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1 Introduction

In this paper, we are interested to investigate the delayed population model with survival
rate on isolated time scales given by

x∆(t) = γ(t)x(t) +
x(d(t))

µ(t)
er(t)µ(t)(1−x(d(t))

µ(t) ), t ∈ T (1.1)

where γ : T → (−∞, 0), r, k : T → (0,∞) describe, respectively, the intrinsic growth rate
and the carrying capacity of the habitat, and d : T → T is the delay function such that
ρα(t) 6 d(t) 6 t for some α ∈ N. This model is equivalent to

x(σ(t)) = γ̃(t)x(t) + x(d(t))er(t)µ(t)(1−x(d(t))
µ(t) ), t ∈ T

where the function γ̃(t) = 1+µ(t)γ(t) belongs to (0, 1). This is a generalization of the model
considered in [18] for any isolated time scales. Clearly, in the particular case T = Z, our
model reaches the one found in [18].

A quick look at the formulation of the model described by equation (1.1) may seem
different, since in its formulation appears the graininess function in the denominator of the
second term on the right–hand side of the equation. However, in [3], the authors show
that this formulation is necessary when we are dealing with quantum calculus (which is also
encompassed here), since depending on the formulation of the model and the assumptions,
one cannot even ensure the existence of ω–periodic solutions without considering this term for
the quantum case (see [3] for details). But it is important to mention that our model reaches
the model for the case T = Z considered in the literature, showing that this formulation is
appropriate and unifies all the cases.

We point out that our model is valid for all isolated time scales, which includes many
important examples such as T = Z, T = N2

0 = {n2 : n ∈ N0}, T = qN0 = {qn : n ∈ N0},
q > 1. This last one is known as quantum scale and has several applications in many fields of
physics such as cosmic strings and black holes, conformal quantum mechanics, nuclear and
high energy physics, fractional quantum Hall effect, and high-Tc superconductors. Thermo-
statistics of q-bosons and q-fermions can be established using basic numbers and employing
the quantum calculus. See, for instance, [1, 2, 7, 8, 10, 12, 13, 17] and the references therein.
On the other hand, it worths mentioning the importance of time scales to describe popu-
lation models, since it allows to consider a variety of scenery and many possibilities in the
behavior of different populations (see, for instance, [9]). Also, the population models for
quantum calculus play important role, bringing relevant applications (see [1, 2, 7, 8]).

The formulation of this model for its analogue for T = Z without delays was investigated
by many authors. See [14, 16, 15] for instance. In particular, in [15], the authors investigated
the extreme stability of the following discrete logistic equation

x(t+ 1) = x(t)er(t)(1−x(t)
k(t)), t ∈ Z+. (1.2)
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In [18], the author considered a version of the model with delays

x(t+ 1) = γ(t)x(t) + x(τ(t))er(t)(1−x(τ(t))
k(t) ), t ∈ Z+. (1.3)

The formulation considered here in this present paper generalizes (1.2) and (1.3). We are
interested to investigate the asymptotic behavior of the solutions of (1.1) on isolated time
scales, including global attractor, extremely stability, asymptotic periodicity and periodicity.

This paper is divided as follows. In the second section, we present some preliminary
results on theory of time scale and explain the delayed model that will be investigated. In
the third section, we investigate the stability of equation (1.1). The fourth section is devoted
to study the extremal stability of (1.1) and to present some examples to illustrate our main
results. Finally, the goal of last section is to investigate the periodicity and asymptotically
periodicity of solutions of (1.1), and to present examples.

2 Preliminaries

In this section, our goal is to recall some basic definitions and results from time scale theory.
For more details, we refer [5, 6].

A time scale T is any closed and nonempty subset of R endowed with the topology
inherited from R.

Definition 2.1. The forward jump operator σ : T→ T is defined by σ(t) = inf {s ∈ T : s > t}
and the backward jump operator ρ : T → T by ρ(t) = sup {s ∈ T : s > t} , provided
inf ∅ = supT and sup ∅ = inf T.

If σ(t) > t, then t is called right–scattered. Otherwise, t is called right–dense. Similarly,
if ρ < t, then t is said to be left–scattered, while if ρ(t) = t, then t is called left–dense.

From now on, we only consider isolated time scales, i.e., all points are right–scattered
and all points are left–scattered.

Moreover we denote the composition σ ◦ . . . ◦ σ︸ ︷︷ ︸
n times

by σn. The same notation we use for the

composition of operator ρ.

Definition 2.2. The graininess function µ : T→ [0,∞) is defined by µ(t) = σ(t)− t.

The delta (or Hilger) derivative of f : T→ R at a point t ∈ Tκ, where

Tκ =

{
T\(ρ(supT), supT], if supT <∞
T, if supT =∞

is defined in the following way:
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Definition 2.3 ([5]). The delta derivative of function f at a point t, denoted by f∆(t), is the
number (provided it exists) with the property that given any ε > 0, there is a neighborhood
U of t (i.e., U = (t− δ, t+ δ) ∩ T for some δ > 0) such that∣∣(f(σ(t))− f(s))− f∆(t)(σ(t)− s)

∣∣ 6 ε|σ(t)− s| for all s ∈ U.

We say that a function f is delta (or Hilger) differentiable on Tκ provided f∆(t) exists for
all t ∈ Tκ. The function f∆ : Tκ → R is then called the (delta) derivative of f on Tκ.

Throughout this paper, we assume that T is an isolated time scale such that

supT =∞, inf T = t0 and inf
t∈T

µ(t) > 0. (2.1)

By [5, Theorem 1.16], for any function f : T→ R, its derivative is given by

f∆(t) =
f(σ(t))− f(t)

µ(t)
for all t ∈ Tκ.

We consider the delayed population model of the form x∆(t) = γ(t)x(t) + x(d(t))
µ(t)

er(t)µ(t)(1−x(d(t))
k(t) ), t > t0

x(t0) = x0,
(2.2)

with γ : T→ (−∞, 0), r, k : T→ (0,∞) and d : T→ T such that

ρα(t) 6 d(t) 6 t for some α ∈ N. (2.3)

The functions r and k describe, respectively, the intrinsic growth rate and the carrying
capacity of the habitat. The delay is introduced to this model by the function d. From (2.3),
it is clear that limt→∞ d(t) =∞.

By solution of equation (2.2) with initial value x0, we mean function x : T → R which
satisfies (2.2) for t > t0 and x(t0) = x0.

Our aim is to study the stabillity, existence of a global attractor and the extreme stability,
as well as periodicity and asymptotically periodicity of (2.2), according to the notion of
periodicity for isolated time scales given in [4] by Bohner et al.

Remark 2.4. Let us emphasize that solution of equation (2.2) depends on only one initial
value x(t0), since the delay function d can be expressed in terms of iterations of the backward
jump operator ρ.

Example 2.5. Suppose that the time scale T = {t0, t1, t2, . . .} satisfies condition (2.1).
Consider a delay function of the form

d(ti) =

{
ρ2(ti) if i is even
ρ3(ti) if i is odd.
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By equation (2.2), we obtain

x(t1) = (1 + µ(t0)γ(t0))x(t0) + x(ρ2(t0))e
r(t0)µ(t0)

(
1−x(ρ

2(t0))
k(t0)

)

= (1 + µ(t0)γ(t0))x(t0) + x(t0)e
r(t0)µ(t0)

(
1−x(t0)

k(t0)

)

x(t2) = (1 + µ(t1)γ(t1))x(t1) + x(ρ3(t1))e
r(t1)µ(t1)

(
1−x(ρ

3(t1))
k(t1)

)

= (1 + µ(t1)γ(t1))x(t1) + x(t0)e
r(t1)µ(t1)

(
1−x(t0)

k(t1)

)
and so on.

Remark 2.6. We can also consider the model of population of the form

x∆(t) = γ(t)x(t) + x(d(t))
µ(t)

er(t)µ(t)(1−x(d(t))
k(t) ), t > tβ (2.4)

x(t0) = x0, x(t1) = x1, . . . , x(tβ−1) = xβ−1

i.e., with β initial values, where β depends on the delay function d.

Throughout this paper, we consider the following general assumptions on equation (2.2):

(A1) There exist γ0 and γ1 in (0, 1) such that

inf
t∈T

(
1 + µ(t)γ(t)

)
= γ0 and sup

t∈T

(
1 + µ(t)γ(t)

)
= γ1.

(A2) There exist constants ri, ki in (0,∞) for i = 0, 1, such that

inf
t∈T

r(t)µ(t) = r0, sup
t∈T

r(t)µ(t) = r1, inf
t∈T

k(t) = k0 and sup
t∈T

k(t) = k1.

In sequel, we introduce the following notation which will be important to our purposes:

(A3) Let the functions L and U be defined as follows

L(u) = ue
r0− r1uk0 and U(u) = ue

r1− r0uk1 for u > 0

and the constants M and m be given by

M = U
(k1

r0

)
=
k1

r0

er1−1 and m = L
( M

1− γ1

)
.

(A4) For δ > 1, we set a constant B as follows

B = min
(
L
( δM

1− γ1

)
,
r0k0

r1

)
.

(A5) Let constant m̃ be given by

m̃ = min

{
m,

r0k0

r1

}
.

It is not difficult to check that M is the maximum value of the function U and r0k0
r1

is the
fixed point of the function L.
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3 Result: Stability

In this section, our goal is to investigate the stability of (2.2). We start by recalling some
important definitions.

Definition 3.1. A set S ⊂ R is said to be invariant relative to (2.2) if for any positive value
x(t0) such that x(t0) ∈ S, the solution x of (2.2) satisfies x(t) ∈ S for all t > t0.

Definition 3.2. A set S ⊂ R is said to be a global attractor of (2.2) if for any ε > 0 and
positive value of x(t0), there exists an element T (ε, x(t0)) ∈ T such that the solution x of
(2.2) satisfies

min
s∈S
|x(t)− s| < ε for all t > T (ε, x(t0)).

Definition 3.3. Equation (2.2) is said to be extremely stable if for any two positive solutions
x and y of (2.2), we have

lim
t→∞
|x(t)− y(t)| = 0.

Remark 3.4. If (2.1) is fulfilled, any function x can be represented as a sequence {x(σn(t0))}n∈N,
so we can reformulate the above definitions as follows.

A set S ⊂ R is said to be invariant relative to (2.2) if for any positive value x(t0)
belonging to S, the solution {x(σn(t0))}n∈N of (2.2) satisfies

x(σn(t0)) ∈ S for all n ∈ N.

A set S ⊂ R is said to be a global attractor of (2.2) if for any ε > 0 and positive value
of x(t0), there exists a natural number N(ε, x(t0)) such that the solution {x(σn(t0))}n∈N of
(2.2) satisfies

min
s∈S
|x(σn(t0))− s| < ε for all n > N(ε, x(t0)).

Equation (2.2) is said to be extremely stable if for any two positive solutions {x(σn(t0))}n∈N
and {y(σn(t0))}n∈N of (2.2) we have

lim
n→∞

|x(σn(t0))− y(σn(t0))| = 0.

Lemma 3.5. Any solution x of (2.2) satisfies

x(σn(t)) =
n−1∏
k=0

(
1 + µ(σk(t))γ(σk(t))

)
x(t)

+
n−1∑
k=0

[ n−1∏
j=k+1

(
1 + µ(σj(t))γ(σj(t))

)]
g(σk(t), x(d(σk(t)))), (3.1)

where
g(v, u) = uer(v)µ(v)(1− u

k(v)). (3.2)
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Proof. Let us prove by induction. Since x is a solution of (2.2), we have

x(σ(t))− x(t)

µ(t)
= γ(t)x(t) +

x(d(t))

µ(t)
er(t)µ(t)(1−x(d(t))

k(t) ).

It implies immediately that (3.1) holds for n = 1.
Suppose now that (3.1) holds for n. Let us show that it also happens for n+ 1. Hence,

x(σn+1(t)) = x(σn(σ(t)))

=
n−1∏
k=0

(
1 + µ(σk+1(t))γ(σk+1(t))

)
x(σ(t))

+
n−1∑
k=0

[ n−1∏
j=k+1

(
1 + µ(σj+1(t))γ(σj+1(t))

)]
g(σk+1(t), x(d(σk+1(t))))

=
n∏
k=1

(
1 + µ(σk(t))γ(σk(t))

)
x(σ(t))

+
n∑
k=1

[ n∏
j=k+2

(
1 + µ(σj(t))γ(σj(t))

)]
g(σk(t), x(d(σk(t)))).

Using the definition of x(σ(t)) given by the case n = 1 and replacing in the above equation,
we have

x(σn+1(t)) =
n∏
k=1

(
1 + µ(σk(t))γ(σk(t))

)[(
1 + µ(t)γ(t)

)
x(t) + g(t, x(d(t)))

]
+

n∑
k=1

[ n∏
j=k+2

(
1 + µ(σj(t))γ(σj(t))

)]
g(σk(t), x(d(σk(t))))

=
n∏
k=0

(
1 + µ(σk(t))γ(σk(t))

)
x(t)

+
n∑
k=0

[ n∏
j=k+1

(
1 + µ(σj(t))γ(σj(t))

)]
g(σk(t), x(d(σk(t)))),

getting the desired result.

From assumption (A1) and (3.1), it follows that positive value of x(t0) implies solution
x of (2.2) takes positive values only.

By assumption (A2), we get

L(u) 6 g(v, u) 6 U(u) for v ∈ [t0,∞)T and u > 0. (3.3)
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In consequence,
g(v, u) 6M for v ∈ [t0,∞)T and u > 0. (3.4)

From (3.1) and (3.4), due to assumption (A1), we have

x(σn(t0)) 6 γn1 x(t0) +M

n−1∑
k=0

γn−k−1
1

= γn1 x(t0) +M
1− γn1
1− γ1

(3.5)

for any n ∈ N. Note that for x(t0) ∈
(

0, δM
1−γ1

]
with δ > 1, we get from (3.5)

x(σn(t0)) 6
γn1 δM

1− γ1

+
M −Mγn1

1− γ1

=
γn1 (δM −M) +M

1− γ1

6
δM −M +M

1− γ1

=
δM

1− γ1

. (3.6)

Using the notations from (A3)–(A4) and by properties of function L, we obtain

L(u) > B for u ∈
[ B

1− γ0

,
δM

1− γ1

]
,

where B is defined in (A4). By inequality (3.3), we get

g(v, u) > B for v ∈ [t0,∞)T and u ∈
[ B

1− γ0

,
δM

1− γ1

]
. (3.7)

Assuming x(t0) > B
1−γ0 , it follows by Lemma 3.5, inequality (3.7) and assumption (A1), the

following inequality

x(σn(t0)) >

(
n−1∏
k=0

γ0

)
x(t0) +

(
n−1∑
k=0

(
n−1∏
j=k+1

γ0

)
g(σk(t0), x(d(σk(t0))))

)

>
n−1∏
k=0

γ0
B

1− γ0

+
n−1∑
k=0

γn−1−k
0 B

= γn0
B

1− γ0

+B

(
1− γn0
1− γ0

)
=

B

1− γ0

(3.8)

for n ∈ N. Hence, inequalities (3.6) and (3.8) allow us to formulate the following theorem.
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Theorem 3.6. If conditions (A1)–(A4) hold, then the set
[

B
1−γ0 ,

δM
1−γ1

]
is invariant relative

to (2.2) for positive values of x(t0), where δ > 1 and B is given in (A4).

The next theorem brings the statement on a global attractor.

Theorem 3.7. Under assumptions (A1)–(A3) and (A5), the set
[

m̃
1−γ0 ,

M
1−γ1

]
is a global

attractor of (2.2) for positive values of x(t0).

Proof. Since γ0 and γ1 belong to (0, 1), for any ε > 0 and positive value x(t0), there exists
an integer N(ε, x(t0)) > 0 such that

γn1

∣∣∣x(t0)− M

1− γ1

∣∣∣ < ε and γn0

∣∣∣x(t0)− m̃

1− γ0

∣∣∣ < ε for any n > N(ε, x(t0)).

It implies

γn1 |x(t0)| < ε+

∣∣∣∣ γn1M1− γ1

∣∣∣∣ = ε+
Mγn1
1− γ1

.

Applying the above to (3.5), we obtain

x(σn(t0)) < ε+
Mγn1
1− γ1

+
M

1− γ1

− Mγn1
1− γ1

= ε+
M

1− γ1

for any n > N(ε, x(t0)).

In analogous way, we get

x(σn(t0)) >
m̃

1− γ0

− ε for n > N(ε, x(t0)),

which concludes the proof.

4 Result: Extreme stability

In this section, we are interested to investigate the extreme stability of equation (2.2).

Lemma 4.1. Let the assumptions (A1)–(A3) and (A5) hold. If x is a solution of (2.2) such
that x(t0) is a positive value and

m̃

k1(1− γ0)
> 1, (4.1)

then

lim sup
t→∞

∣∣∣1− r(t)µ(t)x(d(t))

k(t)

∣∣∣er(t)µ(t)(1−x(d(t))
k(t)

) 6 max
{∣∣∣1− r0m̃

k1(1− γ0)

∣∣∣, ∣∣∣1− r1M

k0(1− γ1)

∣∣∣}.
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Proof. By Theorem 3.7, for any given solution x of (2.2) and for every ε > 0, there exists
T = T (ε, x(t0)) ∈ T such that

m̃

1− γ0

− ε < x(d(t)) <
M

1− γ1

+ ε for t > T. (4.2)

It implies the following estimates

1− r(t)µ(t)x(d(t))

k(t)
< 1− r0

k1

( m̃

1− γ0

− ε
)

(4.3)

and

1− r(t)µ(t)x(d(t))

k(t)
> 1− r1

k0

( M

1− γ1

+ ε
)

(4.4)

for t > T such that t ∈ T. Since ε is arbitrary, we can write

lim sup
t→∞

∣∣∣1− r(t)µ(t)x(d(t))

k(t)

∣∣∣ 6 max
{∣∣∣1− r0m̃

k1(1− γ0)

∣∣∣, ∣∣∣1− r1M

k0(1− γ1)

∣∣∣}.
Now, it remains to show that

lim sup
t→∞

er(t)µ(t)(1−x(d(t))
k(t)

) 6 1 (4.5)

to conclude the proof. Observe that the left–hand side of inequality in formula (4.2) combined
with (4.1) implies that

x(d(t))

k(t)
>

m̃

k1(1− γ0)
− ε

k0

> 1− ε

k0

for any t > T.

In consequence,

lim inf
t→∞

x(d(t))

k(t)
> 1.

This ends the proof.

Theorem 4.2. Let assumptions (A1)–(A3) and (A5) hold. If condition (4.1) is satisfied
and

max
{∣∣∣1− r0m̃

k1(1− γ0)

∣∣∣, ∣∣∣1− r1M

k0(1− γ1)

∣∣∣} < 1− γ1, (4.6)

then equation (2.2) is extremely stable.

Proof. Let x and y be arbitrary positive solutions of (2.2). Since x and y satisfy (2.2) for
all t ∈ T, we have by Lemma 3.5

x(σn(t)) =
n−1∏
k=0

(
1 + µ(σk(t))γ(σk(t))

)
x(t)
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+
n−1∑
k=0

[ n−1∏
j=k+1

(
1 + µ(σj(t))γ(σj(t))

)]
g(σk(t), x(d(σk(t))))

and

y(σn(t)) =
n−1∏
k=0

(
1 + µ(σk(t))γ(σk(t))

)
y(t)

+
n−1∑
k=0

[ n−1∏
j=k+1

(
1 + µ(σj(t))γ(σj(t))

)]
g(σk(t), y(d(σk(t))))

for any t ∈ T and n ∈ N. In consequence, we have

x(σn(t))− y(σn(t)) =
n−1∏
k=0

(
1 + µ(σk(t))γ(σk(t))

)
(x(t)− y(t))

+
n−1∑
i=0

[ n−1∏
j=i+1

(
1 + µ(σj(t))γ(σj(t))

)]{
x(d(σi(t)))e

r̃(σi(t))

(
1−x(d(σ

i(t)))

k(σi(t))

)

−y(d(σi(t)))e
r̃(σi(t))

(
1− y(d(σ

i(t)))

k(σi(t))

)}
for all n ∈ N,

where r̃ = rµ. Applying assumption (A1) and Mean Value Theorem to the above, we get
the following estimate

|x(σn(t))− y(σn(t))| 6 γn1 |x(t)− y(t)|+

+
n−1∑
i=0

γn−i−1
1

∣∣∣1− r̃(σi(t))η(d(σi(t)))

k(σi(t))

∣∣∣er̃(σi(t))
(

1− η(d(σ
i(t)))

k(σi(t))

)
|x(d(σi(t)))− y(d(σi(t)))| (4.7)

for all n ∈ N, where η(d(σi(t))) is between x(d(σi(t))) and y(d(σi(t))) for i = 0, 1, . . . , n−1.
By condition (4.6), there exists real number M1 such that

max
{∣∣∣1− r0m̃

k1(1− γ0)

∣∣∣, ∣∣∣1− r1M

k0(1− γ1)

∣∣∣} < M1 < 1− γ1. (4.8)

Hence, by Lemma 4.1 and by the definition of η, there exists t2 ∈ T such that for t > t2, we
have ∣∣∣1− r̃(σi(t))η(d(σi(t)))

k(σi(t))

∣∣∣er̃(σi(t))
(

1− η(d(σ
i(t)))

k(σi(t))

)
6M1 for all i ∈ N. (4.9)

On the other hand, for any t ∈ T, due to Theorems 3.6 and 3.7, the sequence

{x(σn(t))− y(σn(t))}n∈N

11



is bounded. Hence, there exists a > 0 such that

lim sup
n→∞

|x(σn(t))− y(σn(t))| = a. (4.10)

In conclusion, for every ε > 0, there exists t3 ∈ T such that

|x(σn(t))− y(σn(t))| < a+ ε for all n ∈ N and t3 6 t ∈ T. (4.11)

It is convenient to choose t3 such that t3 > t2, since it implies condition (4.9) also holds.
Combining inequalities (4.7), (4.9) and (4.11), we obtain for t > t3 and for all n ∈ N

|x(σn(t))− y(σn(t))| 6 γn1 |x(t)− y(t)|+ 1− γn1
1− γ1

M1(a+ ε). (4.12)

Taking lim sup when n→ +∞ on both sides of the above inequality, we get

a 6
1

1− γ1

M1(a+ ε).

Since inequality (4.8) is satisfied, we have

a 6
M1ε

1− γ1 −M1

.

By the arbitrariness of ε, we obtain that a = 0, obtaining the desired result.

Remark 4.3. Notice that since T is an isolated time scale such that supT = +∞, it is clear
that limn→∞ σ

n(t) = +∞. From this, we can infer by the properties of lim sup that (4.10)
also holds for t sufficiently large, obtaining (4.11).

In sequel, we present some examples to illustrate the above results.

Example 4.4. Let

T =
{

3n+ k : n ∈ N0, k ∈
{

0,
1

5
,
2

5
,
3

5
,
4

5
, 1
}}

,

where N0 is the set of nonnegative integers. Then t0 = 0 and min
t∈T

µ(t) = 1
5
. Consider

equation (2.2) with d = ρ2,

γ(t) =

 −0.4 if t ∈
{

3n+ 1 : n ∈ N0

}
−3.4 if t ∈

{
3n+ k : n ∈ N0, k ∈

{
0, 1

5
, 2

5
, 3

5
, 4

5

}}
,

r(t) =

 0.425 if t ∈
{

3n+ 1 : n ∈ N0

}
0.405 if t ∈

{
3n+ k : n ∈ N0, k ∈

{
0, 1

5
, 2

5
, 3

5
, 4

5

}}
,

12



and

k(t) =

 10 if t ∈
{

3n+ 1 : n ∈ N0

}
9 + t− [t] if t ∈

{
3n+ k : n ∈ N0, k ∈

{
0, 1

5
, 2

5
, 3

5
, 4

5

}}
.

Hence
γ0 = 0.2, γ1 = 0.32, r0 = 0.81, r1 = 0.85, k0 = 9, k1 = 10.

Calculating 
M = U

(
k1
r0

)
= k1

r0
er1−1 ≈ 10.62602;

m = L
(

M
1−γ1

)
≈ 8.02958;

r0k0
r1
≈ 8.57647;

we get m̃ = min
{
m, r0k0

r1

}
= m. By Theorem 3.7, interval

[
m̃

1−γ0 ,
M

1−γ1

]
≈
[
10.03697, 15.62651

]
is a global attractor of (2.2). Figure 1 shows behavior of two solutions x and y with positive
initial values x(t0) = 1 and y(t0) = 20, respectively. The range of the global attractor is
illustrated by red dotted lines. Hence,

Figure 1: Example 4.4 - the part of plot of two chosen solutions of (2.2) for n = 120 points

m̃

k1(1− γ0)
≈ 1.00370

and

max
{∣∣∣1− r0m̃

k1(1− γ0)

∣∣∣, ∣∣∣1− r1M

k0(1− γ1)

∣∣∣} ≈ 0.47584 < 0.68 = 1− γ1.
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Therefore, conditions (4.1) and (4.6) are satisfied. Theorem 4.2 implies that (2.2) is extremely
stable. In Figure 2, difference of two solutions x and y with initial conditions x(t0) = 1 and
y(t0) = 20 is shown, confirming that (2.2) is extremly stable.

Figure 2: Example 4.4 - difference of solutions x and y

Example 4.5. Let T = qN, where q = 1.1, and consider equation (2.2) with

d(t) =

 ρ2(t) if t ∈
{
q2n : n ∈ N

}
ρ(t) if t ∈

{
q2n−1 : n ∈ N

}
,

γ(t) =


−0.75
t(q−1)

if t ∈
{
q2n−1 : n ∈ N

}
−0.65
t(q−1)

if t ∈
{
q2n : n ∈ N

}
,

r(t) =


0.35
t(q−1)

if t ∈
{
q2n−1 : n ∈ N

}
0.45
t(q−1)

if t ∈
{
q2n : n ∈ N

}
,

and
k(t) = 14 + sin(tπ).

Then constants introduced by assumption (A1)–(A2) are following

γ0 = 0.25, γ1 = 0.35, r0 = 0.35, r1 = 0.45, k0 = 13, k1 = 15.

14



Hence
M ≈ 20.21769, m ≈ 14.74683 and m̃ = 11.7.

By Theorem 3.7, interval
[

m̃
1−γ0 ,

M
1−γ1

]
≈
[
15.6, 31.10414

]
is a global attractor of (2.2). We

check that
m̃

k1(1− γ0)
= 1.04 > 1,

and

max
{∣∣∣1− r0m̃

k1(1− γ0)

∣∣∣, ∣∣∣1− r1M

k0(1− γ1)

∣∣∣} = 0.532 < 0.65 = 1− γ1.

Thus assumptions of Theorem 4.2 are satisfied. Hence equation (2.2) is extremely stable.
Figure 3 shows behavior of the solutions x and y with initial values x(t0) = 1 and y(t0) = 37
(for 120 points from the time scale). Difference of those solutions is illustrated in Figure 4.

Figure 3: Example 4.5 - the part of plot of two chosen solutions of (2.2) for n = 120 points
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Figure 4: Example 4.5 - the plot of x− y for n = 120 points

5 Result: Periodicity

In this section, our goal is to investigate the existence of ω–periodic solutions and asymp-
totically ω–periodic solutions of (3.1), using the new concept of periodicity on isolated time
scales introduced in [4].

Let us start by recalling the idea of periodicity on isolated time scales introduced in [4].

Definition 5.1. A function f : T→ R is called ω−periodic if

ν∆f ν = f,

where ν = σω.

Since condition (2.1) is satisfied, T contains only isolated points and

ν∆(t) =
ν(σ(t))− ν(t)

µ(t)
=
σ(ν(t))− ν(t)

µ(t)
=
µ(ν(t))

µ(t)

(see [4]). Therefore, we can formulate the following equivalent condition of ω−periodicity
which can be found in [4].

Lemma 5.2. A function f : T→ R is ω−periodic if and only if (µf)ν = µf.

Remark 5.3. Observe that for T = Z we have µ(t) = 1, ν(t) = t + ω and in this case,
ω−periodicity condition given in Lemma 5.2 takes the known form

f(t+ ω) = f(t) for all t ∈ Z.

When T = 2N0 , then one can check that function f is ω−periodic if

2ωf(2ωt) = f(t) for all t ∈ 2N0 ,

reaching the ω–periodicity for the quantum case. See [1, 2, 7, 8].

16



Definition 5.4. A function f : T → R is said to be asymptotically ω−periodic (or asymp-
totically ω−periodic for t > t1) if there exist two functions p, q : T→ R such that

f(t) = p(t) + q(t),

where p(t) is ω−periodic (or ω−periodic for t > t1) and q(t)→ 0 as t→∞.

As in the previous section, assume m̃ = min{m, r0k0
r1
}. The next result follows the same

way as the proof of Lemma 4.1. Therefore, we omit its proof here.

Lemma 5.5. Assume (A1)–(A3) are satisfied. If x : T→ R is such that

sup
t∈T
|x(t)| ∈

[ m̃

1− γ0

,
M

1− γ1

]
and

m̃

k1(1− γ0)
> 1, (5.1)

then for all t ∈ T, the inequality∣∣∣1− r(t)µ(t)x(d(t))

k(t)

∣∣∣er(t)µ(t)(1−x(d(t))
k(t) ) 6 max

{∣∣∣1− r0m̃

k1(1− γ0)

∣∣∣, ∣∣∣1− r1M

k0(1− γ1)

∣∣∣}
holds.

Lemma 5.6. Suppose conditions (A1)–(A3), (A5), (4.6) and (5.1) hold. If x : T→ R is an
asymptotically ω−periodic function, r, k : T → R are ω−periodic functions and there exists
t1 ∈ T such that for any ω−periodic function p : T → R, p ◦ d is also ω−periodic for all
t > t1, then g(t, x(d(t))) defined by (3.2) is an asymptotically ω−periodic function for t > t1.

Proof. Since x is asymptotically ω−periodic, it can be decomposed by

x(t) = p(t) + q(t),

where p is ω−periodic and limt→∞ q(t) = 0. Applying Mean Value Theorem, we obtain the
following inequality

|g(t, x(d(t)))− g(t, p(d(t)))| = |g(t, x(d(t)))− p(d(t))er(t)µ(t)(1− p(d(t))
k(t) )|

6
∣∣∣1− r(t)µ(t)ξ

k(t)

∣∣∣er(t)µ(t)(1− ξ
k(t))|x(d(t))− p(d(t))|, (5.2)

where ξ is between x(d(t)) and p(d(t)). By Lemma 5.5, inequality (4.6) and asymptotic
ω−periodicity of x, the right hand side of (5.2) tends to 0 if t → ∞. On the other hand,
notice that

µ(ν(t))p(d(ν(t)))eµ(ν(t))r(ν(t))(1− p(d(ν(t)))
k(ν(t)) )

17



= µ(ν(t))p(d(ν(t)))eµ(ν(t))r(ν(t))(1− p(d(ν(t)))µ(ν(t))
k(ν(t))µ(ν(t)) )

= µ(t)p(d(t))eµ(t)r(t)(1− p(d(t))µ(t)
k(t)µ(t) )

= µ(t)p(d(t))eµ(t)r(t)(1− p(d(t))
k(t) )

for t > t1 since by assumption there exists t1 ∈ T such that p ◦ d is ω−periodic for t > t1.

Thus, by Lemma 5.2, the function p(d(t))er(t)µ(t)(1− p(d(t))
k(t) ) is ω−periodic for t > t1, proving

the lemma.

The proof of the next result follows the same way as the proof of the previous result.
Thus, we omit it here.

Corollary 5.7. Suppose r, k : T → R are ω–periodic functions and for any ω–periodic
function p : T → R, p ◦ d is also an ω–periodic function. If x : T → R is an ω–periodic
function, then g(t, x(d(t))) is also an ω–periodic function.

Lemma 5.8. Assume (A1) holds. If x : T → R is an asymptotically ω−periodic function
and γ : T→ R is an ω−periodic function, then function µγx is an asymptotically ω−periodic
function.

Proof. Since x is an asymptotically ω–periodic function, it can be decomposed by

x(t) = p(t) + q(t),

where p is ω−periodic and lim
t→∞

q(t) = 0, which implies

µγx = µγp+ µγq.

By (A1), µγ is a bounded function, which implies that there exists lim
t→∞

µ(t)γ(t)q(t) = 0.

Thus, it remains to show that function µγp is ω−periodic. By Lemma 5.2, we obtain that
(µγ)ν = µγ and (µp)ν = µp. It implies the following equality

(µµγp)ν = (µγ)ν(µp)ν = µµγp.

Applying Lemma 5.2 again, we get the desired result.

In the same manner, we can prove the following result.

Corollary 5.9. Suppose (A1) holds. If x : T → R is an asymptotically ω−periodic for
t > t1 and γ : T→ R is an ω−periodic function, then µγx is an asymptotically ω−periodic
function for t > t1.

To guarantee the existence of an asymptotically ω−periodic solution of (2.2), we apply
the Krasnoselskii Fixed Point Theorem.
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Theorem 5.10 ([11]). Let B be a Banach space, let Ω be a bounded, convex and closed subset
of B and let F,G be maps of Ω into B such that

(i) Fx+Gy ∈ Ω for any x, y ∈ Ω,

(ii) F is a contraction,

(iii) G is completely continuous.

Then operator F +G has a fixed point in Ω.

Theorem 5.11. Let conditions (A1)–(A3), (A5), (4.6) and (5.1) hold. If γ, r and k are
ω−periodic functions and there exists t1 ∈ T such that for any ω−periodic function p : T→
R, p ◦ d is also ω−periodic for t > t1 then there exists t∗ ∈ T such that equation (2.2)
has a unique ω−periodic (for t > t1) solution x and all other solutions are asymptotically
ω−periodic.

Proof. Let B(T) denote a Banach space of the form

B(T) := {x = {x(t)}t>t0 : sup
t∈T
|x(t)| <∞}

equipped with the norm defined by ‖x‖ = supt∈T |x(t)|. It is not difficult to show that the
set

B(T)ap := {x ∈ B(T) : x is asymptotically ω–periodic for t > t1}

with the supremum norm defined above is also a Banach space. Let us introduce the following
subset of B(T)ap

Ωap :=

{
x ∈ B(T)ap :

m̃

1− γ0

6 ‖x‖ 6 M

1− γ1

}
.

Observe that Ωap is a bounded, convex and closed subset in B(T)ap. Let us define two
operators F,G : Ωap → B(T)ap in the following way

(Fx)(t) =

{
0, if t = t0
(1 + µ(ρ(t))γ(ρ(t)))x(ρ(t)) + g(ρ(t), x(d(ρ(t)))), if t > t0,

where function g is given by (3.2), and

(Gx)(t) =

{
x(t) if t = t0
0 if t > t0.

By (A1), for any x, y ∈ Ωap and for t > t0, we get

(Fx)(t) + (Gy)(t) = (1 + µ(ρ(t))γ(ρ(t)))x(ρ(t)) + g(ρ(t), x(d(ρ(t))))

6 γ1
M

1− γ1

+M
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=
M

1− γ1

(5.3)

and

(Fx)(t) + (Gy)(t) > γ0
m̃

1− γ0

+ m̃ =
m̃

1− γ0

. (5.4)

Clearly, (5.3) and (5.4) also remain valid for t = t0. In consequence,

m̃

1− γ0

6 ‖Fx+Gy‖ 6 M

1− γ1

.

By Lemma 5.6 and Corollary 5.9, we obtain that function Fx + Gy is asymptotically
ω−periodic for t > t1, hence Fx+Gy ∈ Ωap.

The next step is to show that F is a contraction. Taking any x, y ∈ Ωap, we have

|(Fx)(t)− (Fy)(t)| 6 |1 + µ(ρ(t))γ(ρ(t))||x(ρ(t))− y(ρ(t))|
+|g(ρ(t), x(d(ρ(t))))− g(ρ(t), y(d(ρ(t))))|.

By condition (A1) and Mean Value Theorem, for any t ∈ T, we get

|(Fx)(t)− (Fy)(t)| 6 γ1‖x−y‖+
∣∣∣1− r(ρ(t))µ(ρ(t))ξ(d(ρ(t)))

k(ρ(t))

∣∣∣er(ρ(t))µ(ρ(t))(1− ξ(d(ρ(t)))
k(ρ(t)) )‖x−y‖,

where ξ(d(ρ(t))) is between x(d(ρ(t))) and y(d(ρ(t))). By condition (4.6), we can choose an
ε0 > 0 such that

max
{∣∣∣1− r0m̃

k1(1− γ0)

∣∣∣, ∣∣∣1− r1M

k0(1− γ1)

∣∣∣} 6 1− γ1 − ε0.

Finally, by the arbitrariness of ε0, condition (4.6) and Lemma 5.5 lead to estimate

‖Fx− Fy‖ 6 (1− γ1)‖x− y‖ for all t ∈ T,

which means that F is a contraction.
To be able to use the Krasnoselskii Fixed Point Theorem, it remains to verify that G is

completely continuous. It is evident that GΩap is a bounded subset in R and this implies
that it is relatively compact. Thus, G is completely continuous.

Theorem 5.10 implies the existence of x̃ ∈ Ωap such that

x̃(t) = (Fx̃)(t) + (Gx̃)(t) for all t ∈ T.

It can be equivalently rewritten as

x̃(σ(t)) = (1 + µ(t)γ(t))x̃(t) + g(t, x̃(d(t))) for t > t0. (5.5)
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This means that x̃ is an asymptotically ω−periodic (for t > t1) solution of (2.2). Thus, x̃
has the following decomposition

x̃(t) = p̃(t) + q̃(t), (5.6)

where p̃(t) is ω−periodic for t > t1 and lim
t→∞

q̃(t) = 0. Combining (5.5) and (5.6), we obtain

(1 + µ(t)γ(t))x̃(t) + g(t, x̃(d(t))) = p̃(σ(t)) + q̃(σ(t))

which implies

(1 + µ(t)γ(t))(p̃(t) + q̃(t)) + g(t, x̃(d(t)))− g(t, p̃(d(t))) + g(t, p̃(d(t))) = p̃(σ(t)) + q̃(σ(t)).

We claim that
p̃(σ(t)) = (1 + µ(t)γ(t))p̃(t) + g(t, p̃(d(t))) (5.7)

and
q̃(σ(t)) = (1 + µ(t)γ(t))q̃(t) + g(t, x̃(d(t)))− g(t, p̃(d(t))).

Firstly, notice that (1 + µ(t)γ(t))p̃(t) + g(t, p̃(d(t))) is ω–periodic. Indeed, by Lemma 5.2,
we get for t > t1

(µ(t)[(1 + µ(t)γ(t))p̃(t) + g(t, p̃(d(t)))])ν

= (µ(t)p̃(t))ν + (µ(t)γ(t))ν(µ(t)p̃(t))ν + (µ(t)g(t, p̃(d(t))))ν

= µ(t)p̃(t) + µ(t)γ(t)µ(t)p̃(t) + µ(t)g(t, p̃(d(t)))

= µ(t)(1 + γ(t)µ(t))p̃(t) + µ(t)g(t, p̃(d(t))),

since g(t, p̃(d(t))) is ω–periodic, by Corollary 5.7. On the other hand, proceeding the same
way as in (5.2) we obtain by applying Mean Value Theorem

|g(t, x̃(d(t)))− g(t, p̃(d(t)))| = |g(t, x̃(d(t)))− p̃(d(t))er(t)µ(t)(1− p̃(d(t))
k(t) )|

6
∣∣∣1− r(t)µ(t)ξ

k(t)

∣∣∣er(t)µ(t)(1− ξ
k(t))|x̃(d(t))− p̃(d(t))|,

where ξ is between x(d(t)) an p(d(t)). Hence, we get

lim
t→∞
|g(t, x̃(d(t)))− g(t, p̃(d(t)))| = 0

and also, it implies that

lim
t→∞

(1 + µ(t)γ(t))q̃(t) + g(t, x̃(d(t)))− g(t, p̃(d(t))) = 0,

since q̃(t) → 0 as t → ∞ and 1 + µγ is bounded. Therefore, by the uniqueness of decom-
position, the claim follows. By the equality (5.7), we obtain p̃ is an ω−periodic (for t > t1)
solution of (2.2).
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To prove the uniqueness, assume ỹ is another ω−periodic (for t > t1) solution of (2.2),
then by Theorem 4.2, we have

lim
t→∞
|p̃(t)− ỹ(t)| = 0.

This clearly forces p̃(t) = ỹ(t) for t > t1.
Finally, let x be an arbitrary solution of (2.2), then applying again Theorem 4.2, we have

lim
t→∞
|x(t)− x̃(t)| = 0.

It implies that
x(t) = p̃(t) + q(t),

with lim
t→∞

q(t) = 0, hence x is an asymptotically ω−periodic solution of (2.2), proving the

result.

Let us illustrate the above result returning to the equation considered in Example 4.4.

Example 5.12. Let

T =
{

3n+ k : n ∈ N0, k ∈
{

0,
1

5
,
2

5
,
3

5
,
4

5
, 1
}}

,

where N0 is the set of nonnegative integers. Consider equation (2.2) with d = ρ5 and
functions γ, r, k defined as in Example 4.4.

It is easy to check that functions γ, r and k are 6−periodic, since for all t ∈ T we
have µ(t) = µ(σ6(t)). This property of graininess function implies that for any 6−periodic
function p holds p = p(σ6). In consequence, the composition of any 6−periodic function p
with the delay function d, i.e., p ◦ d is 6−periodic for t > σ5(t0). Since all assumptions of
Theorem 5.11 are satisfied equation (2.2) admits unique ω−periodic (for t > σ5(t0)) solution
and all other solutions are asymptotically ω−periodic (see Figure 5).

In general, assuming d = ρj, we have that if p is 6−periodic function, then p ◦ d is
6−periodic for t > σj(t0).
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