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Abstract:  Spatial  and  temporal  variation  characteristics  of  the  net  primary
production  (NPP)  and  its  response  to  environmental  factors  are  crucial  in
studying global  climate change and terrestrial  ecosystem carbon cycles.  In this
study,  Carnegie-Ames-Stanford Approach (CASA) and CA-Markov models  are
coupled to simulate and predict NPP in the Weihe Watershed using multi-source
datasets to explore the spatial and temporal distribution of NPP and its dynamic
changes.  Correlation  analysis  was  used  to  quantitatively  evaluate  the  NPP
response  to  environmental  factors  such  as  temperature,  precipitation,  altitude,
slope, and aspect. Results showed that: (1) Seasonal and periodic changes were
evident within a year, among which the NPP in July was the highest at 115.29
gC/m2a and the NPP in January the lowest at approximately 10.75 gC/m2a. The
interannual change showed a rising trend. According to forecast results, the NPP
status of vegetation in the Weihe Watershed will improve and continue to grow
over the next decade. (2) Spatially, the NPP distribution is significantly different.
The NPP values in the upper reaches of the Beiluohe and Jinghe Rivers, Baojixia
of the Weihe River, and some areas of the Guanzhong Plain are relatively low.
The NPP values  in  the  middle  and lower  reaches  of  the  Beiluohe  and Jinghe
Rivers and of the Qinling Mountains are relatively high, showing an overall high
distribution in the south and east and low distribution in the north and west. (3)
The response of vegetation NPP in the Weihe Watershed to environmental factors
is significant but varied. The NPP response to temperature and precipitation was
mildly positively correlated. The NPP showed trends of stabilizing, then sharply
decreasing,  and  finally  increasing  with  the  increase  in  altitude,  as  well  as
continuously  increasing  with the  increase  in  slope.  Meanwhile,  the  vegetation
NPP values of the northern and western slopes were higher than those of the
southern and eastern slopes. (4) The CASA and CA-Markov models have high
coupling degrees, reaching a prediction accuracy of 0.8776, which is suitable for
the simulation and prediction of NPP in the Weihe Watershed. This study is of
great significance for understanding the carbon cycle characteristics of regional
terrestrial  ecosystems, rational utilization of vegetation resources,  evaluation of
the  benefits  of  ecological  construction  projects,  and  formulation  of  watershed
ecological construction and sustainable development strategies.
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1. Introduction

At  the  19th  National  Congress  of  the  Communist  Party  of  China  (CPC),
General Secretary Xi Jinping pointed out that China should "treat the ecological
environment like life." Under the guidance of this policy, we will move towards a
new era of ecological vegetation civilization. The net primary productivity (NPP)
of vegetation is the net increase in organic matter produced by land plants per unit
time  and  unit  area  by  photosynthesis  [1].  It  reflects  the  efficiency  of  plant
transformation and the fixation of photosynthetic products and the productivity of
plant communities under natural environmental conditions [2]. It is also the study
basis  of  the  movement  of  matter  and  energy  in  terrestrial  ecosystems,  which
represents important variables of vegetation activities and the main factors that
regulate ecological processes. Moreover, it plays an important role in the analysis
of climate change [3].

Since  the  1970s,  the  research  on  vegetation  NPP  has  gained  increasing
attention. Many relevant calculation models have emerged,  including statistical,
process, and parameter models  [4–9]. NPP estimation models extend site data to
regional and even global scales;  the Carnegie-Ames-Stanford Approach (CASA)
model  is  a  typical  representative  of  this  model  [10–16].  In  particular,  after  the
optimization of this model by Zhu et al. in 2007, its applicability was improved and
it could be used to develop estimates at different scales and regions [17].

Relevant scholars at home and abroad have carried out a lot of research on the
spatio-temporal dynamic change and driving factors of NPP and other scientific
issues, and have also achieved fruitful results [18–20]. Nemani et al., for example,
studied the development of the global climate and concluded that it is conducive
to  the  growth  of  vegetation  [15].  Bokhorst  et  al.  estimated  the  vegetation
restoration after extreme winter warming events in subarctic regions. Neumann et
al.  compared  the  net  primary  productivity  of  Moderate  Resolution  Imaging
Spectroradiometer  (MODIS)  vegetation  with  the  inventory  data  of  Austria's
terrestrial  national  forest  [21].  Zhu et  al.  systematically  analyzed  the  NPP and
corresponding climatic data of China's terrestrial vegetation from 1982 to 1999 [17].
Chen et al. estimated the relationship between NPP and climatic factors in different
periods  [22].  At the same time, the spatio-temporal  characteristics  of vegetation
NPP  in  different  regions  of  China,  such  as  the  Qinghai-Tibet  Plateau,  Loess
Plateau, northeast  China, southeast  China, and subtropical hilly areas, and their
response to climate change have also been widely studied. These studies are of
great  significance  in  revealing  the  spatial  and  temporal  pattern  characteristics,
changing processes, and driving mechanisms of NPP in terrestrial ecosystems [23–
28].  Remote  sensing  data  provide  important  information  about  the  dynamic
change process of vegetation type/vegetation cover.  The use of  remote sensing
data to predict the dynamic change of vegetation can obtain the growth status of
vegetation  in  the  future  to  carry  out  disaster  risk  estimations  and  crop  yield
predictions. Many scholars at home and abroad have conducted extensive and in-
depth  exploration  and  established  relevant  prediction  models  [29–33].  For
example, Funkc et al. used the lag relationship between the normalized difference
vegetation  index  (NDVI)  and  precipitation  to  establish  an  empirical  model  to
predict  NDVI changes in semi-arid regions in Africa  [34]. Goncalves et al. used
multivariable and univariate models to predict the crop NDVI in the Sao Paulo
sugarcane producing area in Brazil [35].

The  study  of  the  characteristics,  changes,  and  distribution  of  the  natural
geographical  environment  and  its  components  is  usually  based  on  the  law  of
natural geographical differentiation [36]. However, a review of many domestic and
foreign  studies  on  the  temporal  and  spatial  distribution  and  variation



characteristics  of  regional  vegetation  NPP  has  shown  that  there  are  relatively
abundant  simulation  studies  at  the  administrative  region  scale,  while  few
prediction  studies  have  been  conducted  at  watershed scales.  There  are  many
studies on the response of vegetation NPP to climate factors such as temperature
and precipitation but  few studies  on its  response to topographic  factors.  There
have  been  many  studies  on  vegetation  NDVI  prediction,  but  few  studies  on
vegetation NPP prediction [37,38]. Therefore, it is of great theoretical significance
to  simulate  and  predict  the  spatial  and  temporal  distribution  characteristics  of
watershed-scale  vegetation NPP and explore its  correlation with environmental
factors.  At  the  same time,  the  Weihe  Watershed is  one  of  the  most  important
regions  in  the  northwest  of  China.  It  is  facing  severe  ecological  deterioration,
which has mainly manifested as serious economic water diversion, frequent river
discontinuities, and excessive groundwater exploitation [39,40].

This  study takes the Weihe  Watershed as the research object,  based on the
CASA model,  correlation analysis, and CA-Markov model using MODIS NDVI
data  and  meteorological  data,  vegetation  type  data,  and  DEM  data;
comprehensively  considers  the  time  of  cultural  factors,  such  as  the  Returning
Farmland to Forest  Program and Hanjiang to Weihe River Project;  selects  2000,
2006,  2012,  and  2018  as  research  periods;  estimates  the  spatial  and  temporal
distribution characteristics  and dynamic change rules  of  NPP vegetation in  the
Weihe  Watershed;  makes  a  quantitative  analysis  of  its  response  degree
precipitation,  temperature,  altitude,  slope,  and  aspect;  and  predicts  the  spatial
distribution pattern of NPP in the Weihe Watershed in 2024 and 2030. The rest of
this paper is structured as follows: Section 2 introduces the research area and data
processing,  Section  3  introduces  the  research  methods,  Section  4  analyzes  the
research results, the discussion is provided in Section 5, and Section 6 presents the
conclusions of this study.

2. Data sources

2.1. Study area

The Weihe River is the largest tributary of the Yellow River. It originates from
the  Niaoshu  Mountains  in  Weiyuan  county,  Dingxi,  Gansu  province;  flows
through three provinces (regions) of Gansu, Ningxia, and Shaanxi; and flows into
the Yellow River  in  Tongguan County,  Weinan,  Shaanxi  province,  with a total
length of 818 km and a total basin area of 134,800 km2, located between 33°40′  –
37°18′ N and 106°20′  – 110°37′ E, as shown in Figure 1 [31]. To the south of Weihe
River lie the Qinling  Mountains; to the north lies the Liupanshan Mountain. The
watershed can be divided into two parts: the western part is the Loess  Hilly and
Gully region and the eastern part is the Guanzhong plain region. The watershed is
located in the arid and semi-arid region of northwest China, with a continental
monsoon climate. The winter is cold and dry and precipitation is rare, while the
summer is hot and rainy. The annual average temperature is 7.8–13.5 °C and the
annual  average  precipitation  is  500–800  mm  [32].  The  Weihe  Watershed  is  an
important agricultural, industrial, and energy base in China and the core hub of
northwest  China.  In  recent  years,  with  the  rapid  development  of  society  and
economy,  the  ecological  environment  problems  in  the  Weihe  Watershed  have
become more and more severe, attracting more and more attention from all sectors
of society [29].



Figure 1. Geographical location and topography of the Weihe Watershed.

2.2. Data sources

1. Remote sensing data (mainly NDVI data): The data selected in this study are
MOD13Q1  data  from  the  NASA  website
(https://ladsweb.modaps.eosdis.nasa.gov/). The spatial resolution was 250 m. To
facilitate the reading and processing of ENVI and ArcGIS software as well as the
spatial  matching  of  the  existing  map  data,  preprocessing  such  as  splicing,
projection  conversion,  and  format  conversion  is  required.  Therefore,  Modis
Reprojection  Tools  (MRT)  were  used  for  preprocessing.  At  the  same  time,  the
image data  is  affected by the atmosphere,  soil,  height  angle,  and other  factors,
resulting in  noise in the NDVI value.  Therefore,  the maximum value synthesis
method is selected to synthesize the two phases of NDVI data every month.

2.  Meteorological  data  (including  sunshine  hours,  temperature,  and
precipitation):  The  data  used  in  this  study  were  obtained  from  the  National
Meteorological  Information  Center  (http://data.cma.cn/),  including  33
meteorological  stations  in  and around  the  Weihe  Watershed.  As  there  are  few
stations observing radiation data nationwide, the radiation derivation formula is
used to convert  sunshine hours into radiation data.  Finally,  sunshine radiation,
average daily temperature, and average daily precipitation data were interpolated
into raster data with spatial resolution consistent with NDVI using the Kriging
interpolation method.

3.  Other data: Digital elevation model (DEM) data, administrative boundary
data,  vegetation  type  data,  etc.,  were  derived  from  the  geospatial  data  cloud
(http://www.gscloud.cn/).  DEM  data  were  spliced  and  clipped  in  ArcGIS  to
obtain  DEM  data  covering  the  study  area.  Then,  the  spatial  resolution  was
resampled to 250 m and slope and  aspect information was extracted for  overlay
analysis with NPP data.

3. Method

3.1. CASA model

The CASA model is a parametric model based on the light energy utilization
principle  developed  by  Potter  and  Field  according  to  Monteith's  theory  of
calculating NPP using photosynthetically active radiation (APAR) and efficiency
for solar energy utilization (ε) [9,41–43]. The model has been widely used in large-



scale  vegetation NPP simulations  and global  vegetation carbon cycles,  and has
been calibrated by more than 1,900 field sites worldwide  [44]. In this study, the
improved CASA model of Zhu Wenquan was used to estimate the vegetation NPP
of terrestrial ecosystems in the Weihe Watershed in 2000, 2006, 2012, and 2018.

According to the physiological and ecological processes, the model-simulated
NPP of vegetation is mainly determined by the photosynthetically active radiation
absorbed  by  vegetation  and  efficiency  of  solar  energy  utilization  [45].  The
calculation formula is as follows:

NPP ( x ,t )=APAR ( x ,t ) ( x , t ) , (1)

where t is the time and X is the position in space.

3.2. Correlation analysis

Correlation analysis is an effective method to reveal the degree of correlation
between variables [29]. This study analyzes the correlation between NPP, climatic
factors, and topographic factors based on a pixel scale;  discusses their response
degree;  and analyzes  their  spatial  distribution.  The formula  for  calculating  the
coefficient of association is

R xy=
❑i=1
n

(xi−x ) ( yi− y )

¿❑i=1
n

(xi−x )
2
( y i− y )

,       (2)

where Rxy is the correlation coefficient; xi and yi  represent the values of variables x
and y, respectively, in period i; x and y are the average values of variables x and y,
respectively; and n is the sample size. The value range of the correlation coefficient
is -1–1, positive values represent the positive correlation between variables,  and
negative values represent the negative correlation between variables. The greater
the  absolute  value  of  the  correlation  coefficient,  the  stronger  the  correlation
between variables.

A significance  test  of  the  calculated  correlation  coefficients  was carried out
using the phase lookup relation table. Taking the significance level as α = 0.05 and
α = 0.01, the table was checked and values of fα(n-2) = f0.05(2) = 0.811 and fα(n-2)
= f0.01(2) = 0.917 were obtained. The correlation coefficients can be divided into six
levels according to their significance: Significantly negative correlation (R < -0.917),
moderately negative correlation (-0.917 < R < -0.811), mildly negative correlation (-
0.811 < R < 0),  mildly positive correlation (0 < R < 0.811),  moderately  positive
correlation (0.811 < R < 0.917), and significantly positive correlation (R > 0.917).

3.3. CA-Markov model

Cellular automata is a local grid dynamic model with discrete time, space, and
state  [46].  This  method has  a  powerful  ability  to  simulate  the  spatio-temporal
evolution of complex systems and is widely used in the research of land change,
population  migration,  urbanization,  and  other  fields.  The  standard  cellular
automata is  a  quaternion composed of  cellular,  state,  neighborhood,  and rules,
which is expressed as follows:

A=(d , s , n , f ), (3)

where A  represents  the  cellular  automata  system,  d  is  the positive  integer
representing the dimension of the cell, s represents the state set of the cell, n is the



neighborhood of the cell, and f represents the transformation rule of the cellular
state in the local space. Thus, the cellular automata model can be expressed as:

Sij
t+1

=f n(Sij
t
), (4)

where  S  represents  the  state  of  the  cell,  f  is  the  transition  function,  and  the
transition rule of the cell from time t to time t+1 is defined. N is the neighborhood
of the cell and belongs to an input variable f. Cellular evolution in a local space can
be realized by applying the defined transformation rules.

The Markov model is  a  special  random motion process  with no aftereffect,
which has been applied in the simulation and prediction of many geographical
phenomena [47]. In recent years, the Markov model has been gradually applied to
vegetation ecological prediction and landscape change research.

The  basic  principle  of  the  Markov  model  is  to  use  the  empirical  transfer
probability between the discrete states in the observation system to determine the
change trend of each state in the system, to predict future states [48]. In this study,
the NPP state of a single-pixel scale is regarded as a random process and the level
of  NPP value of  the pixel  is  regarded as the state  of  the Markov chain.  In the
Markov model, the change in the NPP state is random.

Both the CA model  and Markov model  are time-discrete  and state-discrete
dynamic models; however, the Markov model cannot predict the spatial variables
of vegetation change. Moreover, the CA model has a strong ability to simulate the
spatio-temporal  evolution  of  complex  spatial  systems  [49].  The  CA_Markov
module  in  IDRISI17.0  software  combines  the  two  to  simulate  the  spatial  and
temporal patterns of vegetation change.

4. Results

4.1. Temporal variation characteristics of the NPP

In this study, the monthly (Figure 2), seasonal (Figure 3), and annual (Figure 4)
vegetation NPP variation in the Weihe  Watershed in 2000, 2006, 2012, and 2018
were calculated; the monthly(Figure 5), seasonal (Figure 6), and annual (Figure 7)
vegetation NPP variation trends were also plotted.

From  a  monthly-scale  perspective,  the  variation  curve  shows  a  unimodal
pattern  during  the  year  and  the  time  distribution  of  NPP  in  the  year  is
characterized by a gradual increase from January to July, followed by a gradual
decrease from August to December. The monthly mean of the highest vegetation
NPP appeared in July at approximately 115.29 gC/m2a, and the monthly mean of
the lowest vegetation NPP appeared in January at approximately 10.75 gC/m2a.

From the perspective of seasonal scale, the seasonal and periodic variation of
vegetation NPP in the Weihe Watershed was evident. The seasonal variation of the
vegetation NPP during the year directly reflects the phenology of vegetation. In
summer, the vegetation is in the vigorous growth stage, and the vegetation NPP is
the highest at approximately 382.08 gC/m2a. In spring, the temperature increases,
precipitation increases,  and the growth rate of vegetation accelerates.  Therefore,
the vegetation NPP is second only to that of summer at approximately 129.38 gC/
m2a. In autumn, the vegetation gradually stops growing until it withers and the
vegetation  coverage  gradually  decreases.  Therefore,  the  NPP  of  the  vegetation
gradually  decreases,  at  a  rate  slightly  lower  than  that  of  spring,  which  is
approximately 118.94 gC/m2a. The vegetation NPP in winter was the lowest, at
approximately 42.97 gC/m2a.

From  an  annual  perspective,  the  annual  vegetation  NPP  in  the  Weihe



Watershed generally presents an upward trend. Between 2000 and 2006, the annual
average vegetation NPP values were approximately 549.12 gC/m2a and 700.88 gC/
m2a, respectively.  The annual mean vegetation NPP in 2012 was essentially the
same as that in 2006, at approximately 770.85 gC/m2a. The annual mean vegetation
NPP in 2018 increased slightly to approximately 828.00 gC/m2a.

Figure 2. Spatial distribution of NPP in each month in the Weihe Watershed.



Figure 3. Spatial distribution of NPP in different seasons in the Weihe Watershed.

Figure 4. Spatial distribution of NPP in 2000, 2006, 2012, and 2018 in the Weihe Watershed.



Figure 5. NPP change trend in each month in the Weihe Watershed.

Figure 6. NPP change trend in different seasons in the Weihe Watershed.

Figure 7. NPP change trend in 2000, 2006, 2012, and 2018 in the Weihe Watershed.

4.2. Spatial distribution characteristics of the NPP

Through simulation, the annual mean NPP in the Weihe Watershed in 2000, 2006, 2012, and
2018 was obtained, mainly concentrated between 114.14 and 1557.80 gC/m2a, with an average of
approximately 715.08 gC/m2a. The spatial distribution characteristics of vegetation NPP in each
year are similar, showing high distribution characteristics in the south and east and low ones in the



north, and west, with obvious spatial differences, as shown in Figure 4. Among them, the region of
the Qinling  Mountains has a low latitude and the vegetation is  mainly evergreen broad-leaved
forest, with abundant annual precipitation and high annual temperature. The vegetation type above
the Beiluohe-Zhuangtou region is mostly deciduous broad-leaved forest and the temperatures and
precipitation are higher than those in the western region; therefore, the annual average NPP in
these areas is higher. The main vegetation types in the Guanzhong Plain, above Zhangjiashan of the
Jinghe River and above Baojixia of the Weihe River are cultivated plants. In addition, as the latitude
increases  gradually,  the temperature  decreases  gradually,  the precipitation decreases  gradually,
and the  annual  average vegetation NPP also  decreases  gradually.  The average  annual  NPP of
vegetation in the north of the Weihe Watershed is the lowest because the higher the latitude and
elevation are, the lower the temperature is, and the lower the precipitation is.

4.3. Response of NPP to major climatic factors

The Weihe watershed is located in the transition zone between the semi-humid and semi-arid
regions of China. Due to its geographical location, the difference in topography between north and
south, difference in atmospheric circulation conditions, and spatial distribution of temperature and
precipitation in the Weihe Watershed varies. In this study, the Kriging interpolation method is used
to  carry  out  spatial  interpolation  on  the  average  temperature  and  precipitation  of  the  Weihe
Watershed and 33  surrounding  meteorological  stations.  The  spatial  distribution of  the  average
annual temperature and precipitation of the Weihe Watershed was obtained, as shown in Figures 8
and 9.

Figure 8. Spatial distribution of annual average temperature in the Weihe Watershed.



Figure 9. Spatial

distribution of annual average precipitation in the Weihe Watershed.

4.3.1. Time variation characteristics of major climatic factors

The  temporal  variation trend of  temperature  and precipitation in  the  Weihe  Watershed is
highly consistent.  Both temperature and precipitation have obvious seasonal changes,  with low
temperatures and low precipitation in the winter and high temperatures and high precipitation in
the  summer.  The  annual  mean  values  of  temperature  and  precipitation  in  each  month  were
calculated and the time distribution characteristics of temperature and precipitation in  the  Weihe
Watershed were obtained. The highest average temperature was 22.26 ℃ in July and the lowest
was -4.11 ℃ in January. The maximum average precipitation was 100.53 mm in August and the
minimum was 3.65 mm in December. The interannual fluctuation of temperature and precipitation
was small and there was no obvious fluctuation period. The highest average temperature was 10.10
℃, and the perennial average precipitation was 569.18 mm. The highest temperature was 10.67 ℃
in 2006 and the lowest was 9.4 ℃ in 2012. The greatest precipitation occurred in 2018 at 751.49 mm
and the smallest occurred in 2000, at 488.51 mm.

4.3.2. Spatial distribution of major climatic factors

According to the interpolation results, the average temperatures of  the  Weihe Watershed for
several years are between 4.87 °C and 13.82 °C; the spatial distribution features  are high in the
south and east and low in the north and  west. Among them, the temperature in  the Guanzhong
Plain  is  relatively  high.  The  farther  north  in  the  Guanzhong Plain,  the  higher  the  temperature
decreases with the gradual increase in latitude and altitude. The main reason for this is that the
Guanzhong Plain has low latitude and altitude. The upper reaches of the Weihe River are relatively
low in temperature mainly because of the high altitude of the region.

The  average  annual  precipitation  of  the  Weihe  Watershed is  between  408.82~713.25  mm,
gradually decreasing from the southeast to northwest in space. The precipitation from Xianyang of
the Weihe River to Tongguan is the most abundant; the farther to the west and north, the more the
precipitation gradually decreases. The main reason for this is that the northwest is deep inland, far
away from the sea, and the topography of the humid airflow is blocking.

4.3.3. Response of NPP to major climatic factors

Figures 10 and 11 show the general relationship between average monthly vegetation NPP,
temperature, and precipitation in the Weihe Watershed. As can be seen from Figure 10, there is a
significant linear correlation between the NPP of vegetation and temperature. The vegetation NPP
increases with the increase in temperature. When the monthly average temperature is above 20 °C,
the NPP of vegetation tends to reach a maximum. The NPP of vegetation also increases with the



increase  in  precipitation.  When  the  monthly  average  precipitation  exceeded  1000  mm,  the
vegetation  NPP  tended  to  be  stable,  indicating  that  the  water  supply  for  the  growth  and
development of vegetation tended to be saturated.

Figure 10. Relationship between NPP and temperature in the Weihe Watershed.

Figure 11. Relationship between NPP and precipitation in the Weihe Watershed.

 To further quantitatively analyze the correlation between the vegetation NPP, temperature,
and precipitation, their correlation coefficients were calculated as shown in Figure 12 and Table 1.
They  show  the  spatial  distribution  of  the  correlation  coefficient  between  the  vegetation  NPP,
temperature,  and  precipitation  in  the  Weihe  Watershed  as  well  as  the  number  of  pixels  and
proportion of each correlation level.



Figure 12. Spatial distribution of correlation between NPP, temperature, and precipitation in the

Weihe Watershed.

Table 1. Correlation statistics of NPP and temperature and precipitation in the Weihe Watershed

Correlation Level
Temperature Precipitation

Number
of Pixels

Proportion/
%

Number
of Pixels

Proportion/
%

Significantly negative
correlation

4,697 0.23 3,697 0.18

Moderately negative
correlation

2,6342 1.31 6,205 0.31

Mildly negative
correlation

116,9454 58.11 221,011 10.98

Mildly positive correlation 656,835 32.64 1129,895 56.14
Moderately positive

correlation
89,274 4.44 329,562 16.38

Significantly positive
correlation

65,889 3.27 322,120 16.01

According to the calculated results, the correlation coefficient between NPP and temperature is
between -0.99 and 0.99. In general, the relationship between NPP and temperature in  the Weihe
Watershed was mainly mildly positive and mildly negative, with pixel proportions of 32.64% and
58.11%, respectively, which were distributed in the northern part of the study area, the Guanzhong
Plain area, and specific portions of the southern part of the study  area. The proportion of pixels
with a moderately negative correlation and significantly negative correlation between NPP and
temperature in the whole region is small (1.54%). The proportion of pixels with moderately positive
correlation and significantly positive correlation between NPP and temperature was 7.71%, mainly
distributed in the southern Qinling mountains.

The correlation coefficient between NPP and precipitation was between -0.99~1. This shows
that NPP is mainly mild, moderate, and significantly positively correlated with precipitation in the
Weihe Watershed; it is stronger in the south and north than in the middle, with pixel proportions of
56.14%, 16.38%, and 16.01%, respectively, distributed in the central and western regions and the
northern and southern parts of  the  regions. Pixels with a mildly negative correlation, moderately
negative correlation, and significantly negative correlation between NPP and precipitation in the
whole region accounted for a small proportion (11.47%), mainly distributed in the eastern region. In
general, vegetation NPP in the Weihe Watershed has a higher correlation with precipitation.



4.4. Response of NPP to topographic factors

Terrain plays an important role in the redistribution of surface water and heat resources and is
the basis for the formation of regional climate type, soil type, and vegetation type. Factors such as
surface relief, slope, and aspect are closely related to vegetation coverage. Based on the DEM data
of the Weihe Watershed, slope and aspect factors were extracted from the ArcGIS platform and the
terrain factors were divided, calculating the mean value of each terrain factor using the statistical
function of partition to analyze the spatial distribution of NPP and the response degree between the
changes of NPP and the terrain factors.

4.4.1. Response of NPP to elevation. 

Figure 13 shows the variation of  vegetation NPP with elevation.  The mean
vegetation  NPP  fluctuates  significantly  with  the  change  in  altitude  and  the
difference between the maximum value and minimum values is large. In the area
with an elevation of  less  than 1000 m,  namely,  the Guanzhong plain  area,  the
corresponding mean NPP fluctuates  less,  remaining between  750.19 and 768.41
gC/m2a, which accounts for 20.17% of the total number of pixels. In the range of
elevation from 1000 to 1500 m, the mean vegetation NPP decreased slightly but the
difference  was  not  significant  at  761.48  gC/m2a,  accounting  for  the  highest
percentage of the total number of pixels (43.57%); it was mainly distributed in the
Jinghe  and  Beiluohe  Watershed.  As  the  elevation  rose  to  2000  m,  the  mean
vegetation  NPP  decreased  rapidly  and  the  minimum  value  of  610.04  gC/m2a
appeared.  The  percentage  of  the  total  number  of  pixels  decreased  slightly,  to
28.89%, which was mainly distributed in the northern, northwestern, and western
regions. After that, as the elevation continued to rise, the vegetation NPP gradually
increased. In the area above 2500 m, the vegetation NPP reaches a maximum value
of 869.87 gC/m2a, which is mainly caused by the high vegetation coverage and
mostly  deciduous  broad-leaved  forests  distributed  in  the  Qinling  Mountains,
accounting for only 0.94% of the total pixel percentage.

Figure 13. Changes of NPP with elevation in the Weihe Watershed.

4.4.2. Response of NPP to slope

The slope of the Weihe watershed is between 0 ° and 73 °; the slope of more
than 90% of the region is less than 30 °. Figures 14 and 15 show the variation of the
mean NPP with the increase in slope. In general, with the increase in slope, the
average NPP of the vegetation shows an increasing trend. The percentage of the
total number of pixels shows an increasing trend of increasing first, which then



decreases. In the slope range of 0–5°, the average vegetation NPP is 678.35 gC/m2a,
accounting for 13.95% of the total number of pixels. It is mainly distributed in the
plains and river valleys with low elevation. With the continuous increase in slope,
the mean NPP of vegetation increases slightly. The percentage of NPP in the total
number of pixels increased rapidly. The pixel proportion in the change stage of
slope 6–15° was the largest  at 37.01%. After  that,  although the average NPP of
vegetation  continued  to  increase  with  the  increase  in  slope  and  reached  a
maximum  value  of  926.76  gC/m2a  in  the  area  above  the  slope  of  46°,  the
percentage of the total number of pixels in each interval continued to decrease,
rapidly decreasing between 26 ° and 40°, with the decrease rate gradually lessened.

Figure 14. Spatial distribution of slope in the Weihe Watershed.

Figure 15. Changes of NPP with slope in the Weihe Watershed.



4.4.3. Response of NPP to aspects

The aspect is defined as the direction of the projection of the slope normal onto the
horizontal plane.  Different  aspects lead to different light,  heat,  temperature, and other
conditions for vegetation growth. By calculating the distribution of aspects in the Weihe
Watershed  and the  mean value  of  vegetation  NPP corresponding  to  each  aspect,  the
response of vegetation NPP to the change of an aspect can be analyzed [50].

The proportion of each aspect  in the Weihe  Watershed is  flat land (0.49%),  north
slope (10.93%),  northeast slope (12.75%),  east  slope (13.76%),  southeast  slope (12.35%),
south slope (11.94%), southwest slope (12.40%), west slope (13.18%), and northwest slope
(12.20%),  as  shown in Figure  16.  The mean NPP of vegetation corresponding to each
aspect is shown in Figure 17. Overall, the mean NPP of vegetation corresponding to each
aspect  is  between 688.3 and 732.34 gC/m2a.  However,  there are still  some differences
between the aspects. The mean NPP of the north slope was higher than that of the south
slope; the mean NPP of the west slope was slightly higher than that of the east slope. The
mean value of vegetation NPP is as follows from large to small: northwest slope > north
slope > northeast  slope >  west  slope >  southeast  slope > east  slope > south slope >
southwest slope > flat land.

 Differences in hydrothermal conditions can explain this feature. According to the
statistics of the average temperature and precipitation in each aspect, the difference in the
average annual precipitation in each aspect is approximately 1–3 mm. Meanwhile,  the
average temperature of the north slope and the west slope is approximately 0.05–0.20 ℃
lower than that of the southern and eastern slopes. This indicates that in northwest China,
the climate  is  dry and sunny,  the north slope is  on the dark side,  the solar  radiation
received  is  relatively  less,  the  evaporation  is  weak,  and  the  water  is  easy  to  retain.
Therefore, the northern slope is relatively humid and the respiration of the vegetation is
weakened, which is more conducive to the growth of vegetation. There are many results
showing that the soil of the north slope and west slope has better water holding capacity,
higher soil moisture content, and better vegetation growth than that of the southern and
eastern slopes.

Figure 16. Spatial distribution of aspect in the Weihe Watershed.



Figure 17. Changes of NPP with aspect in Weihe Watershed.

4.5. Prediction of the NPP spatial distribution pattern

As the input data in the CA-Markov model needs to be spatial and state-discrete
raster data, according to the natural discontinuity point classification method, they are
divided  into  five  levels:  very  high-value  regions,  higher-value  regions,  medium-value
regions,  lower-value regions, and  very  low-value regions.  The area and percentage of
each  NPP grade  in  2012  and 2018  were  calculated  as  shown  in  Table  2.  The  overall
characteristics of the NPP status in the  Weihe  Watershed in 2012 mainly correspond to
lower-value regions, medium-value regions, and higher-value regions, which account for
75.08% of the total area; the very low-value regions are the smallest. From 2012 to 2018,
the areas of  very low-value regions,  higher-value regions, and very high-value regions
decreased, while those of lower-value regions and medium-value regions expanded to a
certain extent.

To verify the feasibility of the CA-Markov model in predicting the dynamic change
of vegetation in the Weihe Watershed, this study took the NPP spatial distribution map of
vegetation in 2006 and 2012 as basic data, simulated the NPP distribution in 2018, and
performed a Kappa precision analysis  with the real  value to test  the reliability of  the
model  in  predicting  vegetation  NPP.  The  Kappa  coefficient  between  the  2018  NPP
simulation results and the actual distribution in  the Weihe Watershed was calculated as
0.8776, indicating that the simulation results achieved suitable accuracy; moreover, the
simulation method and process reliability were relatively high.

Table 2. NPP area and percentage of each grade in the Weihe Watershed in 2012 and 2018

NPP Level
2012 2018

Area/km2 Proportion/
%

Area/km2 Proportion/
%

Very low-value regions 16,229.31 12.33 13,856.88 10.53
Lower-value regions 27,095.44 20.58 31,290.5 23.77

Medium-value regions 35,644.81 27.08 38,787.81 29.46
Higher-value regions 36,102.51 27.42 31,773.88 24.14

Very high-value regions 16,569.31 12.59 15,932.31 12.10 
Based on the spatial distribution of NPP vegetation in the Weihe Watershed in 2012

and 2018, the CA-Markov model was established to predict the spatial distribution pattern



of NPP in the Weihe Watershed in 2024. Based on the spatial distribution pattern of NPP
in 2018 and the predicted results of NPP in 2024, the spatial distribution pattern of NPP of
the Weihe Watershed in 2030 was predicted. The predicted results for 2024 and 2030 are
shown in Figure 18 and Table 3.

Figure 18. Spatial distribution pattern prediction of NPP in the Weihe Watershed in 2024 and 2030.

Table 3. Prediction results of NPP in the Weihe Watershed in 2024 and 2030

NPP Level
2024 2030

Area/km2 Proportion/
%

Area/km2 Proportion/
%

Very low-value regions 5,364.56 4.07 2,688.94 2.04
Lower-value regions 18,493.56 14.05 12,577.31 9.55

Medium-value regions 35,145.38 26.7 32,357.50 24.58
Higher-value regions 44,656.69 33.92 49,612.63 37.69

Very high-value regions 27,981.19 21.26 34,405.00 26.14
According  to  the  predicted  results,  by  2024  the  areas  of  very  low-value  regions,

lower-value regions, and medium-value regions will have decreased by 6.45%, 9.72%, and
2.77%,  respectively,  compared to 2018.  According to  these  results,  the  very  low-value
regions  are  mainly  distributed  north  of  the  watershed and around Xi’an,  the  area  of
lower-value regions decreases the most and is mainly distributed in the north and west of
the watershed, and the medium-value regions expand northward as a whole. The higher-
value regions and very high-value regions show an expansion state, increasing by 9.79%
and 9.15%, respectively, compared with 2018. The higher value regions show a trend of
northward expansion, while the very high-value regions spread to the central part as a
whole. By 2030, the trend will be the same. The areas of very low-value regions, lower-
value  regions,  and  medium-value  regions  continued  to  decline,  decreasing  by  2.03%,
4.49%, and 2.12%, respectively, compared with 2024. The areas of higher-value regions
and very high-value regions continued to increase but the increase rates decrease slightly
to 3.76% and 4.88%, respectively.

Overall,  the prediction results  of  NPP dynamic  changes in  the  Weihe  Watershed
indicate that in the future, the vegetation coverage will be further improved and that NPP
will have a suitable development trend. Among these, the areas of very low-value regions,
lower-value regions, and medium-value regions will be reduced and the overall spatial
migration  will  be  northward.  The  areas  of  higher-value  regions  and  very  high-value
regions will be further increased and the spatial expansion will be northward and central.



5. Discussion

The results of this study have reference significance for the study of the vegetation
growth status  in  the  Weihe  Watershed and provide  a  basis  for  the  study of  regional
climate change and the impact and response of topography on vegetation ecosystems.
Surface vegetation interacts with the atmosphere, hydrosphere, and soil sphere through
material exchange and energy flow. The relationship between the degree and primary and
secondary effects of many environmental factors on a vegetation system is very complex.
This  study  focuses  on  analyzing  several  single  factors  of  regional  vegetation  NPP
response.  However,  as  the  influence  vegetation  NPP  factors,  such  as  hydrothermal
conditions,  physiological  and  ecological  characteristics  of  the  vegetation,  and  climate
change mode of the interaction between climate factors, is relatively greater, follow-up
studies will require more in-depth factors on the degree of response and vegetation NPP
research, exploring more precise and reasonable analysis methods. This will help reveal
the mechanisms of all kinds of environmental factors on vegetation NPP.

The spatial  and temporal  distribution and variation characteristics  of  NPP in  the
Weihe  Watershed  are  closely  related  to  human  activities  and  economic  construction,
especially in the past 20 years. To develop the silk road economic belt, speeding up the
urbanization process, the government introduced a series of policies and regulations, such
as returning farmland to  forest  projects  and nutrient-laden engineering.  These  human
activities  will  further  affect  the  spatial  and  temporal  distribution  and  variation  of
vegetation NPP of the Weihe Watershed. Therefore, the influence and response of social,
economic, and cultural impact factors on this subject must be further discussed in the next
step. The contribution rate of various influencing factors on vegetation NPP should be
evaluated,  to  provide  effective  support  for  further  promoting  ecological  environment
construction in the Weihe Watershed.

Finally,  changes  in  NPP  are  a  process  complicated  not  only  by  climate  change,
natural  disasters,  and  other  natural  factors,  but  also by  land-use  policies,  social  and
economic development, and other human activities,  as their  influence on the NPP are
uncertain.  Therefore,  setting  the  parameters  of  the  CA-Markov model  by  considering
various factors is a scientific problem to be further explored in the future.

6. Conclusions

Based on multi-source datasets, coupling the CASA model, correlation analysis, the
CA-Markov model, and a variety of other methods,  the NPP of the Weihe Watershed in
2000, 2006, 2012, and 2018, was analyzed and the spatial and temporal variations of the
mean vegetation NPP and its response to temperature, precipitation, altitude, slope, and
aspect were evaluated by reviewing the distribution and variation of vegetation NPP.
Finally, the CA-Markov model was used to predict the NPP spatial distribution pattern of
the Weihe Watershed in 2024 and 2030. The main conclusions are as follows:

 Concerning temporality,  the seasonal and cyclical changes of NPP were
obvious during the year, among which the NPP was the highest in summer
and lowest in winter. In terms of specific months, NPP was the highest in
July and lowest in January. The annual vegetation NPP generally showed
an upward trend.  Spatially,  the north-south difference of the vegetation
NPP is evident, showing high distribution in the south and east, and low
distribution in the north and west.

 The  responses  of  NPP  to  temperature  and  precipitation  in  the  Weihe
Watershed  are  significant  but  varied.  The  response  to  temperature  is
dominated by mildly positive and mildly negative correlations, which are
distributed  in  the  northern  and  Guanzhong  Plain  areas,  and  southern
areas,  respectively.  The  response  to  precipitation  is  a  mildly positive
correlation,  which  is  distributed  in  the  central  and  western  regions.



Overall, the correlation between vegetation NPP and precipitation in the
Weihe Watershed is higher.

 Topography has an influence on the distribution and variation of the NPP.
With respect to elevation, the NPP of vegetation with increasing elevation
varies greatly and shows a trend of increasing, then stabilizing, and finally
decreasing.  As  far  as  the  slope  is  concerned,  the  mean  NPP  of  the
vegetation increases with increasing slope. In terms of aspect,  the mean
NPP of the vegetation on the north and west slopes is larger, while that on
the south and east slopes is smaller.

 The NPP of the  Weihe  Watershed will continue to improve and presents
good development. The very low-value regions, lower-value regions, and
medium-value  regions  will  reduce  and  move  north  in  the  future. The
higher-value regions and very high-value regions will increase and expand
towards the northern and central regions.
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