportions of EAR and SH among the five stands (EAR: F =

3.239, df = 4, P = 0.031; SH: F = 7.555, df = 4, P = 0.001), but there were no significant differences in
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the proportions of IIS, EIS, IAR, and M (IIS: F = 1.576, df = 4, P = 0.216; EIS: F = 1.504, df = 4, P =

0.235; IAR: F = 1.460, df = 4, P = 0.248; M: F = 1.378, df = 4, P = 0.274) (Fig. 2).

A higher proportion of seeds were SH in SG compared with CCF, FE, MG, and LG (SG vs CCF, P

< 0.001; SG vs FE, P < 0.001; SG vs LG, P = 0.004; SG vs MG, P = 0.011) (Fig. 2 & 3). By contrast,

slightly higher proportions of the seeds were  SH in LG and MG than FE and CCF, but the differences

were not significant (LG vs FE, P = 0.142; LG vs CCF, P = 0.200; MG vs FE, P = 0.057; MG vs CCF, P

= 0.084) (Fig. 2). 

A lower proportion of seeds were EAR in SG compared with CCF (SG vs CCF, P = 0.003), FE (SG

vs FE, P = 0.027), and LG (SG vs LG, P = 0.026). A slightly higher proportion of the seeds were EAR in

SG than MG, but the difference was not significant (SG vs MG, P = 0.181) (Fig.  2). Among the 1800

seeds released, only one seed survived to the seedling stage and it emerged in an SG during the following

spring. 

Fig. 2

Fig. 3

3.4 Seed Dispersal Distance

Most of the seeds were dispersed within a distance of 10 m (Fig. 3). The average dispersal distance was

significantly affected by the stand types (F = 22.444, df = 4, P < 0.001) (Fig. 3). The dispersal distances

were significantly greater in SG, MG, and LG than CCF (SG vs CCF, P < 0.001; MG vs CCF, P = 0.027;

LG vs CCF, P = 0.031) and FE (SG vs FE, P < 0.001; MG vs FE, P = 0.008; LG vs FE, P = 0.010). The

dispersal  distances were  significantly greater  in  SG than  MG (P  < 0.001)  and  LG (P  < 0.001). By

contrast, there was no significant difference in the dispersal distances between MG and LG (P = 0.979). 

Fig. 4

4 DISCUSSION
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Our results showed that the seed removal speed was significantly higher in CCF than the other four stand

types.  These differences may have been due to the simpler vegetation structure in the gaps  leading to

decreased seed dispersal services from scatter-hoarding rodents compared with CCF. In addition, the seed

production  rate  was  higher within  the  closed canopy  than the gaps  due  to  the  lack  of  advanced

regeneration. Most of the released acorns were harvested rapidly after their placement by small rodents in

the CCF and FE stands, thereby demonstrating small rodents are important for the effective dispersal of

this type of seed. We found that the seeds dropped from their parents were carried rapidly by rodents, as

shown in previous studies (Vander Wall, 1990; Jansen & Forget, 2001; Xiao et al., 2005b; Caccia et al.,

2006; Chang et al., 2012a). There were no significant differences in  the  seed removal rates among the

stands with different gap sizes. Our results differ from those obtained in other studies where the gap size

had a positive effect on the seed removal rate (Van Ulft 2004; Wang et al., 2017). This difference may be

explained by the similar shrub coverage and plant resources in the gaps. 

In the present study, we found that compared with CCF and FE, more seeds were cached and less

seeds were eaten after being removed from the LG, as also found in previous studies (Yang et al., 2016;

Wang et al., 2017). The results clearly support the hypothesis tested in this study because the proportion

of  scatter-hoarded  seeds  did not increased  significantly  as  the gap  size increased,  possibly  because

rodents must trade-off the risks of predation and pilferage by other animals (Yang et al., 2016). The seed

fates might have varied between shrubs and open habitats because of differences in  the activities and

foraging behavior of rodents (Den Ouden et al., 2005, Perez-Ramos & Maranon, 2008, Perea et al., 2011).

The  foraging  behavior  of  mammals  is  associated  with  assessments  of  foraging  costs  and  benefits,

including time, energy, and  the predation risk (Schmidt  & Ostfeld, 2003). The low ground coverage in

large gaps may have affected the encounter rates with seeds, thereby affecting the seed predation and
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hoarding behaviors of rodent by increasing the predation risk estimated by rodents (Cintra, 1997).  In

addition, our previous research and a study by Wang et al. (2017) concluded that the proportion of seeds

cached in canopy gaps was significantly lower than that in the understory (Yu et al., 2014). No seeds

were actually provided in the gaps so the results may have been influenced by the fact that the seeds were

offered only in the understory habitat. However, both of these studies found that the survival rates were

higher in the gaps than CCF because of the more suitable environmental conditions (especially sufficient

light) and lower risk of pilferage. 

We found that the dispersal distances were significantly greater in the gaps than CCF and FE, and. a

previous study obtained similar results. It was also shown that an open microhabitat has positive effects

on the dispersal distance and seed survival (Perea et al., 2011). In addition, Steele et al. (2014) found that

squirrels  tend to  hide larger  acorns  further  from  the  tree  crowns  i.e.,  in  open  habitats. Previous

quantitative studies demonstrated that heavier acorns were dispersed further compared with light acorns

(Jansen et al., 2004; Xiao et al., 2005a) and this does not support the energy saving hypothesis. In fact,

both the origin and destination microhabitats were more suitable for confirming dispersal distances.

All  of the primary  caches  were  recovered  in CCF,  FE,  and  SG, and  subsequently  predated by

rodents. Two seeds in the primary caches were cached in both MG and LG according to the last survey.

Only one seed survived until the seedling stage and it  emerged in  SG during the following spring. Our

observations  agree  with  previous  studies where only  0.02–10%  of  the  removed  seeds  established

seedlings (Hulme 2002; Jansen  et al., 2002). Thus, the foraging behavior and visitation frequencies of

rodents may have been higher in SG compared with LG. Our results demonstrate that  small gaps had a

positive effect on the hoarding of Q. variabilis seeds. However, the effect of the gap size on seed dispersal

may vary according to the plant species and this requires further study.
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Seed removal remains high and relatively constant over time, but partial seed damage (nonlethal) by

rodents, as well as their caching and scatter-hoarding behavior, and the satiation effect could result in

more  seeds  transitioning  to  the  seedling  stage  (Martínez-Ramos  et  al., 2016).  Our  observations

demonstrate  that  it  is  more  important  to  consider  both  the  origin  and  destination  habitats  when

determining the seed  dispersal distances  and survival. Due to the low number of  scatter-hoarded seeds,

increasing openness will reduce the probability of seed survival, thereby resulting in a higher probability

of either partially or totally eaten seeds.

5 CONCLUSIONS

Our results clearly demonstrate that the gap size is an important factor that determines whether seeds are

removed rapidly by predators or potential dispersers. Variations in the gap size can lead to different seed

fates, which may eventually influence tree regeneration. We found that Q. variabilis acorns were usually

eaten after  their  removal in CCF and FE.  By contrast,  the  Q. variabilis acorns were more likely to be

scatter-hoarded in forest gap stands. Moreover, the proportions of scatter-hoarded seeds did not increase

significantly  as  the gap  size increased. The Q. variabilis acorns  in  forest  gap stands  were  dispersed

significantly greater distances compared with those in CCF and FE. These results show that forest gaps

can influence scatter-hoarding decisions and the distribution of caches by small rodents. Thus, in small-

scale Q. variabilis reforestation  projects  or  research, creating some  small  gaps  to  promote rodent-

mediated seed dispersal may be an effective method for accelerating forest  recovery and successional

processes. However, the effect of  the habitat type might be complex so the general applicability of our

findings requires  further  study. Thus,  we plan to extend our study to explore the possible trade-offs

between dispersal capacities and other important ecological factors over diverse scales in terms of space

and time.
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ABBREVIATIONS

IIS: intact in situ; EIS: eaten in situ; EAR: moved and eaten leaving only plastic tags and seed fragments;

IAR: intact but not buried after removal; SH: scatter hoarding after removal; M: missing where their true

fates were unknown; CCF: closed canopy forest; FE: forest edge; LG: large gaps; MG: medium gaps; SG:

small gaps.
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Figure legends

Fig. 1 Quercus variabilis seed removal rates after deposition at the seed stations. Data represent the mean

 standard error.

Fig. 2 Fates of Quercus variabilis seeds after dispersal by small rodents in different stands. Data represent

the as mean  standard error.

Fig. 3 Scatter hoarding pathways for 810 tagged Quercus variabilis seeds after placement at seed stations.

Ⅰ, Ⅱ, Ⅲ, Ⅳand Ⅴ represent closed canopy forest, forest edge, large gap, medium gap and small 

gap, respectively.

Fig.  4 Dispersal  distances  of  Quercus  variabilis seeds after  primary  dispersal  from the  seed  release

stations in different stands. Data represent the as mean  standard error.
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	At the experimental site, we used 50 steel-wire live traps (30 cm × 25 cm × 20 cm) baited with peanuts to capture and identify the rodent species that potentially removed the released seeds. Traps were placed along each of two transects at 5-m intervals on September 23–26, 2017 (immediately before the seed release experiment). Traps inspections were performed twice each day at sunrise and sunset. The captured animals were weighed and released. The total trapping effort = 50 traps  3 days = 150.
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