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Abstract: In this paper an SVEIR epidemic model with continuous age-
dependent vaccination, latent, infected and disease relapse is proposed. The
dynamical behavior including the calculation of basic reproduction number
R0, the existence of steady states and their local and global stability, and
the uniform persistence are investigated. We derive that if R0 ≤ 1 then the
disease-free steady state is globally asymptotically stable, and hence the disease
dies out, if R0 > 1 then the disease in the model is uniform persistence and
the endemic steady state also is globally asymptotically stable, and hence the
disease becomes endemic. The research shows the global dynamics of the model
are sharply determined by its basic reproduction number. Finally, numerical
examples support our main analytical results.
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1 Introduction

Since ancient times, the losses caused by the spread of infectious diseases are far greater

than the sum of all wars in history. Infectious diseases not only threaten human health and

lives, but also cause severe social decline and even the demise of the country. Therefore,

further research in infectious diseases area appears to be very critical and necessary.
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Mathematical modeling has been proven to be important in better understanding the

transmission dynamics of epidemic diseases and evaluating the effectiveness of various

control and prevention strategies (see [1-5]). For example, measles, tuberculosis, SARS,

HBV and HIV etc, will show the influence of age at some time of the disease, so the

age-structured disease infection has long been regarded as an important factor affecting

the spread of disease (see [6-10]).

By the last 20 years of the mid-20th century, the age-structured of the model has

been widely studied. In [11] proposed and analyzed an age-dependent infectious dis-

ease model, on this basis, especially in recent years, many authors considered the age-

structured model with higher dimensionality, such as [12] gave qualitative analysis of a

kind of age-structured SVEIR tuberculosis model; [13] considered a multi-group mod-

el with generalized nonlinear incidence and vaccination age; an age-dependent SVEIR

model with vaccination, latent, relapse and made corresponding numerical simulation

verification theoretical results has been studied in [14-16]; in [17], the authors proposed

an SVEIR epidemic model with ages of vaccination and latency. At the same time, many

studies considered infection age, Xu [18] studied an epidemiological model with age of

infection and disease relapse; [19] showed that a tuberculosis model with fast and slow

progression and age-dependent latency and infection etc; an SVEIR model with contin-

uous age-structure in the infectious class are considered in [20,21]; [22] paid attentions

to a multi-group SVEIR epidemiological model with the vaccination age and infection

age. In comparison, high-dimensional infectious disease model with age of infection is not

considered.

To understand the effect of vaccination age, latency age, infection age and relapse

age on global dynamics of the model, based on a lot of previous work, in this paper we

propose an age-dependent SVEIR model of partial differential equation. The existence,

uniqueness, boundedness, asymptotic smoothness and uniform persistence is proved by

reformulating it as the so called Volterra integral equations. By calculations, the ba-

sic reproduction number of the model was obtained, the local stability of a disease-free

steady state and an endemic steady state of the model is established by analyzing cor-

responding characteristic equations. By constructing suitable Lyapunov functionals and

using LaSalle’s invariance principle, it is verified that the global dynamics of the model is

completely determined by the basic reproduction number.

This work is organized as follows: In Section 2, we propose a novel age-dependent

SVEIR model with ages of vaccination, latency, infection and relapse. Some basic proper-

ties of the solutions, the existence of steady states and the basic reproduction number for

the model is analyzed in Section 3. In Section 4, we prove the local and global stability

of the disease-free steady state. In Section 5, we investigate uniform persistence of the
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model. In Section 6, the stability of the endemic steady state is proved, respectively.

Finally, simulation and discussion are made in Section 7-8.

2 Model formulation

In this section, we will construct an SVEIR epidemic model with age-dependent vac-

cination, latent, infected and relapse. We assume that the total population N is divided

into five classes: the susceptible (S), vaccinated (V ), latent (E), infected (I) and recov-

ered (R), respectively. Let S(t) be the number of the susceptible at time t, v(t, a) be the

density of the vaccinated with age of vaccination a at time t, e(t, b) be the density of the

latent with age of latency b at time t, i(t, c) be the density of the infected with age of

infection c at time t and r(t, h) be the density of the recovered with age of relapse h at

time t.

We assume positive constants Λ, µ, ξ, β to be the birth rate, the per-capita natural

death, the vaccination rate of the susceptible individuals and the rate of transmission of

the disease. δ(c) is the disease induced death rate dependent on age c, we here take the

nonlinear rate βSf(Ī). Assume that the newly vaccinated individuals enter the vaccinated

class at vaccination age zero, the vaccine-induced immunity wanes rate is dependent on age

of vaccination and given by ω1(a). Then the total number of vaccinated individuals within

the vaccinated subclass at time t is
∫∞

0
v(t, a)da. Thus the total number of losing immunity

which return to the susceptible class alive reads
∫∞

0
ω1(a)v(t, a)da. Similarly, for the

density of the latent e(t, b) at time t with latency age b , the density of the infected i(t, c)

at time t with infection age c and the density of the recovered r(t, h) at time t with relapse

age h, the latency developing the infected class, the infection developing the recovered

class and the relapse into the infected class alive write
∫∞

0
ω2(b)e(t, b)db,

∫∞
0
ω3(c)i(t, c)dc

and
∫∞

0
ω4(h)r(t, h)dh, respectively. Under these assumptions, our model is described by

the following diagram in Fig 1.

Fig 1. Flow diagram, where Ī(t) =
∫∞

0 ω5(c)i(t, c)dc and Σω1v, Σω2e, Σω3i, Σω4r represent∫∞
0 ω1(a)v(t, a)da,

∫∞
0 ω2(b)e(t, b)db,

∫∞
0 ω3(c)i(t, c)dc and

∫∞
0 ω4(h)r(t, h)dh.
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From Fig 1, the model takes the following form:

dS(t)

dt
= Λ− (µ+ ξ)S(t)− βS(t)f(Ī(t)) +

∫ ∞
0

ω1(a)v(t, a)da,

∂v(t, a)

∂t
+
∂v(t, a)

∂a
= −(ω1(a) + µ)v(t, a),

∂e(t, b)

∂t
+
∂e(t, b)

∂b
= −(ω2(b) + µ)e(t, b),

∂i(t, c)

∂t
+
∂i(t, c)

∂c
= −(ω3(c) + µ+ δ(c))i(t, c),

∂r(t, h)

∂t
+
∂r(t, h)

∂h
= −(ω4(h) + µ)r(t, h),

(1)

with the following initial conditions and boundary conditions

S(0) = S0, v(0, a) = v0(a), e(0, b) = e0(b), i(0, c) = i0(c), r(0, h) = r0(h),

v(t, 0) = ξS(t), e(t, 0) = βS(t)f(Ī(t)),

i(t, 0) =

∫ ∞
0

ω2(b)e(t, b)db+

∫ ∞
0

ω4(h)r(t, h)dh, r(t, 0) =

∫ ∞
0

ω3(c)i(t, c)dc.

(2)

where Ī(t) =
∫∞

0
ω5(c)i(t, c)dc, S0 ∈ R+ = [0,∞) and v0(a), e0(b), i0(c), r0(h) ∈ L1

+, where

L1
+ = L1

+(0,∞) denotes the space of all Lebesgue integrable functions φ : (0,∞)→ R+.

It is biologically motivated that we always require the following assumptions.

(A1) Functions ωi(l) ∈ L1
+ (i = 1, 2, 3, 4, 5) are positive and bounded with the upper

bound ω̄i and Lipschitz continuous on R+ with Lipschitz constants Mωi .

(A2) Function f(Ī) is nonnegative and twice differentiable for all Ī ∈ [0,∞) with

f(Ī) = 0 if and only if Ī = 0, f ′(Ī) ≥ 0 and f ′′(Ī) ≤ 0 for all Ī ≥ 0.

Remark 1. It is clear that for the bilinear incidence rate f(Ī) = Ī and the saturated

incidence rate f(Ī) = Ī
1+αĪ

, where α > 0 is a constant, assumption (A2) is satisfied.

Remark 2. It is easy to see that model (1) generalizes some pre-existing age-dependent

SVEIR type epidemic models which are proposed and investigated in [13,14,16,17,22].

3 Basic properties

In this section we establish some basic properties of solutions for model (1). For the

convenience, we give some notations and expressions as follows:

εi(l) = ωi(l) + µ (i = 1, 2, 3, 4), ρi(l) = e−
∫ l
0 εi(s)ds (i = 1, 2, 4), ρ3(c) = e−

∫ c
0 (ε3(s)+δ(s))ds,

θi(λ) =

∫ ∞
0

ωi(l)e
−(λl+

∫ l
0 εi(s)ds)dl (i = 1, 2, 4), θ3(λ) =

∫ ∞
0

ω3(c)e−(λc+
∫ c
0 (ε3(s)+δ(s))ds)dc,
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πi(l) =

∫ ∞
l

ωi(τ)e−
∫ τ
l εi(s)dsdτ (i = 1, 2, 4), τ3(λ) =

∫ ∞
0

ω5(c)e−
∫ c
0 (λ+ε3(s)+δ(s))dsdc,

θi = θi(0) =

∫ ∞
0

ωi(l)ρi(l)dl (i = 1, 2, 3, 4), τ3 = τ3(0) =

∫ ∞
0

ω5(c)ρ3(c)dc.

It follows from (A1) that for every i = 1, 2, 3, 4, 0 < θi < 1 and 0 < ρi(s) < 1 for all

s ≥ 0, πi(l) > 0 for all l ≥ 0, πi(0) = θi, θi(λ) ≤ θi,
dθi(λ)

dλ
< 0 and τ3(λ) ≤ τ3 for all λ ≥ 0.

Meanwhile

dρi(s)

ds
= −εi(s)ρi(s) (i = 1, 2, 4),

dρ3(s)

ds
= −(ε3(s) + δ(s))ρ3(s),

and
dπi(l)

dl
= πi(l)εi(l)− ωi(l), i = 1, 2, 4.

Furthermore, as the application of Volterra formulation (See [23]), solving v(t, a),

e(t, b), i(t, c) and r(t, h) from the second, third, fourth and fifth equations of model (1)

along the characteristic line t− a = const, we can obtain

v(t, a) =

 v(t− a, 0)ρ1(a), t > a ≥ 0,

v0(a− t) ρ1(a)

ρ1(a− t)
, a ≥ t ≥ 0.

(3)

e(t, b) =


e(t− b, 0)ρ2(b), t > b ≥ 0,

e0(b− t) ρ2(b)

ρ2(b− t)
, b ≥ t ≥ 0.

(4)

i(t, c) =


i(t− c, 0)ρ3(c), t > c ≥ 0,

i0(c− t) ρ3(c)

ρ3(c− t)
, c ≥ t ≥ 0.

(5)

r(t, h) =


r(t− h, 0)ρ4(c), t > h ≥ 0,

r0(h− t) ρ4(c)

ρ4(h− t)
, h ≥ t ≥ 0.

(6)

The phase space X of model (1) is defined by X = R+×L1
+×L1

+×L1
+×L1

+, equipped

with the norm for any (x1, x2, x3, x4, x5) ∈ X by

‖(x1, x2, x3, x4, x5)‖X = x1 +

∫ ∞
0

x2(a)da+

∫ ∞
0

x3(b)db+

∫ ∞
0

x4(c)dc+

∫ ∞
0

x5(h)dh.

The initial conditions in model (1) can be rewritten as x0 = (S0, v0(·), e0(·), i0(·), r0(·)) ∈
X. It is easy to see that v(0, 0) = v0(0) = ξS0, e(0, 0) = e0(0) = βS0f(Ī0), i(0, 0) =

i0(0) =
∫∞

0
ω2(b)e0(b)db +

∫∞
0
ω4(h)r0(h)dh and r(0, 0) = r0(0) =

∫∞
0
ω3(c)i0(c)dc, where

Ī0 =
∫∞

0
ω5(c)i0(c)dc. The standard existence, uniqueness, nonnegativity and continua-

bility of solutions for model (1) are valid (see [24]). Thus, we immediately obtain the
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following lemma.

Lemma 1. For any point x0 ∈ X, model (1) has a unique nonnegative solution Φ(t, x0) =

(S(t), v(t, ·), e(t, ·), i(t, ·), r(t, ·)) ∈ X defined on the maximal existence interval [0, T∞)

with T∞ ≤ ∞ satisfying initial condition Φ(0, x0) = x0.

Clearly, we have

‖Φ(t, x0)‖X = S(t) +

∫ ∞
0

v(t, a)da+

∫ ∞
0

e(t, b)db+

∫ ∞
0

i(t, c)dc+

∫ ∞
0

r(t, h)dh.

Define a set Π as follows

Π =
{

(S, v(·), e(·), i(·), r(·)) ∈ X :

S +

∫ ∞
0

v(a)da+

∫ ∞
0

e(b)db+

∫ ∞
0

i(c)dc+

∫ ∞
0

r(h)dh ≤ Λ

µ

}
.

We have the following result on the global existence, boundedness and invariance of solu-

tions for model (1).

Theorem 1. (i) For any initial point x0 ∈ X, the solution Φ(t, x0) is defined for all t ≥ 0

and is ultimately bounded. That is,

lim sup
t→∞

‖Φ(t, x0)‖X ≤
Λ

µ
.

(ii) Π is positively invariant for model (1). That is, Φ(t, x0) ∈ Π for all t > 0 and

x0 ∈ Π;

(iii) For any constant M ≥ Λ
µ

, if x0 ∈ X satisfies ‖x0‖X ≤ M then for any t ≥ 0

‖Φ(t, x0)‖X ≤M and

v(t, 0) ≤ ξM, e(t, 0) ≤ βf ′(0)ω̄5M
2, i(t, 0) ≤ (ω̄2 + ω̄4)M, r(t, 0) ≤ ω̄3M.

Proof . For any initial point x0 ∈ X, from Lemma 1, model (1) has a unique nonnegative

solution Φ(t, x0) defined for t ∈ [0, T∞). Calculating the derivative of ‖Φ(t, x0)‖X, we have

d‖Φ(t, x0)‖X
dt

= Λ− (µ+ ξ)S(t)− βS(t)f(Ī(t)) +

∫ ∞
0

ω1(a)v(t, a)da

−
∫ ∞

0

ε1(a)v(t, a)da+ ξS −
∫ ∞

0

ε2(b)e(t, b)db+ βS(t)f(Ī(t))

−
∫ ∞

0

(ε3(c) + δ(c))i(t, c)dc+

∫ ∞
0

ω2(b)e(t, b)db

+

∫ ∞
0

ω4(h)r(t, h)dh−
∫ ∞

0

ε4(h)r(t, h)dh+

∫ ∞
0

ω3(c)i(t, c)dc

≤ Λ− µ‖Φ(t, x0)‖X.
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Then, we further have

‖Φ(t, x0)‖X ≤
Λ

µ
− e−µt

(Λ

µ
− ‖x0‖X

)
, t ∈ [0, T∞). (7)

From this, we have that Φ(t, x0) is bounded on [0, T∞). Hence, T∞ = ∞. That is, the

solution Φ(t, x0) can be extended to whole [0,∞).

It follows from (7) that lim supt→∞ ‖Φ(t, x0)‖X ≤ Λ
µ

for any x0 ∈ X. This gives Φ(t, x0)

is ultimately bounded for any x0 ∈ X.

When x0 ∈ Π, from (7) we directly get Φ(t, x0) ∈ Π for all t ≥ 0. This shows that set

Π is a positive invariant set for model (1).

Furthermore, from (7) we also have if ‖x0‖X ≤ Λ
µ

, then ‖Φ(t, x0)‖X ≤ Λ
µ
≤ M , and if

Λ
µ
≤ ‖x0‖X ≤M , then ‖Φ(t, x0)‖X ≤ Λ

µ
− e−µt(Λ

µ
− ‖x0‖X) ≤ Λ

µ
− (Λ

µ
− ‖x0‖X) ≤M .

Besides, we further have v(t, 0) = ξS(t) ≤ ξM , e(t, 0) = βS(t)f(Ī(t)) ≤ βS(t)f ′(0)Ī(t)

≤ βf ′(0)ω̄5M
2, i(t, 0) =

∫∞
0
ω2(b)e(t, b)db+

∫∞
0
ω4(h)r(t, h)dh ≤ (ω̄2 + ω̄4)M and r(t, 0) =∫∞

0
ω3(c)i(t, c)dc ≤ ω̄3M . This completes the proof.

Remark 3. From Theorem 1 we can obtain that all nonnegative solutions of model (1)

generate a solution semiflow Φ(t) : X→ X by Φ(t)x0 = Φ(t, x0) for t ≥ 0 and x0 ∈ X.

Furthermore, to discuss the dynamical behavior of solutions for model (1) including

stability of steady states and persistence of positive solutions we further need to establish

the asymptotically smooth of solutions for model (1). Using the similar argument as in

[18] we can state and prove the following result.

Theorem 2. The semi-flow Φ(t, x0) generated by model (1) is asymptotically smooth.

That is, for any initial point x0 ∈ X the solution trajectory Φ(t, x0) has a compact closure

in X.

As a consequence of Theorems 1 and 2, we have the following corollary.

Corollary 1. The solution semi-flow Φ(t) of model (1) has a compact and global attractor.

Proof . From Theorems 1 and 2, we obtain that any solution Φ(t, x0) of model (1) is

ultimately bounded and has a compact closure in X, which shows the solution semiflow

Φ(t) is point dissipative. By Theorem 6.5 in [25], we can get the Φ(t) is compact for any

t > 0. By Theorem 2.6 in [26], we know that Φ(t) has a compact and global attractor in

X. This completes the proof.

Using the next generation operator method which is established in [27], by calculation

we can obtain the basic reproduction number of model (1) as follows

R0 = βS0f ′(0)θ2τ3 + θ3θ4.
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In R0, we easily see that S0 = Λ
µ+ξ(1−θ1)

= Λ
µ

(1 − ξ(1−θ1)
µ+ξ(1−θ1)

) indicates the total number

of susceptible people remaining after vaccination at the beginning of infectious diseases,

β represents the probability for susceptible person contacts infected person and becomes

latent person, θ2 indicates the overall conversion rate of latent with different latency age

eventually becoming infected, τ3 represents the survival period of the infected with differ-

ent infection age, θ4 indicates the overall recurrence rate of the recovered with different

relapse age. Therefore, R0 indicates in the initial stage of infectious disease, the sum

of the number of infected with different infection age who are susceptible to infection

get sick and eventually become infected during their survival period and the number of

the recovered with different relapse age. This shows that R0 happens to be the basic

reproduction number of model (1).

Now, we are concerned with the the existence of feasible steady states of model (1)

with the boundary conditions.

Clearly, model (1) always has a disease-free steady state P0 = (S0, v0(a), 0, 0, 0), where

v0(a) = ξS0ρ1(a). If model (1) has an endemic steady state P ∗ = (S∗, v∗(a), e∗(b), i∗(c),

r∗(h)), then it must satisfy the following system:

Λ = (µ+ ξ)S∗ + βS∗f(Ī∗)−
∫ ∞

0

ω1(a)v∗(a)da,

dv∗(a)

da
= −ε1(a)v∗(a),

de∗(b)

db
= −ε2(b)e∗(b),

di∗(c)

dc
= −(ε3(c) + δ(c))i∗(c),

dr∗(h)

dh
= −ε4(h)r∗(h),

v∗(0) = ξS∗, e∗(0) = βS∗f(Ī∗),

i∗(0) =

∫ ∞
0

ω2(b)e∗(b)db+

∫ ∞
0

ω4(h)r∗(h)dh,

r∗(0) =

∫ ∞
0

ω3(c)i∗(c)dc,

(8)

where Ī∗ =
∫∞

0
ω5(c)i∗(c)dc. We obtain from system (8) that

v∗(a) = v∗(0)ρ1(a), e∗(b) = e∗(0)ρ2(b), i∗(c) = i∗(0)ρ3(c), r∗(h) = r∗(0)ρ4(h). (9)

It follows from the first equation of system (8) that

S∗ =
Λ

µ+ ξ(1− θ1) + βf(Ī∗)
. (10)
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From (8) and (9), we obtain

i∗(0) =e∗(0)

∫ ∞
0

ω2(b)ρ2(b)db+ r∗(0)

∫ ∞
0

ω4(h)ρ4(h)dh

=i∗(0)
(
βS∗

f(Ī∗)

Ī∗
θ2τ3 + θ3θ4

)
.

We have i∗(0) 6= 0 in the endemic steady state. In fact, if i∗(0) = 0, then i∗(c) ≡ 0.

Moreover, Ī∗ = 0 and r∗(0) = 0. Therefore, e∗(b) ≡ 0 and r∗(h) ≡ 0. This leads to a

contradiction with the definition of endemic steady state. Thus, we further obtain that

Ī∗ satisfies the equation

N(Ī∗) ,
βS∗f(Ī∗)θ2τ3

Ī∗
+ θ3θ4 − 1 = 0.

Obviously, if R0 > 1 (≤ 1) then N(0+) = limĪ∗→0+ N(Ī∗) = R0 − 1 > 0 (≤ 0) . We also

have

N(Ī∗) =
βf(Ī∗)

Ī∗
Λθ2τ3

µ+ ξ(1− θ1) + βf(Ī∗)
+ θ3θ4 − 1

<
Λθ2τ3

Ī∗
+ θ3θ4 − 1→ θ2τ3 − 1 as Ī∗ → +∞.

Furthermore, it follows from (A2) that N(Ī∗) also is decreasing for Ī∗ > 0. Therefore

N(Ī∗) = 0 has a unique positive solution Ī∗ if and only if R0 > 1. Furthermore, from

(9) and (10), and choose i∗(0) = Ī∗

τ3
, then model (1) has a unique endemic steady state

P ∗ = (S∗, v∗(a), e∗(b), i∗(c), r∗(h)) when R0 > 1.

4 Stability of disease-free steady state

In this section, we study the stability of disease-free steady state of model (1) with

the boundary conditions.

Theorem 3. The disease-free steady state P0 is locally asymptotically stable if R0 < 1,

and unstable if R0 > 1.

Proof . Linearizing model (1) at the steady state P0 yields

dx1(t)

dt
= −(µ+ ξ)x1(t)− βS0f ′(0)

∫ ∞
0

ω5(c)x4(t, c)dc+

∫ ∞
0

ω1(a)x2(t, a)da,( ∂
∂t

+
∂

∂a

)
x2(t, a) = −ε1(a)x2(t, a),( ∂

∂t
+

∂

∂b

)
x3(t, b) = −ε2(b)x3(t, b),( ∂

∂t
+

∂

∂c

)
x4(t, c) = −(ε3(c) + δ(c))x4(t, c),( ∂

∂t
+

∂

∂h

)
x5(t, h) = −ε4(h)x5(t, h),

(11)
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with the following boundary conditions

x2(t, 0) = ξx1(t), x3(t, 0) = βS0f ′(0)

∫ ∞
0

ω5(c)x4(t, c)dc,

x4(t, 0) =

∫ ∞
0

ω2(b)x3(t, b)db+

∫ ∞
0

ω4(h)x5(t, h)dh,

x5(t, 0) =

∫ ∞
0

ω3(c)x4(t, c)dc.

Let x1(t) = x0
1e
λt, x2(t, a) = x0

2(a)eλt, x3(t, b) = x0
3(b)eλt, x4(t, c) = x0

4(c)eλt and x5(t, h) =

x0
5(h)eλt be the solutions of system (11), where x0

1, x0
2(a), x0

3(b), x0
4(c) and x0

5(h) are

eigenfunctions and not complete zeroes, and λ is eigenvalue. Then

λx0
1 = −(µ+ ξ)x0

1 − βS0f ′(0)

∫ ∞
0

ω5(c)x0
4(c)dc+

∫ ∞
0

ω1(a)x0
2(a)da, (12)

λx0
2(a) +

dx0
2(a)

da
= −ε1(a)x0

2(a), x0
2(0) = ξx0

1, (13)

λx0
3(b) +

dx0
3(b)

db
= −ε2(b)x0

3(b), x0
3(0) = βS0f ′(0)

∫ ∞
0

ω5(c)x0
4(c)dc, (14)

λx0
4(c) +

dx0
4(c)

dc
= −(ε3(c) + δ(c))x0

4(c),

x0
4(0) =

∫ ∞
0

ω2(b)x0
3(b)db+

∫ ∞
0

ω4(h)x0
5(h)dh,

(15)

λx0
5(h) +

dx0
5(h)

dh
= −ε4(h)x0

5(h), x0
5(0) =

∫ ∞
0

ω3(c)x0
4(c)dc. (16)

From the first equation of (15) we obtain

x0
4(c) = x0

4(0)e−
∫ c
0 (λ+δ(s)+ε3(s))ds. (17)

From (14), (16) and (17), we further conclude

x0
3(b) =e−

∫ b
0 (λ+ε2(s))dsβS0f ′(0)

∫ ∞
0

ω5(c)x0
4(c)dc

=e−
∫ b
0 (λ+ε2(s))dsβS0f ′(0)x0

4(0)

∫ ∞
0

ω5(c)e−
∫ c
0 (λ+δ(s)+ε3(s))dsdc,

(18)

and

x0
5(h) =e−

∫ h
0 (λ+ε4(s))ds

∫ ∞
0

ω3(c)x0
4(c)dc

=e−
∫ h
0 (λ+ε4(s))dsx0

4(0)

∫ ∞
0

ω3(c)e−
∫ c
0 (λ+δ(s)+ε3(s))dsdc.

(19)

Substituting (18) and (19) into the second equation of (15), we can finally obtain

x0
4(0) = βS0f ′(0)x0

4(0)θ2(λ)τ3(λ) + x0
4(0)θ3(λ)θ4(λ).
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Therefore, when x0
4(c) 6= 0 we obtain that λ satisfies the equation as follows

F1(λ) , βS0f ′(0)θ2(λ)τ3(λ) + θ3(λ)θ4(λ)− 1 = 0.

When x0
4(c) ≡ 0, then it follows from (15) that

∫∞
0
ω2(b)x0

3(b)db+
∫∞

0
ω4(h)x0

5(h)dh =

0, by assumption (A1), we can get x0
3(b) ≡ 0 and x0

5(h) ≡ 0. Hence, we have x0
1 6= 0

or x0
2(a) 6= 0. Since x0

2(a) = ξx0
1e
−

∫ a
0 (λ+ε1(s))ds, it must be x0

1 6= 0. From (12) we further

obtain

λx0
1 = −(µ+ ξ)x0

1 + ξx0
1

∫ ∞
0

ω1(a)e−
∫ a
0 (λ+ε1(s))dsda.

Therefore, we obtain that λ satisfies the equation

F2(λ) , λ+ µ+ ξ − ξθ1(λ) = 0.

Thus, we finally obtain that the characteristic equation of model (1) at the steady state

P0 is

F (λ) , F1(λ)F2(λ) = 0. (20)

It is easy to obtain that F1(0) = βS0f ′(0)θ2τ3+θ3θ4−1 = R0−1 and limλ→+∞ F1(λ) = −1.

Clearly, if R0 > 1, then equation F1(λ) = 0 has a positive root. Therefore, the steady

state P0 is unstable.

We now claim that when R0 < 1, the steady state P0 is locally asymptotically stable.

Otherwise, assume that λ1 = a1 + ib1 with a1 ≥ 0 is a root of F (λ1) = 0. Since

|βS0f ′(0)θ2(λ1)τ3(λ1) + θ3(λ1)θ4(λ1)|

≤
∣∣∣βS0f ′(0)

∫ ∞
0

ω2(b)e−(λ1+µ)b−
∫ b
0 ω2(s)dsdb

∫ ∞
0

ω5(c)e−(λ1+µ)c−
∫ c
0 (δ(s)+ω3(s))dsdc

∣∣∣
+
∣∣∣ ∫ ∞

0

ω3(c)e−(λ1+µ)c−
∫ c
0 (δ(s)+ω3(s))dsdc

∣∣∣∣∣∣ ∫ ∞
0

ω4(h)e−(λ1+µ)h−
∫ h
0 ω4(s)dsdh

∣∣∣
≤βS0f ′(0)

∫ ∞
0

ω2(b)e−(a1+µ)b−
∫ b
0 ω2(s)dsdb

∫ ∞
0

ω5(c)e−(a1+µ)c−
∫ c
0 (δ(s)+ω3(s))dsdc

+

∫ ∞
0

ω3(c)e−(a1+µ)c−
∫ c
0 (ω3(s)+δ(S))dsdc

∫ ∞
0

ω4(h)e−(a1+µ)h−
∫ h
0 ω4(s)dsdh

=βS0f ′(0)θ2(a1)τ3(a1) + θ3(a1)θ4(a1)

≤βS0f ′(0)θ2τ3 + θ3θ4 = R0 < 1,

and

|λ1 + µ+ ξ − ξθ1(λ1)| ≥ |λ1 + µ+ ξ| −
∣∣∣ξ ∫ ∞

0

ω1(a)e−(λ1+µ)a−
∫ a
0 ω1(s)dsda

∣∣∣
≥ a1 + µ+ ξ − ξ

∫ ∞
0

ω1(a)e−(a1+µ)a−
∫ a
0 ω1(s)dsda ≥ µ+ ξ − ξθ1(a1) > 0.
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This shows that F1(λ1) 6= 0 and F2(λ1) 6= 0, which leads to a contradiction. Therefore,

R0 < 1 implies all roots of equation (20) has negative real parts. Accordingly, disease-free

steady state P0 is locally asymptotically stable. This completes the proof.

Theorem 4. The disease-free steady state P0 is globally asymptotically stable if R0 ≤ 1.

Proof . Firstly, let G(u) = u−1−lnu, Us(t) = θ2S
0G( S

S0 ), Uv(t) = θ2

∫∞
0
v0(a)G(v(t,a)

v0(a)
)da,

Ue(t) =
∫∞

0
π2(b)e(t, b)db, Ui(t) =

∫∞
0
F (c)i(t, c)dc and Ur(t) =

∫∞
0
π4(h)r(t, h)dh.

Define a Lyapunov function as follows

L0(t) = Us(t) + Uv(t) + Ue(t) + Ui(t) + Ur(t).

By µ + ξ = 1
S0 (Λ +

∫∞
0
ω1(a)v0(a)da), calculating the derivative of Us(t) along with any

solution of model (1) is given as

dUs(t)

dt
= −θ2ΛG

( S
S0

)
− θ2ΛG

(S0

S

)
+ θ2βf(Ī)S0 − θ2βf(Ī)S

+θ2

∫ ∞
0

ω1(a)v0(a)
[v(t, a)

v0(a)
− S

S0
− S0v(t, a)

Sv0(a)
+ 1
]
da.

(21)

From dv0(a)
da

= −ε1(a)v0(a), and then

∂

∂a
G(
v(t, a)

v0(a)
) =

(v(t, a)

v0(a)
− 1
)( 1

v(t, a)

∂v(t, a)

∂a
+ ε1(a)

)
,

we further obtain

dUv(t)

dt
=− θ2

∫ ∞
0

(
1− v0(a)

v(t, a)

)[∂v(t, a)

∂a
+ ε1(a)v(t, a)

]
da

=− θ2

∫ ∞
0

v0(a)
∂

∂a
G
(v(t, a)

v0(a)

)
da

=− θ2v
0(a)G

(v(t, a)

v0(a)

)∣∣∣∞ + θ2ξS
0G
( S
S0

)
− θ2

∫ ∞
0

v0(a)ε1(a)G
(v(t, a)

v0(a)

)
da.

(22)

Since dπ2(b)
db

= π2(b)ε2(b)− ω2(b) and π2(0) = θ2, we have

dUe(t)

dt
=−

∫ ∞
0

π2(b)
∂e(t, b)

∂b
db−

∫ ∞
0

π2(b)ε2(b)e(t, b)db

=− π2(b)e(t, b)
∣∣∣∞ + θ2βf(Ī)S −

∫ ∞
0

ω2(b)e(t, b)db.

(23)
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Since dπ4(h)
dh

= π4(h)ε4(h)− ω4(h) and π4(0) = θ4, we have

dUr(t)

dt
=−

∫ ∞
0

π4(h)
∂r(t, h)

∂r
dh−

∫ ∞
0

π4(h)ε4(h)r(t, h)dh

=− π4(h)r(t, h)
∣∣∣∞ + θ4

∫ ∞
0

ω3(c)i(t, c)dc−
∫ ∞

0

ω4(h)r(t, h)dh.

(24)

Furthermore, calculating the derivative of Ui(t) is given as

dUi(t)

dt
=−

∫ ∞
0

F (c)(ε3(c) + δ(c))i(t, c)dc−
∫ ∞

0

F (c)
∂i(t, c)

∂c
dc

=−
∫ ∞

0

F (c)(ε3(c) + δ(c))i(t, c)dc− F (c)i(t, c)
∣∣∣∞
0

+

∫ ∞
0

F ′(c)i(t, c)dc

=− F (c)i(t, c)
∣∣∣∞
0

+

∫ ∞
0

[F ′(c)− (ε3(c) + δ(c))F (c)]i(t, c)dc.

Choose

F (c) =

∫ ∞
c

[
βS0f ′(0)θ2ω5(u) + ω3(u)θ4

]
e−

∫ u
c (ε3(s)+δ(s))dsdu.

A direct calculation shows that

F ′(c) = −βS0f ′(0)θ2ω5(c)− ω3(c)θ4 + (ε3(s) + δ(s))F (c),

F (0) =

∫ ∞
0

(βS0f ′(0)θ2ω5(u) + ω3(u)θ4)e−
∫ c
0 (ε3(s)+δ(s))dsdu = βS0f ′(0)θ2τ3 + θ3θ4 = R0,

and limc→∞ F (c) = 0. Therefore, we further have

dUi(t)

dt
=− F (c)i(t, c)

∣∣∣∞
0

+

∫ ∞
0

[
− βS0f ′(0)θ2ω5(c)− ω3(c)θ4

]
i(t, c)dc

=R0

[ ∫ ∞
0

ω2(b)e(t, b)db+

∫ ∞
0

ω4(h)r(t, h)dh
]

− βS0f ′(0)θ2

∫ ∞
0

ω5(c)i(t, c)dc− θ4

∫ ∞
0

ω3(c)i(t, c)dc.

(25)

It follows from (21)-(25) that

dL0(t)

dt
=− θ2ΛG

( S
S0

)
− θ2ΛG

(S0

S

)
− θ2v

0(a)G
(v(t, a)

v0(a)

)∣∣∣∞ + θ2ξS
0G
( S
S0

)
− π2(b)e(t, b)

∣∣∣∞ − π4(h)r(t, h)
∣∣∣∞ − θ2µ

∫ ∞
0

v0(a)G
(v(t, a)

v0(a)

)
da

+ (R0 − 1)
[ ∫ ∞

0

ω2(b)e(t, b)db+

∫ ∞
0

ω4(h)r(t, h)dh
]

+ θ2βf(Ī)S0 − θ2βf
′(0)ĪS0 + θ2Σ1,

(26)
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where

Σ1 =

∫ ∞
0

ω1(a)v0(a)
[v(t, a)

v0(a)
− S

S0
− S0v(t, a)

Sv0(a)
+ 1
]
da−

∫ ∞
0

ω1(a)v0(a)G
(v(t, a)

v0(a)

)
da.

Since f(Ī) ≤ f ′(0)Ī for all Ī ≥ 0, v0(a) = ξS0ρ1(a),

Σ1 =

∫ ∞
0

ω1(a)v0(a)
[

ln
v(t, a)

v0(a)
− S

S0
− S0v(t, a)

Sv0(a)
+ 2
]
da

=−
∫ ∞

0

ω1(a)v0(a)G
(S0v(t, a)

Sv0(a)

)
da− θ1ξS

0G
( S
S0

)
,

and

θ2G
( S
S0

)
(ξS0 − Λ− θ1ξS

0) = −µθ2G
( S
S0

)
≤ 0,

we can finally get

dL0(t)

dt
≤− θ2Λ

(S0

S

)
− θ2v

0(a)G
(v(t, a)

v0(a)

)∣∣∣∞ − π2(b)e(t, b)
∣∣∣∞ − π4(h)r(t, h)

∣∣∣∞
− θ2µ

∫ ∞
0

v0(a)G
(v(t, a)

v0(a)

)
da+ (R0 − 1)

[ ∫ ∞
0

ω2(b)e(t, b)db

+

∫ ∞
0

ω4(h)r(t, h)dh
]
− µθ2G

( S
S0

)
−
∫ ∞

0

ω1(a)v0(a)G
(S0v(t, a)

Sv0(a)

)
da.

(27)

Therefore, dL0(t)
dt
≤ 0 if R0 ≤ 1, and dL0

dt
= 0 implies that S = S0 and v(t, a) = v0(a).

From model (1), it follows that e(t, b) ≡ 0, i(t, c) ≡ 0 and r(t, h) ≡ 0. By the LaSalle

invariance principle (See [28]), P0 is globally asymptotically stable. This completes the

proof.

5 Uniform persistence

In this section, we establish the uniform persistence of the semi-flow Φ(t, x0) generated

by model (1) when R0 > 1.

Denote X̂ = L1
+ × L1

+ × L1
+,

Ẑ =
{

(e(·), i(·), r(·))T ∈ X̂ :

∫ ∞
0

e(b)db > 0,

∫ ∞
0

i(c)dc > 0,

∫ ∞
0

r(h)dh > 0
}
,

∂Ẑ = X̂\Ẑ, Z = R+ × L1
+ × Ẑ and ∂Z = X\Z.

Lemma 2. If R0 > 1, then there is a constant ε > 0 such that for any initial value

x0 ∈ X with e0(·) 6≡ 0, i0(·) 6≡ 0 and r0(·) 6≡ 0, the solution Φ(t, x0) of model (1) satisfies

lim supt→∞ ‖Φ(t, x0)− P0‖X ≥ ε.

Proof . Firstly, from R0 > 1, we can choose an enough small constant ε0 > 0 such that
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β(S0 − ε0)(f ′(0) − ε0)θ2τ3 + θ3θ4 > 1. Moreover, by limĪ→0
f(Ī)

Ī
= f ′(0), there exists a

constant δ > 0 with δ ≤ ε0 such that f(Ī)

Ī
≥ f ′(0) − ε0 for all 0 ≤ Ī ≤ δ. That is,

f(Ī) ≥ (f ′(0)− ε0)Ī for all 0 ≤ Ī ≤ δ.

Assume that the conclusion is not true, there exists a x0 ∈ X with e0(·) 6≡ 0, i0(·) 6≡ 0

and r0(·) 6≡ 0 such that lim supt→∞ ‖Φ(t, x0) − P0‖X < δ. Then, from the initial and

boundary conditions (2) and formulas (4)-(6) we can obtain that e(t, ·) > 0, i(t, ·) > 0

and r(t, ·) > 0 for all t > 0, and there exists an enough large T such that for any t > T ,

0 < S0 − δ < S(t) < S0 + δ, 0 ≤ Ī(t) =

∫ ∞
0

ω5(c)i(t, c)dc < δ.

Therefore, by the comparison principle of age-dependent partial differential equations (See

[29]), we can obtain

e(t, b) ≥ ẽ(t, b), i(t, c) ≥ ĩ(t, c), r(t, h) ≥ r̃(t, h), (28)

for all t ≥ T , where (ẽ(t, b), ĩ(t, c), r̃(t, h)) is the solution of the following linear comparison

system 

∂ẽ(t, b)

∂t
+
∂ẽ(t, b)

∂b
= −ε2(b)ẽ(t, b),

∂ĩ(t, c)

∂t
+
∂ĩ(t, c)

∂c
= −(ε3(c) + δ(c))̃i(t, c),

∂r̃(t, h)

∂t
+
∂r̃(t, h)

∂h
= −ε4(h)r̃(t, h),

ẽ(t, 0) = β(S0 − ε0)(f ′(0)− ε0)

∫ ∞
0

ω5(c)̃i(t, c)dc,

ĩ(t, 0) =

∫ ∞
0

ω2(b)ẽ(t, b)db+

∫ ∞
0

ω4(h)r̃(t, h)dh,

r̃(t, 0) =

∫ ∞
0

ω3(c)̃i(t, c)dc,

(29)

with the initial conditions ẽ(T, b) = e(T, b), ĩ(T, c) = i(T, c) and r̃(T, h) = r(T, h). Assume

that system (29) has the solution as follows

ẽ(t, b) = ẽ1(b)eλ(t−T ), ĩ(t, c) = ĩ1(c)eλ(t−T ), r̃(t, h) = r̃1(h)eλ(t−T ),

where the functions ẽ1(b), ĩ1(c) and r̃1(h) are eigenfunctions and not complete zeroes,

and λ is eigenvalue. Substituting this form of solution into system (29), we obtain the
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following linear eigenvalue problem:

dẽ1(b)

db
= −(λ+ ε2(b))ẽ1(b),

dĩ1(c)

dc
= −(λ+ ε3(c) + δ(c))̃i1(c),

dr̃1(h)

dh
= −(λ+ ε4(h))r̃1(h),

ẽ1(0) = β(S0 − ε0)(f ′(0)− ε0)

∫ ∞
0

ω5(c)̃i1(c)dc,

ĩ1(0) =

∫ ∞
0

ω2(b)ẽ1(b)db+

∫ ∞
0

ω4(h)r̃1(h)dh,

r̃1(0) =

∫ ∞
0

ω3(c)̃i1(c)dc.

(30)

It follows from the first, second and third equations of problem (30) that

ẽ1(b) = ẽ1(0)e−
∫ b
0 (λ+ε2(s))ds, ĩ1(c) = ĩ1(0)e−

∫ c
0 (λ+ε3(s)+δ(s))ds,

r̃1(h) = r̃1(0)e−
∫ c
0 (λ+ε4(s))ds.

(31)

Then, from (31) and the last three equations of problem (30)

ĩ1(0) =

∫ ∞
0

ω2(b)ẽ1(0)e−
∫ b
0 (λ+ε2(s))dsdb+

∫ ∞
0

ω4(h)r̃1(0)e−
∫ c
0 (λ+ε4(s))dsdh

=θ2(λ)ẽ1(0) + θ4(λ)r̃1(0)

=θ2(λ)β(S0 − ε)(f ′(0)− ε)
∫ ∞

0

ω5(c)̃i1(c)dc+ θ4(λ)

∫ ∞
0

ω3(c)̃i1(c)dc

=β(S0 − ε)(f ′(0)− ε)θ2(λ)τ3(λ)̃i1(0) + θ3(λ)θ4(λ)̃i1(0).

We also can obtain ĩ1(0) 6= 0. Thus, we finally obtain the characteristic equation of system

(30) as follows

F3(λ) , β(S0 − ε0)(f ′(0)− ε0)θ2(λ)τ3(λ) + θ3(λ)θ4(λ) = 1. (32)

Clearly, we have F3(0) = β(S0 − ε0)(f ′(0) − ε0)θ2τ3 + θ3θ4 > 1 and limλ→+∞ F3(λ) = 0.

Thus, equation (32) has at least one positive root λ0. This implies that system (29) has

the solution as follows

ẽ(t, b) = ẽ1(b)eλ0(t−T ), ĩ(t, c) = ĩ1(c)eλ0(t−T ), r̃(t, h) = r̃1(h)eλ0(t−T ).

For this solution, from (31), as long as (ẽ1(0), ĩ1(0), r̃1(0)) 6= 0, then
∫∞

0
ẽ(t, b)db +∫∞

0
ĩ(t, c)dc +

∫∞
0
r̃(t, h)dh is unbounded on t ∈ [T,∞). From (28), we further obtain

that
∫∞

0
e(t, b)db +

∫∞
0
i(t, c)dc +

∫∞
0
r(t, h)dh is also unbounded for on t ∈ [T,∞). This
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leads to a contradiction with the boundedness of Φ(t, x0). This completes the proof.

Theorem 5. If R0 > 1, then there exists a constant ε1 such that for any initial value

x0 ∈ X with e0(·) 6≡ 0, i0(·) 6≡ 0 and r0(·) 6≡ 0, the solution Φ(t, x0) of model (1) satisfies

lim inf
t→∞

S(t) ≥ ε1, lim inf
t→∞

‖v(t, ·)‖L1 ≥ ε1, lim inf
t→∞

‖e(t, ·)‖L1 ≥ ε1,

lim inf
t→∞

‖i(t, ·)‖L1 ≥ ε1, lim inf
t→∞

‖r(t, ·)‖L1 ≥ ε1.

Proof . From Theorem 1, there exists a constant M > 0 such that for any solution

(S(t), v(t, ·), e(t, ·), i(t, ·), r(t, ·)), there is a t0 > 0 such that
∫∞

0
i(t, c)dc ≤M for all c ≥ 0

and t ≥ t0. Thus, from the first equation of model (1) we have

dS

dt
≥ Λ− (µ+ ξ)S − βSf ′(0)ω̄5M, t ≥ t0.

Consider following comparison system

dν

dt
= Λ− (µ+ ξ)ν − βνf ′(0)ω̄5M, t ≥ t0.

It has the position solution ν∗ = Λ
µ+ξ+βf ′(0)ω̄5M

which is globally asymptotically stable.

By the comparison principle we can obtain lim inft→∞ S(t) ≥ ν∗. This shows that S(t) in

model (1) is uniformly persistent.

For any initial value (S0, v0(·), e0(·), i0(·), i0(·)) ∈ Z with e0(·) 6≡ 0, i0(·) 6≡ 0 and

r0(·) 6≡ 0. From the formulas (4)-(6), we have
∫∞

0
e(t, b)db > 0,

∫∞
0
i(t, c)dc > 0 and∫∞

0
r(t, h)dh > 0 for all t > 0. Therefore, set Z is the positive invariant set of semi-flow

Φ(t) of model (1). Define the set

M∂ =
{
x0 = (S0, v0(·), e0(·), i0(·), r0(·)) ∈ X : Φ(t, x0) ∈ ∂Z for all t ≥ 0

}
.

Let ω(x0) be the omega limit set of Φ(t, x0) and the set M1 = {P0}. Since Φ(t, P0) = P0

for all t ≥ 0, we have M1 ⊂
⋃
x0∈M∂

ω(x0).

Next, we prove
⋃
x0∈M∂

ω(x0) ⊂ M1. For any x0 ∈ M∂, since Φ(t, x0) ∈ ∂Z for all

t ≥ 0, we have
∫∞

0
e(t, b)db ≡ 0 or

∫∞
0
i(t, c)dc ≡ 0 or

∫∞
0
r(t, h)dh ≡ 0 for all t ≥ 0.

If
∫∞

0
e(t, b)db ≡ 0 for all t ≥ 0, then we have e(t, b) ≡ 0 for all b ≥ 0 and t ≥ 0.

Combining with e(t, 0) = βS(t)f(Ī(t)) and the uniform persistence of S(t), we derive

that f(Ī(t)) ≡ 0 for all t ≥ 0 which implies that Ī(t) =
∫∞

0
ω5(c)i(t, c)dc ≡ 0 for all t ≥ 0.

Then, we further have i(t, c) ≡ 0 for all c ≥ 0 and t ≥ 0. From assumption (A1) and

i(t, 0) =
∫∞

0
ω2(b)e(t, b)db+

∫∞
0
ω4(h)r(t, h)dh, we further obtain r(t, h) ≡ 0 for all t ≥ 0
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and h ≥ 0. Furthermore, model (1) degrades into the following subsystem
dS(t)

dt
= Λ− (µ+ ξ)S(t) +

∫ ∞
0

ω1(a)v(t, a)da,

∂v(t, a)

∂t
+
∂v(t, a)

∂a
= −(ω1(a) + µ)v(t, a).

(33)

It is clear from (33) that limt→∞ S(t) = S0 and limt→∞ v(t, a) = v0(a). This shows

ω(x0) = {P0}. Similarly, if
∫∞

0
i(t, c)dc ≡ 0 or

∫∞
0
r(t, h)dh ≡ 0, we also can obtain that

e(t, b) ≡ 0, i(t, c) ≡ 0 and r(t, h) ≡ 0 for all t ≥ 0, b ≥ 0, c ≥ 0 and h ≥ 0, respectively,

and model (1) also degrades into subsystem (33). Consequently, limt→∞ S(t) = S0 and

limt→∞ v(t, a) = v0(a). This shows ω(x0) = P0, and hence
⋃
x0∈M∂

ω(x0) ⊂M1. Thus, we

finally obtain
⋃
x0∈M∂

ω(x0) = M1.

From
⋃
x0∈M∂

ω(x0) = M1, we know that all solutions on boundary ∂Z of model (1)

tend to P0 when t → ∞. From Lemma 2, we also know that P0 is an isolated invariant

set in X, and W s(P0) ∩ Z = ∅, where W s(P0) is the stable set of P0.

Furthermore, from the above arguments, we can easily observe that no subset of M1

forms a cycle in ∂Z. By Corollary 1 and the theory of persistence for dynamical systems

in [30,31], it follows that the semi-flow Φ(t) of model (1) is uniformly persistent. This

completes the proof.

6 Stability of endemic steady state

Based on the above discussions, we now investigate the local stability and the global

stability of endemic steady state for model (1). Firstly, we give a result on the local

stability of endemic steady state P ∗.

Theorem 6. The endemic steady state P ∗ is locally asymptotically stable if R0 > 1.

Proof . Linearizing model (1) at the steady state P ∗ yields

dx1(t)

dt
= −(µ+ ξ + βf(Ī∗))x1(t)− βS∗f ′(Ī∗)

∫ ∞
0

ω5(c)x4(t, c)dc

+

∫ ∞
0

ω1(a)x2(t, a)da,( ∂
∂t

+
∂

∂a

)
x2(t, a) = −ε1(a)x2(t, a),( ∂

∂t
+

∂

∂b

)
x3(t, b) = −ε2(b)x3(t, b),( ∂

∂t
+

∂

∂c

)
x4(t, c) = −(ε3(c) + δ(c))x4(t, c),( ∂

∂t
+

∂

∂h

)
x5(t, h) = −ε4(h)x5(t, h),

(34)
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with the following boundary conditions

x2(t, 0) = ξx1(t), x3(t, 0) = βf(Ī∗)x1(t) + βS∗f ′(Ī∗)

∫ ∞
0

ω5(c)x4(t, c)dc,

x4(t, 0) =

∫ ∞
0

ω2(b)x3(t, b)db+

∫ ∞
0

ω4(h)x5(t, h)dh, x5(t, 0) =

∫ ∞
0

ω3(b)x4(t, c)dc.

Let x1(t) = x0
1e
λt, x2(t, a) = x0

2(a)eλt, x3(t, b) = x0
3(b)eλt, x4(t, c) = x0

4(c)eλt and x5(t, h) =

x0
5(h)eλt be the solutions of system (34), where x0

1, x0
2(a), x0

3(b), x0
4(c) and x0

5(h) are

eigenfunctions and not complete zeroes, and λ is eigenvalue. We obtain the following

linear eigenvalue problem:

λx0
1 = −(µ+ ξ + βf(Ī∗))x0

1 − βS∗f ′(Ī∗)
∫ ∞

0

ω5(c)x0
4(c)dc+

∫ ∞
0

ω1(a)x0
2(a)da, (35)

λx0
2(a) +

dx0
2(a)

da
= −ε1(a)x0

2(a), x0
2(0) = ξx0

1, (36)

λx0
3(b) +

dx0
3(b)

db
= −ε2(b)x0

3(b), x0
3(0) = βf(Ī∗)x0

1 + βS∗f ′(Ī∗)

∫ ∞
0

ω5(c)x0
4(c)dc, (37)

λx0
4(c) +

dx0
4(c)

db
= −(ε3(c) + δ(c))x0

4(c),

x0
4(0) =

∫ ∞
0

ω2(b)x0
3(b)db+

∫ ∞
0

ω4(h)x0
5(h)dh,

(38)

λx0
5(h) +

dx0
5(h)

dh
= −ε4(h)x0

5(h), x0
5(0) =

∫ ∞
0

ω3(c)x0
4(c)dc. (39)

It follows from (36)-(39) that

x0
2(a) = x0

2(0)e
∫ a
0 (λ+ε1(s))ds, x0

3(b) = x0
3(0)e−

∫ b
0 (λ+ε2(s))ds, (40)

x0
4(c) = x0

4(0)e−
∫ c
0 (λ+ε3(s)+δ(s))ds, x0

5(h) = x0
5(0)e−

∫ h
0 (λ+ε4(s))ds. (41)

Then from (35) we deduce that

x0
1 =
−βS∗f ′(Ī∗)

∫∞
0
ω5(c)x0

4(c)dc

λ+ µ+ ξ + βf(Ī∗)− ξθ1(λ)
. (42)

Furthermore, combining (40)-(42) and (36)-(39) we can obtain x0
4(0) 6= 0 and

x0
4(0) =

∫ ∞
0

ω2(b)x0
3(b)db+

∫ ∞
0

ω4(h)x0
5(h)dh

=

∫ ∞
0

ω2(b)x0
3(0)e−

∫ b
0 (λ+ε2(s))dsdb+

∫ ∞
0

ω4(h)x0
5(0)e−

∫ h
0 (λ+ε4(s))dsdh

=θ2(λ)
[
βf(Ī∗)x0

1 + βS∗f ′(Ī∗)

∫ ∞
0

ω5(c)x0
4(c)dc

]
+ θ4(λ)

∫ ∞
0

ω3(c)x0
4(c)dc
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=θ2(λ)
[−βf(Ī∗)βS∗f ′(Ī∗)

∫∞
0
ω5(c)x0

4(c)dc

λ+ µ+ ξ + βf(Ī∗)− ξθ1(λ)
+ βS∗f ′(Ī∗)

∫ ∞
0

ω5(c)x0
4(c)dc

]
+ θ4(λ)

∫ ∞
0

ω3(c)x0
4(0)e−

∫ c
0 (λ+ε3(s)+δ(s))dsdc

=
βS∗f ′(Ī∗)(λ+ µ+ ξ − ξθ1(λ))

λ+ µ+ ξ + βf(Ī∗)− ξθ1(λ)
θ2(λ)τ3(λ)x0

4(0) + θ3(λ)θ4(λ)x0
4(0).

Thus, the characteristic equation of model (1) at the steady state P ∗ is calculated as

follows

F4(λ) ,
λ+ µ+ ξ − ξθ1(λ)

λ+ µ+ ξ + βf(Ī∗)− ξθ1(λ)
βS∗f ′(Ī∗)θ2(λ)τ3(λ) + θ3(λ)θ4(λ) = 1. (43)

Now, we claim that all roots of equation (43) have negative real parts. Otherwise,

equation (43) has a root λ2 = a2 + ib2 with a2 ≥ 0. We have

|F4(λ2)| ≤βS
∗f ′(Ī∗)|a2 + ib2 + µ+ ξ − ξθ1(λ2)|

|a2 + ib2 + µ+ ξ + βf(Ī∗)− ξθ1(λ2)|

×
∣∣∣ ∫ ∞

0

ω5(c)e−
∫ c
0 (ε3(s)+a2+ib2+δ(s))dsdc

∫ ∞
0

ω2(b)e−
∫ b
0 (ε2(s)+a2+ib2)dsdb

∣∣∣
+
∣∣∣ ∫ ∞

0

ω3(c)e−
∫ c
0 (ε3(s)+a2+ib2+δ(s))dsdc

∫ ∞
0

ω4(h)e−
∫ h
0 (ε4(s)+a2+ib2)dsdh

∣∣∣
<βS∗f ′(Ī∗)

∫ ∞
0

ω5(c)e−
∫ c
0 (ε3(s)+δ(s))dsdc

∫ ∞
0

ω2(b)e−
∫ b
0 ε2(s)dsdb

+

∫ ∞
0

ω3(c)e−
∫ c
0 (ε3(s)+δ(s))dsdc

∫ ∞
0

ω4(h)e−
∫ h
0 ε4(s)dsdh

=βS∗f ′(Ī∗)θ2τ3 + θ3θ4 ≤ βS∗
f(Ī∗)

Ī∗
θ2τ3 + θ3θ4 = 1.

which leads to a contradiction. Therefore, if R0 > 1, the endemic steady state P ∗ is

locally asymptotically stable. This completes the proof.

In order to guarantee the Lyapunov functional in proving the global stability of P ∗ to

be well-defined, we introduce the following assumption.

(A3)
∫∞

0
e−

∫ a
0 ε1(s)ds ln v0(a)da < +∞,

∫∞
0
e−

∫ b
0 ε2(s)ds ln e0(b)db < +∞,∫∞

0
e−

∫ c
0 (ε3(s)+δ(s))ds ln i0(c)dc < +∞,

∫∞
0
e−

∫ h
0 ε4(s)ds ln r0(h)dh < +∞.

Lemma 3. If assumption (A3) holds, then∫ ∞
0

v∗(a) ln
v(t, a)

v∗(a)
da < +∞,

∫ ∞
0

e∗(b) ln
e(t, b)

e∗(b)
db < +∞,

∫ ∞
0

i∗(c) ln
i(t, c)

i∗(c)
dc < +∞,

∫ ∞
0

r∗(h) ln
r(t, h)

r∗(h)
dh < +∞.

Proof . Let (S(t), v(t, a), e(t, b), i(t, c), r(t, h)) be any positive solution of model (1). It
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follows from (3) that∫ ∞
0

v∗(a) ln
v(t, a)

v∗(a)
da

=

∫ t

0

v∗(a) ln
ξS(t− a)ρ1(a)

v∗(a)
da+

∫ ∞
t

v∗(a) ln
v0(a− t) ρ1(a)

ρ1(a−t)

v∗(a)
da

=v∗(0)

∫ t

0

e−
∫ a
0 ε1(s)ds[ξ lnS(t− a)− ln v∗(0)]da

+ v∗(0)

∫ ∞
t

e−
∫ a
0 ε1(s)ds

[
ln v0(a− t) +

∫ a−t

0

ε1(s)ds− ln v∗(0)
]
da.

(44)

Letting a− t = u, then from (A3) one has∫ ∞
t

e−
∫ a
0 ε1(s)ds ln v0(a− t)da =

∫ ∞
0

e−
∫ t+u
0 ε1(s)ds ln v0(u)du < +∞.

Hence, it follows from (44) that
∫∞

0
v∗(a) ln v(t,a)

v∗(a)
da < +∞. In a similar way one can show

that
∫∞

0
e∗(b) ln e(t,b)

e∗(b)
db < +∞,

∫∞
0
i∗(c) ln i(t,c)

i∗(c)
dc < +∞ and

∫∞
0
r∗(h) ln r(t,h)

r∗(h)
dh < +∞.

This completes the proof.

Theorem 7. Assume that (A3) holds. Then the endemic steady state P ∗ is globally

asymptotically stable if R0 > 1.

Proof . Define a Lyapunov function

L∗(t) = Us(t) + Uv(t) + Ue(t) + Ui(t) + Ur(t),

where

Us(t) = θ2S
∗G
( S
S∗

)
, Uv(t) = θ2

∫ ∞
0

v∗(a)G
(v(t, a)

v∗(a)

)
da,

Ue(t) =

∫ ∞
0

π2(b)e∗(b)G
(e(t, b)
e∗(b)

)
db, Ui(t) =

∫ ∞
0

F1(c)i∗(c)G
(i(t, c)
i∗(c)

)
dc,

and

Ur(t) =

∫ ∞
0

π4(h)r∗(h)G
(r(t, h)

r∗(h)

)
dh.

From (A3) and Lemma 3, all integrals involved in L∗(t) are finite. Therefore, L∗(t) is

defined for any positive solution (S(t), v(t, a), e(t, b), i(t, c), r(t, h)) of model (1).

By µ + ξ = 1
S∗

(Λ − βS∗f(Ī∗) +
∫∞

0
ω1(a)v∗(a)da), the derivative of Us(t) along with

the solutions of model (1) is given as

dUs
dt

=− θ2Λ
[
G
(S∗
S

)
+G

( S
S∗

)]
+ θ2βSf(Ī∗)− θ2βS

∗f(Ī∗)− θ2βSf(Ī)

+ θ2βS
∗f(Ī) + θ2

∫ ∞
0

ω1(a)v∗(a)
[v(t, a)

v∗(a)
− S

S∗
− S∗v(t, a)

Sv∗(a)
+ 1
]
da.

(45)
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Calculating the derivative of Uv(t) along the solution of model (1), we have

dUv
dt

=− θ2

∫ ∞
0

v∗(a)
(v(t, a)

v∗(a)
− 1
)(va(t, a)

v(t, a)
+ ε1(a)

)
da,

where va(t, a) = ∂
∂a
v(t, a). Noticing that ∂

∂a
G
(
v(t,a)
v∗(a)

)
=
(
v(t,a)
v∗(a)

− 1
)(

va(t,a)
v(t,a)

+ ε1(a)
)

and
dv∗(a)

da
= −ε1(a)v∗(a), using the integral by parts and the fact G(v(t,0)

v∗(0)
) = G( S

S∗
), we can

obtain

dUv
dt

=− θ2

∫ ∞
0

v∗(a)
∂

∂a
G
(v(t, a)

v∗(a)

)
da

=− θ2v
∗(a)G

(v(t, a)

v∗(a)

)∣∣∣∞ + θ2ξS
∗G
( S
S∗

)
− θ2

∫ ∞
0

ε1(a)v∗(a)G
(v(t, a)

v∗(a)

)
da.

(46)

Noticing that de∗(b)
db

= −ε2(b)e∗(b) and dπ2(b)
db

= π2(b)ε2(b) − ω2(b), calculating the

derivative of Ue(t), we obtain

dUe
dt

=− π2(b)e∗(b)G
(e(t, b)
e∗(b)

)∣∣∣∞ + θ2βS
∗f(Ī∗)G

( Sf(Ī)

S∗f(Ī∗)

)
−
∫ ∞

0

ω2(b)e∗(b)G
(e(t, b)
e∗(b)

)
db.

(47)

Noticing that dr∗(h)
dh

= −ε4(h)r∗(h) and dπ4(h)
dh

= π4(h)ε4(h) − ω4(h), calculating the

derivative of Ur(t), we obtain

dUr
dt

=− π4(h)r∗(h)G
(r(t, h)

r∗(h)

)∣∣∣∞ + θ4

∫ ∞
0

ω3(c)i∗(c)dcG
(r(t, 0)

r∗(0)

)
−
∫ ∞

0

ω4(h)r∗(h)G
(r(t, h)

r∗(h)

)
dh.

(48)

Since ∂
∂c
G
(
i(t,c)
i∗(c)

)
=
(
i(t,c)
i∗(c)
− 1

)(
ic(t,c)
i(t,c)

+ (ε3(c) + δ(c))
)

, where ic(t, c) = ∂
∂c
i(t, c),

calculating the derivative of Ui(t), we obtain

dUi(t)

dt
=−

∫ ∞
0

F1(c)
(

1− i∗(c)

i(t, c)

)[
(ε3(c) + δ(c))i(t, c) +

∂i(t, c)

∂c

]
dc

=−
∫ ∞

0

F1(c)i∗(c)
∂

∂c
G
(i(t, c)
i∗(c)

)
dc

=− F1(c)i∗(c)G
(i(t, c)
i∗(c)

)∣∣∣∞
0

+

∫ ∞
0

G
(i(t, c)
i∗(c)

)
[F ′1(c)− (ε3(c) + δ(c))F1(c)]i∗(c)dc.
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Choosing

F1(c) =

∫ ∞
c

[
βS∗

f(Ī∗)

Ī∗
θ2ω5(u) + ω3(u)θ4

]
e−

∫ u
c (ε3(s)+δ(s))dsdu,

a direct calculation shows that limc→∞ F1(c) = 0,

F ′1(c) = −βS∗f(Ī∗)

Ī∗
θ2ω5(c)− ω3(c)θ4 + (ε3(c) + δ(c))F1(c),

and

F1(0) =

∫ ∞
0

[
βS∗

f(Ī∗)

Ī∗
θ2ω5(u) + ω3(u)θ4

]
e−

∫ u
0 (ε3(s)+δ(s))dsdu = βS∗

f(Ī∗)

Ī∗
θ2τ3 + θ3θ4 = 1.

Hence, we further have

dUi(t)

dt
=i∗(0)G

(i(t, 0)

i∗(0)

)
−
∫ ∞

0

[
βS∗

f(Ī∗)

Ī∗
θ2ω5(c) + ω3(c)θ4

]
i∗(c)G

(i(t, c)
i∗(c)

)
dc

=

∫ ∞
0

ω2(b)e(t, b)db+

∫ ∞
0

ω4(h)r(t, h)dh−
∫ ∞

0

ω2(b)e∗(b)db

−
∫ ∞

0

ω4(h)r∗(h)dh−
[ ∫ ∞

0

ω2(b)e∗(b)db

+

∫ ∞
0

ω4(h)r∗(h)dh
]

ln
i(t, 0)

i∗(0)
− θ2βS

∗f(Ī∗)

+ θ2βS
∗f(Ī∗)

Ī∗
Ī − θ4

∫ ∞
0

ω3(c)i(t, c)dc+ θ4

∫ ∞
0

ω3(c)i∗(c)dc

+

∫ ∞
0

[
βS∗

f(Ī∗)

Ī∗
θ2ω5(c) + ω3(c)θ4

]
i∗(c) ln

i(t, c)

i∗(c)
dc.

(49)

From (45)-(49), we finally obtain that

dL∗(t)

dt
=− θ2ΛG

(S∗
S

)
− θ2v

∗(a)G
(v(t, a)

v0(a)

)∣∣∣∞ − π2(b)e∗(b)G
(e(t, b)
e∗(b)

)∣∣∣∞
− π4(h)r∗(h)G

(r(t, h)

r∗(h)

)∣∣∣∞ +
5∑
l=1

Bl,

where

B1 =θ2

∫ ∞
0

ω1(a)v∗(a)
[v(t, a)

v∗(a)
− S

S∗
− S∗v(t, a)

Sv∗(a)
+ 1
]
da

− θ2

∫ ∞
0

v∗(a)ε1(a)G
(v(t, a)

v∗(a)

)
da,

B2 =

∫ ∞
0

ω2(b)e∗(b) ln
e(t, b)

e∗(b)
db−

[ ∫ ∞
0

ω2(b)e∗(b)db

+

∫ ∞
0

ω4(h)r∗(h)dh
]

ln
i(t, 0)

i∗(0)
+

∫ ∞
0

ω4(h)r∗(h) ln
r(t, h)

r∗(h)
dh,
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B3 =− θ2ΛG
( S
S∗

)
+ θ2βSf(Ī∗)− θ2βSf(Ī)− θ2βS

∗f(Ī∗)

+ θ2βS
∗f(Ī) + θ2βS

∗f(Ī∗)G
( Sf(Ī)

S∗f(Ī∗)

)
+ θ2ξS

∗G
( S
S∗

)
,

B4 =θ2βS
∗f(Ī∗)

Ī∗

∫ ∞
0

ω5(c)i∗(c) ln
i(t, c)

i∗(c)
dc+ θ2βS

∗f(Ī∗)

Ī∗
Ī − θ2βS

∗f(Ī∗),

B5 =θ4

∫ ∞
0

ω3(c)i∗(c) ln
i(t, c)

i∗(c)
dc− θ4

∫ ∞
0

ω3(c)i(t, c)dc

+ θ4

∫ ∞
0

ω3(c)i∗(c)dc+ θ4

∫ ∞
0

ω3(c)i∗(c)dcG
(r(t, 0)

i∗(0)

)
.

By calculating we can further obtain that

B1 =− θ2µ

∫ ∞
0

v∗(a)G
(v(t, a)

v∗(a)

)
da− θ1θ2ξS

∗G
( S
S∗

)
− θ2

∫ ∞
0

ω1(a)v∗(a)G
(S∗v(t, a)

Sv∗(a)

)
da,

B2 =−
∫ ∞

0

ω2(b)e∗(b)G
(e(t, b)i∗(0)

e∗(b)i(t, 0)

)
db−

∫ ∞
0

ω4(h)r∗(h)G
(r(t, h)i∗(0)

r∗(h)i(t, 0)

)
dh

−
∫ ∞

0

ω2(b)e∗(b)
[
1− e(t, b)i∗(0)

e∗(b)i(t, 0)

]
db−

∫ ∞
0

ω4(h)r∗(h)
[
1− r(t, h)i∗(0)

r∗(h)i(t, 0)

]
dh

=−
∫ ∞

0

ω2(b)e∗(b)G
(e(t, b)i∗(0)

e∗(b)i(t, 0)

)
db−

∫ ∞
0

ω4(h)r∗(h)G
(r(t, h)i∗(0)

r∗(h)i(t, 0)

)
dh,

B3 =θ2βS
∗f(Ī∗)

[ S
S∗
− Sf(Ī)

S∗f(Ī∗)
− 1 +

f(Ī)

f(Ī∗)
+G

( Sf(Ī)

S∗f(Ī∗)

)]
+ θ2G

( S
S∗

)
(ξS∗ − Λ)

=θ2βS
∗f(Ī∗)G

( f(Ī)

f(Ī∗)

)
+ θ2G

( S
S∗

)
(βf(Ī∗)S∗ + ξS∗ − Λ),

B4 =− θ2βS
∗f(Ī∗)

Ī∗

∫ ∞
0

ω5(c)i∗(c)G
(i(t, c)
i∗(c)

)
dc,

B5 =θ4

∫ ∞
0

ω3(c)i∗(c)
[r(t, 0)

r∗(0)
− i(t, c)

i∗(c)
+ ln

i(t, c)r∗(0)

i∗(c)r(t, 0)

]
dc

=− θ4

∫ ∞
0

ω3(c)i∗(c)G
(i(t, c)r∗(0)

i∗(c)r(t, 0)

)
dc+ θ4

∫ ∞
0

ω3(c)i∗(c)
[i(t, c)r∗(0)

i∗(c)r(t, 0)
− 1
]
dc

+ θ4

∫ ∞
0

ω3(c)i∗(c)
[r(t, 0)

r∗(0)
− i(t, c)

i∗(c)

]
dc

=− θ4

∫ ∞
0

ω3(c)i∗(c)G
(i(t, c)r∗(0)

i∗(c)r(t, 0)

)
dc.
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By calculating, we also can obtain

θ2βS
∗f(Ī∗)G

( f(Ī)

f(Ī∗)

)
+ θ2G

( S
S∗

)
(βf(Ī∗)S∗ + ξS∗ − Λ)− θ1θ2ξS

∗G
( S
S∗

)
= θ2βS

∗f(Ī∗)G
( f(Ī)

f(Ī∗)

)
− θ2µG

( S
S∗

)
.

From Appendix in [32] it follows that

θ2βS
∗f(I∗)G

( f(Ī)

f(Ī∗)

)
− θ2βS

∗f(Ī∗)

Ī∗

∫ ∞
0

ω5(c)i∗(c)G
(i(t, c)
i∗(c)

)
dc

= θ2βS
∗f(Ī∗)

Ī∗

∫ ∞
0

ω5(c)i∗(c)
[
G
( f(Ī)

f(Ī∗)

)
−G

(i(t, c)
i∗(c)

)]
dc ≤ 0.

Therefore, we finally derive

dL∗(t)

dt
≤− θ2ΛG

(S∗
S

)
− θ2v

∗(a)G
(v(t, a)

v∗(a)

)∣∣∣∞ − π2(b)e∗(b)G
(e(t, b)
e∗(b)

)∣∣∣∞
− π4(h)r∗(h)G

(r(t, h)

r∗(h)

)∣∣∣∞ − µθ2G
( S
S∗

)
− µθ2

∫ ∞
0

v∗(a)G
(v(t, a)

v∗(a)

)
da

− θ2

∫ ∞
0

ω1(a)v∗(a)G
(S∗v(t, a)

Sv∗(a)

)
da−

∫ ∞
0

ω2(b)e∗(b)G
(e(t, b)i∗(0)

e∗(b)i(t, 0)

)
db

−
∫ ∞

0

ω4(h)r∗(h)G
(r(t, h)i∗(0)

r∗(h)i(t, 0)

)
dh

− θ4

∫ ∞
0

ω3(c)i∗(c)G
(i(t, c)r∗(0)

i∗(c)r(t, 0)

)
dc.

(50)

Obviously, we have that dL∗(t)
dt
≤ 0, and dL∗

dt
= 0 implies that S = S∗, v(t, a) = v∗(a),

e(t, b) = e∗(b), i(t, c) = i∗(c) and r(t, h) = r∗(h). By the LaSalle invariance principle, the

steady state P ∗ is globally asymptotically stable. This completes the proof.

Remark 4. It can be easily found that the main research techniques and methods proposed

and used in [12,14-16,19,21] are improved and developed in this paper.

Remark 5. Comparing the main results obtained in [13,14,16,17,22], we see that the

same sharp threshold criteria for the local and global stability of disease-free and endemic

steady state and the uniform persistence are established in this paper.

7 Numerical examples

In this section, we carry out two numerical examples to testify Theorems 4 and 7. First-

ly, following [14,33-34], we can derive the vaccine-induced wanes rate, the age-dependent

removal rate, the age-dependent infection rate and the age-dependent relapse rate are
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ω1(a) = 1×10−7 +4.902×10−9a+1.18×10−10a2 +2×10−12a3, ω2(b) = 1×10−4 +4.167×
10−7b+6.9×10−9b2 +1.6×10−10b3, ω3(c) = 0.2+9.804×10−3c+2.35×10−4c2 +4×10−6c3,

ω4(h) = 7 × 10−6 + 2.917 × 10−8h + 4.9 × 10−10h2 + 1.1 × 10−11h3 and ω5(c) ≡ 1. The

disease induced death rate is δ(c) = 6.8627 + 0.3364c + 8.1 × 10−3c2 + 1 × 10−4c3.

By calculating, we obtain θ1 ≈ 0.3004, θ2 ≈ 0.6729, θ3 ≈ 0.029, θ4 ≈ 0.452 and

τ3 ≈ 0.1441. The initial values are given by S0 = 350, v0(a) = 0.02 exp{−0.4a} +

0.7(sin(0.01a))2, e0(b) = 0.02 exp{−0.1b} + 0.7(sin(0.05b))2, i0(c) = 0.02 exp{−0.1c} +

0.7(sin(0.03c))2 and r0(h) = 0.02 exp{−0.5h}+0.7(sin(0.055h))2. Furthermore, we choose

the parameters in model (1) as follows: Λ = 1, β = 0.06, µ = 0.0012 and f(Ī) = Ī
1+50Ī

.

Let (S(t), v(t, a), e(t, b), i(t, c), r(t, h)) be the solution of model (1) with the initial value

(S0, v0(a), e0(b), i0(c), r0(h)).

Example 1. Take ξ = 0.08, we have R0 = 0.1149 < 1, by Theorem 4 the disease-

free steady state P0 = (S0, v0(a), 0, 0, 0) is globally asymptotically stable, where S0 ≈
14, v0(a) ≈ 1.12ρ1(a). Fig 2 shows that over time, the number of people in each converge

to the disease-free steady state.

Fig 2. The solution (S(t), v(t, a), e(t, b), i(t, c), r(t, h)) converge to the disease-free steady
state P0 as t→∞.

Example 2. Take ξ = 0.004, we have R0 = 1.4682 > 1, by Theorem 7 the endemic

steady state P ∗ = (S∗, v∗(a), e∗(b), i∗(c), r∗(h)) is globally asymptotically stable, where

S∗ ≈ 232, v∗(a) ≈ 0.928ρ1(a), e∗(b) ≈ 0.072ρ2(b), i∗(c) ≈ 0.049ρ3(c), r∗(h) ≈ 0.001ρ4(h).

Fig 3 shows that over time, the number of people in each converge to the endemic steady

state.
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Fig 3. The solution (S(t), v(t, a), e(t, b), i(t, c), r(t, h)) converge to the endemic steady
state P ∗ as t→∞.

8 Conclusions

In this paper, we investigated an SVEIR type epidemic model with continuous age-

dependent vaccination, latent, infected, recovered and disease relapse. Through the re-

search, we find that the global dynamics of the model is fully determined by the basic

reproduction number. That is, when the basic reproduction number is less than unity,

the disease-free steady state is globally asymptotically stable, i.e., the disease died out;

and when the basic reproduction number is greater than unity, the disease in the model

in accordance with age-distribution is uniform persistence and the endemic steady state is

globally asymptotically stable, i.e., the disease becomes endemic. Furthermore, we offered

the numerical examples to illustrate the theoretical results established in this paper.

From the expression of the basic reproduction number R0 and the main results in this

article, we see that age-dependent vaccination, latent, infected, recovered and recurrence

have an impact on the global dynamics of infectious diseases. It is not difficult to see

that these effects are reflected among the parameters ξ(1 − θ1), θi (i = 1, 2, 3, 4) and τ3,

respectively.

Consider multiple class ages is a prominent feature of our model, and the part of inves-

tigate uniform persistence is the novel result of our paper. Of course, other factors, such

as a general nonlinear incidence, saturation therapy of disease, diseases infection during

latency period (such as AIDS, tuberculosis, hepatitis B, see [35]), diseases infection during

vaccination period (because the protection rate of vaccines is usually less than 100% and

individual differences in vaccinators, see [36]), multi-group SVEIR age-dependent model

(decompose the heterogeneous population into several subgroups on the basis of modes
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of transmission, contact patterns, or geographic distribution, so that effects of both the

intra-group and inter-group infection are considered, see [22]) and age-structured epidemic

model with environmental virus infectious (such as SARS, AIDS, Ebola and COVID-19,

see [37]) should be integrated into the model to make it more realistic. Consider the above

factors and establish more accurate model, we leave this for future research.

In general, we can take a general nonlinear incidence, such as f(S, Ī) (for example,

standard incidence SĪ
S+Ī

and Beddington-DeAngelis incidence SĪ
1+ω1S+ω2Ī

, where ω1 and

ω2 are positive constants, see [38]). For the variable Ī(t), in model (1) we have taken

Ī(t) =
∫∞

0
ω5(c)i(t, c)dc which is linear for i(t, c). However, in general case, we can

consider the nonlinear expression Ī(t) =
∫∞

0
g(c, i(t, c))dc, where g(c, i) is assumed to be

nonnegative and continuously differentiable. Particularly, we can choose g(c, i(t, c)) =
ω5(c)i(t,c)
b+i(t,c)

. Meanwhile, we can using a continuously differentiable saturation treatment

function describes the effect of delaying treatment when medical conditions are limited

and the number of infected people increases (see [39]). That extend the model (1) to the

following form

dS

dt
= Λ− (µ+ ξ)S − βf(S, Ī) +

∫ ∞
0

ω1(a)v(t, a)da,

∂v(t, a)

∂t
+
∂v(t, a)

∂a
= −(ω1(a) + µ)v(t, a),

∂e(t, b)

∂t
+
∂e(t, b)

∂b
= −(ω2(b) + µ)e(t, b),

∂i(t, c)

∂t
+
∂i(t, c)

∂c
= −(µ+ δ(c))i(t, c)− ω3(c)

i(t, c)

1 + αi(t, c)
,

∂r(t, h)

∂t
+
∂r(t, h)

∂h
= −(ω4(h) + µ)r(t, h),

Ī =

∫ ∞
0

g(c, i(t, c))dc.

For this model whether we also can establish the similar conclusions as in this paper for

model (1) still is an interesting open problem. We will leave these subjects for future

research.
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