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Abstract. As a generalization of the usual convergence in topological spaces, a
method G on a set X is a function G : cG(X) → X defined on a subset cG(X) which is
constituted by some sequences in X. In this paper, we mainly study the G-continuous
mappings and the G-quotient mappings determined by G-methods and their connec-
tions with continuous mappings and quotient mappings in topological spaces. At the
same time, we also discuss some properties of G-open mappings and G-closed map-
pings, and unify some results of several important convergence of sequences involving
continuous mappings and quotient mappings.

1. Introduction

Convergence of sequences in topological spaces is a basic concept in mathematics.
For a long time, the deepening of the concept of convergence has been an interesting
subject in topology and analysis. For example, as a generalization of the usual conver-
gence, Fast [13] and Steinhaus [30] introduced the concepts of statistical convergence
in real and complex spaces, independently; thereafter, Di Maio and Kočinac [11] devel-
oped the concept into statistical convergence in topological spaces. Recently, Kostyrko,
Šalát and Wilczynski [15] proposed the ideal convergence in metric spaces; Lahiri and
Das [16] further discussed the ideal convergence in topological spaces. In addition to
the above convergence, there are various kinds of convergence in theoretical research
and mathematical applications. We mention, for example, A-convergence of a matrix
method in summability theory [9], Cesàro convergence and and statistical convergence
in real analysis [8], almost convergence in functional analysis [3] and so on.

Based on several kinds of convergent properties in real analysis and considering the
importance of sequence convergence in continuous discussion and the concept of conti-
nuity and any concept related to continuity play a very important role not only in pure
mathematics but also in other branches of science involving mathematics especially in
computer science, information theory, biological science, and dynamical systems. Con-
nor and Grosse-Erdmann [9] introduced G-methods defined on a linear subspace of the
vector space of all real sequences and G-convergence on real spaces and G-continuity
for real functions, studied the relationship among G-continuous functions, linear func-
tions and continuous functions, established the dichotomy theorem of G-continuity and
extended several known results in the literature. Although the notion of G-continuity
was introduced for the first time, its thought has appeared many times before. Many
authors (e.g., Posner [24], Iwiński [14], Srinivasan [29], Antoni and Šalát [1, 2], Spigel
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and Krupnik [28], Çakallı and Khan [7]) have studied the G-continuity defined by reg-
ular summability matrix A, in this case the G-continuity is usually called A-continuity.
Some authors (e.g., Öztürk [23], Savaş and Das [25, 26], Borśık and Šalát [5]) have
studied the G-continuity for the method of almost convergence or for related methods.
Schoenberg [27] and Demirci [10] considered the G-continuity for methods of statis-
tical convergence. Based on the above results, people begin to pay attention to the
G-methods and the G-continuity on Hausdorff topological groups satisfying the first
axiom of countability [6, 22]. Recently, Lin and Liu [17] introduced the concepts of
G-methods and G-convergence in arbitrary sets, discussed some relations between map-
pings which preserves G-convergence and continuous mappings. It lays a foundation
for the further study of all kinds of convergence and topological properties of special
spaces.

As the concepts of G-methods and G-convergence proposed in the analysis back-
ground, how can they be better placed in the scope of the general topology? General
topology mainly studies the structure of topological spaces and continuous mappings
on these spaces. As special G-methods and related mappings, Tang et al [31] and Liu
et al [21] discussed mappings which preserves statistical convergence and statistically
sequentially quotient mappings in topological spaces, respectively. For those reasons,
this paper is interested in G-continuous mappings and G-quotient mappings determined
by G-methods, and their connections with continuous mappings and quotient mappings
in topological spaces. In view of the close relationship among open mappings, closed
mappings and quotient mappings [12], we also discuss some properties of G-open map-
pings and G-closed mappings. The quotient spaces are important tools to construct new
topological spaces through the known topological spaces, and quotient mappings are al-
so a kind of important mappings widely used in topology and analysis [18]. Therefore,
the discussion on G-quotient mappings are necessary for the development of the theory
of G-methods, and it provides general methods for the study of quotient mappings of
statistical convergence, ideal convergence and other concrete convergence.

2. Preliminaries

We denote by N the set of all natural numbers. Let X be a set, s(X) denote the
set of all X-valued sequences, i.e., x ∈ s(X) if and only if x = {xn}n∈N is a sequence
with each xn ∈ X. If f : X → Y is a mapping, then f(x) = {f(xn)}n∈N for each
x = {xn}n∈N ∈ s(X). A method on X, we mean a function G : cG(X) → X defined
on a subset cG(X) of s(X) into X. A sequence x on X is said to be G-convergent to
a point l ∈ X if x ∈ cG(X) and G(x) = l [17]. A method G : cG(X) → X is called
a pointwise method [20], if for each x ∈ X, the constant sequence x = {x, x, x, · · · } is
G-convergent to x. If X is a topological space, c(X) denotes the set of all X-valued
convergent sequences. A method G : cG(X)→ X is called regular if c(X) ⊂ cG(X) and
G(x) = limx for each x ∈ c(X). A method G : cG(X) → X is called subsequential if
whenever x ∈ cG(X) is G-convergent to l ∈ X, then there exists a subsequence x′ ∈ c(X)
of x with limx′ = l. Obviously, a regular method on a topological space X is a pointwise
method. The G-methods with the name “convergence” is only a function relation. It
is not related with the topology on a space X. Based on the regular or subsequential
methods, we can establish close ties between G-convergent and convergent sequences on
X [17].

Next, we recall some concepts and lemmas related to the G-methods.

Definition 2.1. [17] Let G be a method on a set X. For each A ⊂ X,
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(1) the set A is called a G-closed set of X if, whenever x ∈ s(A) ∩ cG(X), then
G(x) ∈ A;

(2) the G-closure of A is defined as the intersection of all G-closed sets containing

A, and the G-closure of A is denoted by clG(A) or A
G

;
(3) the G-hull of A is defined as the set {G(x) : x ∈ s(A)∩ cG(X)}, and the G-hull

of A is denoted by huG(A) or [A]G.

Lemma 2.2. [17] Let G be a method on a set X. If A ⊂ X, then A is a G-closed set

if and only if [A]G ⊂ A, if and only if A
G ⊂ A, i.e., A

G
= A.

Definition 2.3. [17] Let G be a method on a set X. For each A ⊂ X,

(1) the set A is called a G-open set of X if X \A is G-closed in X;
(2) the G-interior of A is defined as the union of all G-open sets contained in A,

and the G-interior of A is denoted by intG(A) or A◦G;
(3) the G-kernel of A is defined as the set

{l ∈ X : there is no x ∈ s(X \A) ∩ cG(X) with l = G(x)},
and the G-kernel of A is denoted by kerG(A) or (A)G.

Lemma 2.4. [17] Let G be a method on a set X. If A ⊂ X, then A is a G-open set if
and only if A ⊂ (A)G, if and only if A ⊂ A◦G, i.e., A◦G = A.

Lemma 2.5. [17] Let G be a method on a set X and A ⊂ X. Then

(1) (A)G = X \ [X \A]G.

(2) A◦G = X \X \AG
.

Definition 2.6. Let G be a method on a set X. For each A ⊂ X and x ∈ X,

(1) the set A is called a G-kernel-open set of X [20] if A = (A)G;
(2) the set A is called a G-hull-closed set of X [20] if A = [A]G;
(3) the set A is called a G-neighborhood of the point x ∈ X [17] if there exists a

G-open set U with x ∈ U ⊂ A;
(4) the set A is called a G-kernel-neighborhood of the point x ∈ X [20] if there exists

a G-kernel-open set U with x ∈ U ⊂ A.

By Lemma 2.5, a set A is a G-kernel-open set of X if and only if X \ A is a G-hull-
closed set of X [20].

Lemma 2.7. [17] Let G be a method on a set X. A subset U of X is a G-open set if
and only if U is a G-neighborhood of each point in U .

Lemma 2.8. [17] Let G be a method on a set X. For each A ⊂ X and x ∈ X,

(1) x ∈ [A]G if and only if the set A intersects any subset U of X with x ∈ (U)G;

(2) x ∈ A
G

if and only if the set A intersects any subset U of X with x ∈ U◦G.

Definition 2.9. [17] Let G be a method on a topological space X. X is said to be
a G-sequential space if any subset A of X with [A]G ⊂ A is closed in X, i.e., every
G-closed set in X is closed.

Obviously, X is a G-sequential space if and only if every G-open set in X is open [17].
A subset A of a topological space X is called a sequentially closed set of X if, whenever
x ∈ s(A) ∩ c(X), then limx ∈ A. A subset A of X is called a sequentially open set of
X if X \A is sequentially closed. If G is a subsequential method on a topological space
X, then every sequentially closed set is G-closed [17].

Readers may refer to [12, 17] for some terminology unstated here.
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3. G-continuous mappings

Let X and Y be topological spaces. A mapping f : X → Y is called sequentially
continuous [4] if, whenever a sequence x of X converges to a point x ∈ X, then the
sequence f(x) of Y converges to f(x) ∈ Y . It is easy to verify that a mapping f :
X → Y is sequentially continuous if and only if f−1(U) is a sequentially open set
of X for each sequentially open set U of Y [4]. Therefore, sequentially continuous
mappings can be defined in two ways. Corresponding to statistical convergence, Z.B.
Tang and F.C. Lin [31] used the concept of “preserves limits of statistical sequences”
in the discussion of continuity, which was called a mapping which preserves statistical
convergence in [21]. As an extension of statistical convergence, B.K. Lahiri and P. Das
[16] used the concept of “preserves I-convergence” when discussing continuity with ideal
convergence. To maintain consistency with the first paper on the methods [9], we defined
the G-continuous mapping in [17] as follows. Let G1, G2 be methods on sets X and
Y , respectively. A mapping f : X → Y is called (G1, G2)-continuous if f(x) ∈ cG2(Y )
and G2(f(x)) = f(G1(x)) for each x ∈ cG1(X). Combined with the above factors, G-
continuous mappings and preserving G-convergence mappings are redefined as follows.

Definition 3.1. Let G1, G2 be methods on sets X and Y , respectively. For a mapping
f : X → Y ,

(1) f : X → Y is called (G1, G2)-continuous at a point x ∈ X if f−1(U) is a G1-
neighborhood of x for each G2-neighborhood U of the point f(x) ∈ Y ; for short,
f : X → Y is called G-continuous at x ∈ X;

(2) f : X → Y is called (G1, G2)-continuous, if f−1(U) is a G1-open set of X for
each G2-open set U of Y ; for short, f : X → Y is called G-continuous;

(3) f : X → Y is called preserving (G1, G2)-convergence, if f(x) ∈ cG2(Y ) and
G2(f(x)) = f(G1(x)) for each x ∈ cG1(X); for short, f : X → Y is called
preserving G-convergence.

The following are well known.

Lemma 3.2. [17] Let G1, G2 be methods on sets X and Y , respectively. If f : X → Y
is a mapping, then (1)⇒ (2)⇒ (3) in the following conditions, and the contrary don’t
hold.

(1) f is a preserving (G1, G2)-convergence mapping.
(2) f([A]G1) ⊂ [f(A)]G2 for each A ⊂ X.
(3) f−1(F ) is a G1-closed set of X for each G2-closed set F of Y .

Next, we discuss some properties of conditions in Lemma 3.2.

Theorem 3.3. Let G1, G2 be methods on sets X and Y , respectively. f : X → Y is
G-continuous at x ∈ X if and only if for every G2-neighborhood U of f(x), there exists
a G1-neighborhood V of x with f(V ) ⊂ U .

Proof. Suppose that the mapping f : X → Y satisfies the sufficient condition, and
x ∈ X. For every G2-neighborhood U of f(x), there exists a G1-neighborhood V of
x with f(V ) ⊂ U by the sufficient condition. Thus V ⊂ f−1(f(V )) ⊂ f−1(U), that
is f−1(U) is a G1-neighborhood of x. On the other hand, suppose that f : X → Y
is G-continuous at x ∈ X. For every G2-neighborhood U of f(x), f−1(U) is a G1-
neighborhood of x, and f(f−1(U)) ⊂ U . �

Theorem 3.4. Let G1, G2 be methods on sets X and Y , respectively. The following
are equivalent for a mapping f : X → Y .
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(1) f is a G-continuous mapping.
(2) f−1(F ) is a G1-closed set of X for every G2-closed set F of Y .
(3) f is G-continuous at x for every x ∈ X.

(4) f−1(B
G2) ⊃ f−1(B)

G1
for every B ⊂ Y .

(5) f(A
G1) ⊂ f(A)

G2
for every A ⊂ X.

(6) For every x ∈ X if U is a G2-neighborhood of f(x), then there exists a G1-
neighborhood V of x with f(V ) ⊂ U .

(7) f−1(B◦G2) ⊂ (f−1(B))
◦G1 for every B ⊂ Y .

Proof. (1) ⇔ (2) ⇔ (5) ⇔ (6) were proved in [17]. It is easy to know (3) ⇔ (6) by
Theorem 3.3. To complete the proof, we prove (5)⇒ (4)⇒ (7)⇒ (1) next.

(5) ⇒ (4). For every B ⊂ Y , by condition (5), f(f−1(B)
G1

) ⊂ f(f−1(B))
G2 ⊂ B

G2 ,

thus f−1(B)
G1 ⊂ f−1(B

G2).

(4) ⇒ (7). For every B ⊂ Y , by condition (4) and lemma 2.8, f−1((Y \B)
G2

) =

f−1(Y \B◦G2) = X \ f−1(B◦G2) ⊃ f−1(Y \B)
G1

= X \ f−1(B)
G1

= X \ (f−1(B))
◦G1 ,

hence f−1(B◦G2) ⊂ (f−1(B))
◦G1 .

(7) ⇒ (1). For every G2-open set B of Y , then B = B◦G2 . By condition (7),

f−1(B) = f−1(B◦G2) ⊂ (f−1(B))
◦G1 , hence f−1(B) is a G1-open set of X. Namely, f

is a G-continuous mapping.
�

Theorem 3.5. Let G1, G2 be methods on sets X and Y , respectively. The following
are equivalent for a mapping f : X → Y .

(1) f([A]G1) ⊂ [f(A)]G2 for every A ⊂ X.
(2) f−1([B]G2) ⊃ [f−1(B)]G1 for every B ⊂ Y .
(3) f−1((B)G2) ⊂ (f−1(B))G1 for every B ⊂ Y .
(4) For every x ∈ X and V ⊂ Y , if f(x) ∈ (V )G2, then there exists U ⊂ X with

x ∈ (U)G1 and f(U) ⊂ V .

Proof. (1)⇒ (2). For every B ⊂ Y , by condition (1), f([f−1(B)]G1) ⊂ [f(f−1(B))]G2 ⊂
[B]G2 , hence f−1([B]G2) ⊃ [f−1(B)]G1 .

(2) ⇒ (3). For every B ⊂ Y , we have f−1([Y \ B]G2) ⊃ [f−1(Y \ B)]G1 from
condition (2). By Lemma 2.5, X \ f−1((B)G2) ⊃ [X \ f−1(B)]G1 = X \ (f−1(B))G1 ,
hence f−1((B)G2) ⊂ (f−1(B))G1 .

(3) ⇒ (4). For every x ∈ X and V ⊂ Y , if f(x) ∈ (V )G2 , then x ∈ f−1((V )G2).
By condition (3), f−1((V )G2) ⊂ (f−1(V ))G1 . Thus the point x ∈ (f−1(V ))G1 and
f(f−1(V )) ⊂ V .

(4) ⇒ (1). Let A ⊂ X and x ∈ [A]G1 . For any subset V of Y with f(x) ∈ (V )G2 ,
there exists U ⊂ X with x ∈ (U)G1 and f(U) ⊂ V from condition (4). By Lemma
2.8, U

⋂
A 6= ∅, thus V

⋂
f(A) ⊃ f(U)

⋂
f(A) 6= ∅. By Lemma 2.8, f(x) ∈ [f(A)]G2 ;

f([A]G1) ⊂ [f(A)]G2 . �

Does the G-continuity be characterized by “G-open sets” or “G-kernel-open sets”?
In order to discuss this problem, we cite the following lemma first.

Lemma 3.6. [20] Let G be a pointwise method on a set X. For every A ⊂ X, we have

(1) (A)G ⊂ A ⊂ [A]G;
(2) A is a G-open (resp., G-closed) set if and only if A is a G-kernel-open (resp.,

G-hull-closed) set.
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Thus, the subset A of X is a G-kernel-neighborhood of a point x ∈ X if and only if
A is a G-neighborhood of x [20].

Corollary 3.7. Let G1, G2 be pointwise methods on sets X and Y , respectively. The
following are equivalent for a mapping f : X → Y .

(1) f is a G-continuous mapping.
(2) f−1(F ) is a G1-closed set of X for every G2-closed set F of Y .
(3) f is G-continuous at x for every x ∈ X.

(4) f−1(B
G2) ⊃ f−1(B)

G1
for every B ⊂ Y .

(5) f(A
G1) ⊂ f(A)

G2
for every A ⊂ X.

(6) For every x ∈ X, if U is a G2-neighborhood of f(x), then there exists a G1-
neighborhood V of x with f(V ) ⊂ U .

(7) f−1(B◦G2) ⊂ (f−1(B))
◦G1 for every B ⊂ Y .

(8) For every x ∈ X, if U is a G2-kernel-neighborhood of f(x), then there exists a
G1-kernel-neighborhood V of x with f(V ) ⊂ U .

(9) f−1(F ) is a G1-hull-closed set of X for every G2-hull-closed set F of Y .
(10) f−1(U) is a G1-kernel-open set of X for every G2-kernel-open set U of Y .

Proof. The equivalence of (1) − (7) come from the Theorem 3.4. By Definition 2.6,
(9)⇔ (10). And from Lemma 3.6, we have (6)⇔ (8) and (2)⇔ (9). �

The following examples illustrate that the pointwise method in Corollary 3.7 is es-
sential.

Example 3.8. [17, Example 7.4] There exists a mapping f : X → Y which satisfies
Corollary 3.7(7), but does not satisfy Theorem 3.5(1), where G2 is not a pointwise
method on Y .

Let X = N. Put cG1(X) = {{xn}n∈N ∈ s(X) : there exists an m ∈ N such that {xn−
xn−1}n>m is a constant sequence}. Define G1 : cG1(X) → X by G1(x) = lim

n→∞
(xn+1 −

xn) for each x = {xn}n∈N ∈ cG1(X).
Let Y = {0, 1}. Put cG2(Y ) = {x ∈ s(Y ) ∩ cG1(X) : G1(x) ∈ Y }, and define a

function G2 : cG2(Y ) → Y by G2(x) = G1(x), x ∈ cG2(Y ). Then G2 is a method on
the subset Y of X. Since the constant sequence {1, 1, 1, · · · } of Y is G2-convergent to
0, G2 is not a pointwise method and the G2-kernel-open sets of Y are only {1} and Y .

Define a mapping f : X → Y as follows: f(x) = 0 if and only if x = 2k, k ∈ N.
If f(x) = 0, since the G2-kernel-neighborhood V of 0 is Y , there exists a G1-kernel-
neighborhood U of x with f(U) ⊂ V . If f(x) = 1, then x ∈ {2k + 1 : k ∈ N}. Suppose
that V is a G2-kernel-neighborhood of 1 in Y . Then V is {1} or Y . We can assume
that V = {1}. Put U = {2k + 1 : k ∈ N}, then (U)G1 = U , and U is a G1-kernel-
neighborhood of x and f(U) = {1} ⊂ V . To sum up, the mapping f satisfies Corollary
3.7(7). But, f does not satisfy Theorem 3.5(1). In fact, f([X]G1) = f(X) = Y 6⊂ {0} =
[Y ]G2 = [f(X)]G2 .

Example 3.9. There exists a mapping f : X → Y which satisfies Theorem 3.5(2), but
does not satisfy Corollary 3.7(8), where G1 is not a pointwise method on X.

Let X = {0, 1}. Put cG1(X) = {{xn}n∈N ∈ s(X) : there exists an m ∈ N such
that {xn − xn−1}n>m is a constant sequence}. Define G1 : cG1(X) → X by G1(x) =
lim
n→∞

(xn+1 − xn) for each x = {xn}n∈N ∈ cG1(X). Obviously, G1 is not pointwise from

Example 3.8.
Let Y = {0}. The method G2 on Y be defined by G2({0}) = 0, then G2 is a pointwise

method on Y .
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Define a mapping f : X → Y by f(x) = 0. It is easy to see that [f−1(∅)]G1 = [∅]G1 =
∅ ⊂ f−1([∅]G2), and [f−1(Y )]G1 = [X]G1 = {0} ⊂ X = f−1(Y ) = f−1([Y ]G2). Thus
[f−1(B)]G1 ⊂ f−1([B]G2) for every B ⊂ Y , i.e., f satisfies Theorem 3.5(2).

Obviously, Y is a G2-hull-closed set, but [f−1(Y )]G1 = [X]G1 = {0} 6= f−1(Y ), hence
the inverse of the G2-hull-closed set Y is not a G1-hull-closed set. Thus f does not
satisfy Corollary 3.7(8).

Question 3.10. Let G1, G2 be pointwise methods on sets X and Y , respectively. Does
Theorem 3.5 be equivalent to Corollary 3.7 for a mapping f : X → Y ?

Theorem 3.11. Let G1, G2 and G3 be methods on sets X, Y and Z, respectively.

(1) If f : X → Y and g : Y → Z are preserving G-convergence mappings, then
g ◦ f : X → Z is a preserving G-convergence mapping.

(2) If f : X → Y and g : Y → Z are G-continuous mappings, then g ◦ f : X → Z
is a G-continuous mapping.

Proof. (1) Let x ∈ cG1(X). Since f : X → Y is a preserving G-convergence mapping,
f(x) ∈ cG2(Y ) and G2(f(x)) = f(G1(x)). And because g : Y → Z is a preserving
G-convergence mapping, g(f(x)) ∈ cG3(Z) and G3(g(f(x))) = g(f(G1(x))). Namely,
g ◦ f : X → Z is a preserving G-convergence mapping.

(2) Let U be a G3-open set of Z. Since g is a G-continuous mapping, g−1(U) is a G2-
open set of Y . From the G-continuity of f , we know that (g ◦ f)−1(U) = f−1(g−1(U))
is a G1-open set of X. Hence g ◦ f : X → Z is a G-continuous mapping. �

Example 3.12. Let G1, G2 and G3 be methods on sets X, Y and Z, respectively.
There exist preserving G-convergence mappings f : X → Y and g ◦f : X → Z such that
g : Y → Z is not a G-continuous mapping.

Let X = (0,+∞), cG1(X) = s(X), and G1(x) = 1 for every x = {xn}n∈N ∈ cG1(X).
Let Y = R, cG2(Y ) = s(Y ), and for every y = {yn}n∈N ∈ cG2(Y ),

G2(y) =

{
1, all yn > 0,
0, others.

Let Z = R, cG3(Z) = s(Z), and for every z = {zn}n∈N ∈ cG3(Z),

G3(z) =

{
1, all zn > 0,
−1, others.

f : X → Y and g : Y → Z all are defined as injective. For every x = {xn}n∈N ∈
s(X)

⋂
cG1(X), it is easy to see that G2(f(x)) = 1 = f(1) = f(G1(x)), and G3((g ◦

f)(x)) = 1 = (g ◦ f)(1) = (g ◦ f)(G1(x)). Then f : X → Y and g ◦ f : X → Z all are
preserving G-convergence mappings. But the mapping g : Y → Z is not a G-continuous
mapping. In fact, let A = {−1} ⊂ Z. Then [A]G3 = {−1} ⊂ A, thus A is a G3-closed
set of Z. But [g−1(A)]G2 = {0} 6⊂ g−1(A), so g−1(A) is not a G2-closed set of Y . Hence
g : Y → Z is not a G-continuous mapping, and g is not a preserving G-convergence
mapping.

Theorem 3.13. Let G1, G2 be methods on topological spaces X and Y , respectively.
f : X → Y is a mapping.

(1) If X is a G1-sequential space, G2 is a subsequential method and f is a G-
continuous mapping, then f is a continuous mapping.

(2) If Y is a G2-sequential space, G1 is a subsequential method and f is a continuous
mapping, then f is a G-continuous mapping.
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Proof. (1) Let U be an open set of Y . Then U is a sequentially open set. Since G2

is a subsequential method, U is a G2-open set. Because f is a G-continuous mapping,
f−1(U) is a G1-open set of X, and U is an open set by X is a G1-sequential space.
Namely, f is a continuous mapping.

(2) Let U be a G2-open set of Y . Since Y is a G2-sequential space, U is an open set.
Because f is a continuous mapping, f−1(U) is an open set of X, and hence f−1(U) is a
sequentially open set. Since G1 is a subsequential method, f−1(U) is a G1-open set of
X. Namely, f is a G-continuous mapping. �

4. G-open mappings and G-closed mappings

Open mappings and closed mappings are basic and important mappings in topology,
and they can be characterized by open sets, closed sets, interiors or closures in topolog-
ical spaces [12]. As an extension of general convergence, we introduces the concepts of
G-open mappings and G-closed mappings on this section first, and then try to discuss
the basic properties of the above mappings from G-open sets, G-closed sets, G-interiors
and G-closures.

Definition 4.1. Let G1, G2 be methods on sets X and Y , respectively. Suppose that
f : X → Y is a mapping.

(1) f is called a (G1, G2)-open mapping, if for every G1-open set U of X, f(U) is
G2-open set of Y ; for short, f is called a G-open mapping ;

(2) f is called a (G1, G2)-closed mapping, if for every G1-closed set F of X, f(F ) is
G2-closed set of Y ; for short, f is called a G-closed mapping.

Theorem 4.2. Let G1, G2 be methods on sets X and Y , respectively. The following
are equivalent for a mapping f : X → Y .

(1) f is a G-open mapping.
(2) f(A◦G1) ⊂ (f(A))◦G2 for every A ⊂ X.
(3) For every x ∈ X, if U ⊂ X is a G1-neighborhood of x, then f(U) is a G2-

neighborhood of f(x).

(4) f−1(B
G2) ⊂ f−1(B)

G1
for every B ⊂ Y .

(5) f−1(B◦G2) ⊃ (f−1(B))
◦G1 for every B ⊂ Y .

Proof. (1) ⇒ (2). Let A ⊂ X. Since A◦G1 ⊂ A, f(A◦G1) ⊂ f(A). By condition (1),
f(A◦G1) is a G2-open set which is contained in f(A), thus f(A◦G1) ⊂ (f(A))◦G2 .

(2) ⇒ (3). Let x ∈ X and U ⊂ X be a G1-neighborhood of x. Then x ∈ U◦G1 . By
condition (2), f(x) ∈ f(U◦G1) ⊂ (f(U))◦G2 ⊂ f(U), hence f(U) is a G2-neighborhood
of f(x).

(3)⇒ (4). Let B ⊂ Y . If x ∈ f−1(B
G2), then f(x) ∈ B

G2 . For any G1-neighborhood
U of x, f(U) is a G2-neighborhood of f(x) by condition (3), thus f(U)

⋂
B 6= ∅ by

Lemma 2.8. So, U
⋂
f−1(B) 6= ∅, that is x ∈ f−1(B)

G1
.

(4)⇒ (5). Let B ⊂ Y . By condition (4) and lemma 2.8, f−1((Y \B)
G2

) = f−1(Y \
B◦G2) = X \ f−1(B◦G2) ⊂ f−1(Y \B)

G1
= X \ f−1(B)

G1
= X \ (f−1(B))

◦G1 , hence

f−1(B◦G2) ⊃ (f−1(B))
◦G1 .

(5)⇒ (1). For every G1-open set A of X, then A = A◦G1 and f(A) ⊂ Y . By condi-

tion (5), f−1((f(A))◦G2) ⊃ (f−1(f(A)))
◦G1 ⊃ A◦G1 , thenf(A) = f(A◦G1) ⊂ (f(A))◦G2 ,

hence f(A) is a G2-open set of Y . Namely, f is a G-open mapping.
�
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Theorem 4.3. Let G1, G2 be methods on sets X and Y , respectively. The following
are equivalent for a mapping f : X → Y .

(1) f is a G-closed mapping.

(2) f(A
G1) ⊃ f(A)

G2
for every A ⊂ X.

Proof. (1)⇒ (2). For every A ⊂ X, since A ⊂ A
G1 , f(A) ⊂ f(A

G1). By condition (1)

and Definition 2.1(2), f(A)
G2 ⊂ f(A

G1).

(2) ⇒ (1). Let A be a G1-closed set of X. Then A = A
G1 . By condition (2),

f(A) = f(A
G1) ⊃ f(A)

G2
. It follows from Lemma 2.2 that f(A) is a G2-closed set of

Y . Hence f is a G-closed mapping. �

Theorem 4.4. Let G1, G2 be methods on sets X and Y , respectively. f : X → Y is
a G-closed mapping if and only if for every y ∈ Y and G1-open set U ⊃ f−1(y) of X,
there exists a G2-open set W of Y with y ∈W and f−1(W ) ⊂ U .

Proof. Suppose that f is a G-closed mapping. For every y ∈ Y and G1-open set U ⊃
f−1(y) of X, let W = Y \ f(X \ U), then y ∈ W and f−1(W ) = f−1(Y \ f(X \ U)) =
X \ f−1(f(X \ U)) ⊂ U . Since f is a G-closed mapping, W is a G2-open set of Y , and
W is required.

On the other hand, suppose that f satisfies the sufficient condition. Let F be a G1-
closed set of X and y ∈ Y \ f(F ). Then f−1(y) ⊂ X \ F . Hence there exists a G2-open
set W of Y with y ∈ W and f−1(W ) ⊂ X \ F by the sufficient condition, so W is a

G2-neighborhood of y and W ⊂ Y \ f(F ), then W
⋂
f(F ) = ∅, thus y /∈ f(F )

G2
by

Lemma 2.8. In summary, f(F )
G2 ⊂ f(F ), i.e., f(F ) is a G2-closed set of Y . So f is a

G-closed mapping. �

Corollary 4.5. Let G1, G2 be methods on sets X and Y , respectively. If f : X → Y is
a surjective G-continuous mapping, then the following are equivalent:

(1) f is a G-closed mapping.
(2) For every E ⊂ Y and G1-open set U ⊃ f−1(E) of X, there exists a G1-open set

V of X with f−1(E) ⊂ V ⊂ U , V = f−1(f(V )) and f(V ) is a G2-open set of
Y .

(3) For every y ∈ Y and G1-open set U ⊃ f−1(y) of X, there exists a G1-open set
V of X with f−1(y) ⊂ V ⊂ U , V = f−1(f(V )) and f(V ) is a G2-open set of Y .

Proof. (1) ⇒ (2). Suppose that f is a surjective G-continuous and G-closed mapping.
For every E ⊂ Y and G1-open set U ⊃ f−1(E) of X, arbitrarily pick y ∈ E, then
f−1(y) ⊂ U . By Theorem 4.4, there exists a G2-open set Wy of Y with y ∈ Wy and
f−1(Wy) ⊂ U . Let V =

⋃
y∈E f−1(Wy). Since f is G-continuous, the set V is a G1-open

set of X. And since f : X → Y is surjective, f(V ) =
⋃

y∈E Wy, hence f(V ) is a G2-open

set of Y , f−1(E) ⊂ V ⊂ U and f−1(f(V )) = f−1(
⋃

y∈E Wy) =
⋃

y∈E f−1(Wy) = V .

(2)⇒ (3). Obviously.
(3) ⇒ (1). For every y ∈ Y and G1-open set U ⊃ f−1(y) of X, there exists a G1-

open set V of X with f−1(y) ⊂ V ⊂ U , V = f−1(f(V )) and f(V ) is a G2-open set
of Y by condition (3). Let W = f(V ). Then W is a G2-open set of Y , y ∈ W and
f−1(W ) = f−1(f(V )) = V ⊂ U . By Theorem 4.4, f is a G-closed mapping. �

Comparison Theorems 3.5 and 4.2, we have the following question.
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Question 4.6. Let G1, G2 be methods on sets X and Y , respectively. If f : X →
Y is a mapping, what kind of mapping properties can be characterized by condition
“f((A)G1) ⊂ (f(A))G2 for every A ⊂ X”?

5. G-quotient mappings

As we all know, quotient spaces are important tools constructing new topological
spaces through the known topological spaces in topology, and quotient mappings are also
an essential part of the research on quotient spaces [12]. Therefore, we will introduce the
concepts of G-quotient mappings and G-quotient spaces, discuss some basic properties
and characterizations of G-quotient mappings, and studies its relationship with quotient
mappings in this section.

Definition 5.1. Let G1, G2 be methods on sets X and Y , respectively. A surjective
mapping f : X → Y is called a (G1, G2)-quotient mapping, if f−1(U) is a G1-open set
of X, then U is a G2-open set of Y ; for short, f is called a G-quotient mapping, and Y
is called a G-quotient space.

We know that quotient mappings in topological spaces require continuity. The con-
tinuity under the G-methods has at least three cases described in Lemma 3.2. So, as
analogy with the usual quotient mappings, there are at least three forms of G-quotient
mappings. For this reason, we divides continuous mappings from G-quotient mappings
in this paper, and G-quotient mappings do not require a certain continuity. In order to
make it easier to compare, quotient mappings in topological spaces take the following
form: Let X,Y be topological spaces, a surjective mapping f : X → Y is called a
quotient mapping [21], if f−1(U) is an open set of X, then U is an open set of Y . That
is, the usual quotient mappings are equivalent to the continuous quotient mappings in
this paper.

Statistically sequentially quotient mappings and quotient mappings are not implied
each other [21]. At this time, if we define the G-methods as the statistical convergence
methods in [21, Examples 4.7 and 4.8], it is easy to know that G-quotient mappings
and quotient mappings are also not implied each other.

Theorem 5.2. Let G1, G2 be methods on sets X and Y , respectively. If f : X → Y is
a surjective mapping, then

(1) f is a G-quotient mapping if and only if for every subset F of Y , if f−1(F ) is
a G1-closed set of X, then F is a G2-closed set of Y ;

(2) If f is a G-closed (G-open) mapping, then f is a G-quotient mapping.

Proof. (1) Let f be a G-quotient mapping. For every subset F of Y , if f−1(F ) is a
G1-closed set of X, then f−1(Y \ F ) = X \ f−1(F ) is a G1-open set of X. Since f is a
G-quotient mapping, Y \ F is a G2-open set of Y , thus F is a G2-closed set of Y . On
the other hand, suppose that f satisfies the sufficient condition. For every subset U of
Y , if f−1(U) is a G1-open set of X, then f−1(Y \U) = X \ f−1(U) is a G1-closed set of
X. By the sufficient condition, Y \ U is a G2-closed set of Y , thus U is a G2-open set
of Y . By Definition 5.1, f is a G-quotient mapping.

(2) Suppose that f is a G-closed (G-open) mapping. For every subset F of Y , if
f−1(F ) is a G1-closed (G1-open) set of X, since f : X → Y is a surjective G-closed (G-
open) mapping, then F = f(f−1(F )) is a G2-closed (G2-open) set of Y . By Definition
5.1, f is a G-quotient mapping. �

Example 5.3. [17, Example 7.4] There exists a G-quotient mapping f : X → Y which
satisfies Lemma 3.2(3), but does not satisfy Lemma 3.2(2).
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The methods and mapping on sets X,Y are the same as Example 3.8. Let F ⊂ Y .
Then F = ∅, {0}, {1} or Y . It is clear to see that f−1(∅) = ∅, f−1({0}) = {2k : k ∈ N},
f−1({1}) = {2k + 1 : k ∈ N}, f−1(Y ) = X. Since 0 ∈ [{2k + 1 : k ∈ N}]G1 and
0 /∈ {2k + 1 : k ∈ N}, f−1({1}) is not a G1-closed set of X. It is easy to see that
[{2k : k ∈ N}]G1 = {2k : k ∈ N}. Therefore, f−1(F ) is a G1-closed set of X only
when F is equal to ∅, {0} or Y , then F is a G2-closed set of Y . By Theorem 5.2(1),
f : X → Y is a G-quotient mapping.

From the above explanation, we know that f : X → Y is G-continuous. But f is not
satisfy Lemma 3.2(2). In fact, let A = N, then f([A]G1) = f(X) = Y 6⊂ {0} = [Y ]G2 =
[f(A)]G2 .

Theorem 5.4. Let G1, G2 and G3 be methods on sets X, Y and Z, respectively. If
f : X → Y is a G-continuous and G-quotient mapping, then

(1) g : Y → Z is a G-quotient mapping if and only if g ◦ f : X → Z is a G-quotient
mapping;

(2) g : Y → Z is a G-continuous mapping if and only if g ◦ f : X → Z is a
G-continuous mapping.

Proof. (1) On the one hand, let U ⊂ Z such that (g ◦ f)−1(U) is a G1-open set of X.
Since (g ◦ f)−1(U) = f−1(g−1(U)) and f : X → Y is a G-quotient mapping, g−1(U) is
a G2-open set of Y . And because g : Y → Z is a G-quotient mapping, U is a G3-open
set of Z. By Definition 5.1, g ◦f : X → Z is a G-quotient mapping. On the other hand,
let g−1(U) be a G2-open set of Y for some U ⊂ Z. Since f : X → Y is a G-continuous
mapping, f−1(g−1(U)) = (g◦f)−1(U) is a G1-open set of X. And because g◦f : X → Z
is a G-quotient mapping, U is a G3-open set of Z. By Definition 5.1, g : Y → Z is a
G-quotient mapping.

(2) The necessity comes from Theorem 3.11(2). Next, we prove the sufficiency. Sup-
pose that g ◦ f : X → Z is a G-continuous mapping. For every G3-open set U of Z,
(g ◦ f)−1(U) = f−1(g−1(U)) is a G1-open set of X. Since f : X → Y is a G-quotient
mapping, g−1(U) is a G2-open set of Y , thus g is a G-continuous mapping. �

Question 5.5. Let G1, G2 and G3 be methods on sets X, Y and Z, respectively.
Suppose that f : X → Y is a G-quotient and preserving G-convergence mapping. If
g ◦ f : X → Z is a preserving G-convergence mapping, does g : Y → Z be a preserving
G-convergence mapping?

Theorem 5.6. Let G1, G2 be methods on topological spaces X and Y , respectively. If
X is a G1-sequential space and f : X → Y is a G-continuous quotient mapping, then
Y is a G2-sequential space.

Proof. Let U be a G2-open set of Y . Since f : X → Y is a G-continuous mapping,
f−1(U) is a G1-open set of X. And because X is a G1-sequential space, it is clear that
f−1(U) is an open set. It follows that U is an open set of Y because f is a quotient
mapping. By Definition 2.9, Y is a G2-sequential space. �

Finally, we discuss the conversion relationship between quotient mappings and G-
quotient mappings.

Theorem 5.7. Let G1, G2 be methods on topological spaces X and Y , respectively.
f : X → Y is a surjective mapping.

(1) If X is a G1-sequential space, G2 is a subsequence method and f is a quotient
mapping, then f is a G-quotient mapping.
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(2) If Y is a G2-sequential space, G1 is a subsequence method and f is a G-quotient
mapping, then f is a quotient mapping.

Proof. (1) Suppose that X is a G1-sequential space, G2 is a subsequence method and f
is a quotient mapping. Let f−1(U) be a G1-open set of X for some U ⊂ Y . Since X is a
G1-sequential space, f−1(U) is an open set. And because f is a quotient mapping, U is
an open set of Y , thus U is a sequentially open set. Since G2 is a subsequence method,
U is a G2-open set [17, Lemma 2.11(2)]. By Definition 5.1, f is a G-quotient mapping.

(2) Suppose that Y is a G2-sequential space, G1 is a subsequence method and f is
a G-quotient mapping. Let f−1(U) be an open set of X for some U ⊂ Y , then f−1(U)
is a sequentially open set. Since G1 is a subsequence method, f−1(U) is a G1-open
set [17, Lemma 2.11(2)]. And because f is a G-quotient mapping, U is a G2-open set
of Y . Since Y is a G2-sequential space, U is an open set. Therefore, f is a quotient
mapping. �

I would like to thank professor Lin Shou for his valuable advice during the writing of
this article!
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