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Abstract. In this paper we firstly introduce and study the concepts of
I-convergence, I∗-convergence, I-Cauchy sequence and I∗-Cauchy sequence of
functions defined on discrete countable amenable groups, where I is an ideal
of subsets of the amenable semigroup G. Secondly, we introduce and examine
I-limit points and I-Cluster points of functions defined on discrete countable
amenable groups. Finally, we introduce and investigate I-limit superior and
I-limit inferior of functions defined on discrete countable amenable groups.

1. Introduction and Background

The concept of statistical convergence was introduced by Fast [5] and this concept
has been studied by many others (see, [6,7]). The idea of I-convergence which is a
generalization of statistical convergence was introduced by Kostyrko et al. [8] which
is based on the structure of the ideal I of subset of the set natural numbers N. After
than, Demirci [2] introduced the concepts of I-limit superior and I-limit inferior
of real sequences and investigated the relationships between this concepts. Then,
Nabiev et al. [12] introduced the concepts of I-Cauchy sequence and I∗-Cauchy
sequence of real sequences and investigated some properties this concepts.

In [1], Day studied on the concept of amenable semigroups. Then, the concepts
of summability in amenable semigroups were studied in [4, 10, 11]. Douglas [3]
extended the notion of arithmetic mean to amenable semigroups and obtained a
characterization for almost convergence in amenable semigroups. In [14], Nuray
and Rhoades introduced the notions of convergence and statistical convergence in
amenable semigroups. Also, the notion of almost statistical convergence in amenable
semigroups studied by Nuray and Rhoades [15].

The aim of this study is to introduce the concepts of I-convergence, I-Cauchy
sequence and I-limit points for functions defined on discrete countable amenable
semigroups and to examine some properties of these concepts. For the particular
case; when the amenable semigroup is the additive positive integers, our definitions
and theorems yield the results of [2, 8, 9].

Let G be a discrete countable amenable semigroup with identity in which both
right and left cancelation laws hold, and w(G) and m(G) denote the spaces of all
real valued functions and all bounded real functions on G, respectively. m(G) is a
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Banach space with the supremum norm

∥f∥∞ = sup
{
|f(g)| : g ∈ G

}
.

Namioka [13] showed that, if G is a countable amenable group, there exists a
sequence {Sn} of finite subsets of G such that

i) G =
∪∞

n=1 Sn,
ii) Sn ⊂ Sn+1 (n = 1, 2, ...),

iii) lim
n→∞

|Sng∩Sn|
|Sn| = 1, lim

n→∞
|gSn∩Sn|

|Sn| = 1,

for all g ∈ G, where |A| denotes the number of elements the finite set A.
Any sequence of finite subsets of G satisfying (i), (ii) and (iii) is called a Folner

sequence for G.
The sequence Sn = {0, 1, 2, ..., n− 1} is a familiar Folner sequence giving rise to

the classical Cesàro method of summability.
Now, we recall the basic definitions and concepts (See, [6, 8, 14]).
Let G be a discrete countable amenable semigroup with identity in which both

right and left cancelation laws hold. A function f ∈ w(G) is said to be convergent
to s for any Folner sequence {Sn} for G if, for every ε > 0 there exists a k0 ∈ N
such that |f(g)− s| < ε, for all m > k0 and g ∈ G \ Sm.

Let G be a discrete countable amenable semigroup with identity in which both
right and left cancelation laws hold. A function f ∈ w(G) is said to be a Cauchy
sequence for any Folner sequence {Sn} for G if, for every ε > 0 there exists a k0 ∈ N
such that |f(g)− f(h)| < ε, for all m > k0 and g, h ∈ G \ Sm.

The upper and lower Folner densities of a set S ⊂ G are defined by

δ(S) = lim sup
n→∞

1

|Sn|
∣∣{g ∈ Sn : g ∈ S}

∣∣
and

δ(S) = lim inf
n→∞

1

|Sn|
∣∣{g ∈ Sn : g ∈ S}

∣∣,
respectively. If δ(S) = δ(S), then

δ(S) = lim
n→∞

1

|Sn|
∣∣{g ∈ Sn : g ∈ S}

∣∣,
is called Folner density of S. Take G = N, Sn = {0, 1, 2, ..., n − 1} and S be the
set of positive integers with leading digit 1 in the decimal expansion. The set S
has no Folner density with respect to the Folner sequence {Sn}, since δ(S) = 1

9 and

δ(S) = 5
9 .

Let G be a discrete countable amenable semigroup with identity in which both
right and left cancelation laws hold. A function f ∈ w(G) is said to be statistically
convergent to s for any Folner sequence {Sn} for G if, for every ε > 0

lim
n→∞

1

|Sn|
∣∣{g ∈ Sn : |f(g)− s| ≥ ε

}∣∣ = 0.

Let G be a discrete countable amenable semigroup with identity in which both
right and left cancelation laws hold. A function f ∈ w(G) is said to be a statistically
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Cauchy sequence for any Folner sequence {Sn} for G if, for every ε > 0 and m ≥ 0,
there exists an h ∈ G \ Sm such that

lim
n→∞

1

|Sn|
∣∣{g ∈ Sn : |f(g)− f(h)| ≥ ε

}∣∣ = 0.

Let X is a non-empty set. A family of sets I ⊆ 2X is called an ideal if and only
if

(i) ∅ ∈ I, (ii) For each A,B ∈ I we have A ∪ B ∈ I, (iii) For each A ∈ I and
each B ⊆ A we have B ∈ I.

An ideal I is called non-trivial if I ̸= ∅ and X /∈ I. A non-trivial ideal I ⊆ 2X

is called admissible if and only if I ⊃
{
{x} : x ∈ X

}
. All ideals in this paper are

assumed to be admissible.
A family of sets F ⊆ 2X is called a filter on X if and only if
(i) ∅ /∈ F , (ii) For each A,B ∈ F we have A∩B ∈ F , (iii) For each A ∈ F and

each B ⊇ A we have B ∈ F .
I is a non-trivial ideal in X, then the set

F(I) =
{
M ⊂ X : (∃A ∈ I)(M = X\A)

}
is a filter in X, called the filter associated with I.

Let I ⊆ 2N be an admissible ideal. A sequence x = (xn) is said to be I-convergent
to L if for every ε > 0

A(ε) =
{
n ∈ N : |xn − L| ≥ ε

}
∈ I.

An admissible ideal I ⊂ 2X is said to satisfy the condition (AP ) if for every
countable family of mutually disjoint sets {A1, A2, ...} belonging to I there exists a
countable family of sets {B1, B2, ...} such that Ai∆Bi is a finite set for j ∈ X and
B =

∪∞
i=1Bi ∈ I.

Lemma 1.1. [12] Let {Pi}i∈N be a countable collection of subsets of N such that
{Pi} ∈ F(I) for each i, where F(I) is a filter associate with an admissible ideal I
with property (AP ). Then there exists a set P ⊂ N such that {Pi} ∈ F(I) and the
set P \ Pi is finite for all i.

2. I-Convergent Functions and I-Cauchy Sequence

In this section, we let I ⊆ 2G be an admissible ideal for amenable semigroup G.

Definition 2.1. Let G be a discrete countable amenable semigroup with identity
in which both right and left cancelation laws hold. A function f ∈ w(G) is said to
be I-convergent to s for any Folner sequence {Sn} for G, if for every ε > 0{

g ∈ G : |f(g)− s| ≥ ε
}
∈ I.

In this case, we write I − lim f(g) = s.

Example 2.2. .

(a) If we let I = If be an ideal of all finite subsets of G, then we get usual
convergence with respect to Folner sequence.
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(b) Let Id =
{
H ⊂ G : δ(H) = 0

}
. Then, Id is an admissible ideal and

Id-convergence coincides with statistical convergence with respect to the
Folner sequence.

Theorem 2.3. The I-convergence of f ∈ w(G) depends on the particular choice of
the Folner sequence.

By assuming I = Id, let us show this by an example.

Example 2.4. Let G = Z2 and take two Folner sequences as follows:

{S1
n} =

{
(i, j) ∈ Z2 : |i| ≤ n, |j| ≤ n

}
and {S2

n} =
{
(i, j) ∈ Z2 : |i| ≤ n, |j| ≤ n2

}
and define f(g) ∈ w(G) by

f =

{
1 , if (i, j) ∈ A,
0 , if (i, j) /∈ A.

where

A =
{
(i, j) ∈ Z2 : i ≤ j ≤ n, i = 0, 1, 2, ..., n; n = 1, 2, ...

}
.

Since for the Folner sequence {S2
n}

lim
n→∞

1

|S2
n|
∣∣{g ∈ S2

n : |f(g)− 0| ≥ ε
}∣∣ = lim

n→∞

(n+1)(n+2)
2

(2n+ 1)(2n2 + 1)
= 0,

then f(g) is Id-convergent to 0. But, since for the Folner sequence {S1
n}

lim
n→∞

1

|S1
n|
∣∣{g ∈ S1

n : |f(g)− 0| ≥ ε
}∣∣ = lim

n→∞

(n+1)(n+2)
2

(2n+ 1)2
̸= 0,

then f(g) is not Id-convergent to 0.

Theorem 2.5. Let G be a discrete countable amenable semigroup with identity in
which both right and left cancelation laws hold. A function f ∈ w(G) is I-convergent
if and only if for every ε > 0 there exists gε ∈ G such that{

g ∈ G : |f(g)− f(gε)| < ε
}
∈ F(I).(2.1)

Proof. Let f ∈ w(G) is I-convergent to s. Then,

Aε =
{
g ∈ G : |f(g)− s| < ε

2

}
∈ F(I)

for all ε > 0. Fix a gε ∈ Aϵ. Then, for all g ∈ Aϵ we have

|f(gε)− f(g)| ≤ |f(gε)− s|+ |s− f(g)| < ε

2
+

ε

2
= ε.

Hence, (2.1) holds.
Now, we assume that (2.1) holds for all ε > 0. Then, the set

Bε =
{
g ∈ G : f(g) ∈ [f(gε)− ε, f(gε) + ε]

}
∈ F(I)

for all ε > 0. Denote Jε = [f(gε) − ε, f(gε) + ε]. Fix an ε > 0. Then, Bε ∈ F(I)
and Bε/2 ∈ F(I). Hence, Bε ∩Bε/2 ∈ F(I). This implies that

J = Jε ∩ Jε/2 ̸= ∅,
{
g ∈ G : f(g) ∈ J

}
∈ F(I) and diam(J) ≤ 1

2
diam(Jε).
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This way, by induction, we can construct the sequence of closed intervals

Jε = J0 ⊇ J1 ⊇ J2 ⊇ . . . ⊇ Jn ⊇ . . .

with property

diam(Jn) ≤
1

2
diam(Jn−1) and

{
g ∈ G : f(g) ∈ Jn

}
∈ F(I), (n = 1, 2, 3, ...).

Then, there exist a s ∈
∩
n∈N

Jn and it is a routine verification work to verify that f

is I-convergent to s. �
Let M be a subset of G such that |M | = ∞.

Definition 2.6. Let G be a discrete countable amenable semigroup with identity
in which both right and left cancelation laws hold. A function f ∈ w(G) is said to
be I∗-convergent to s, for any Folner sequence {Sn} for G if there exists M ⊂ G,
M ∈ F(I) (i.e., G \M ∈ I) and a k0 = k0(ε) ∈ N such that for every ε > 0

|f(g)− s| < ε,

for all n > k0 and all g ∈ M \ Sn. In this case, we write I∗ − lim f(g) = s.

Theorem 2.7. If f ∈ w(G) is I∗-convergent to s, then f is I-convergent to s.

Proof. Suppose that f ∈ w(G) is I∗-convergent to s. Then, there exists M ⊂ G,
M ∈ F(I) (i.e., H = G \M ∈ I) and a k0 = k0(ε) ∈ N such that for every ε > 0

|f(g)− s| < ε,

for all n > k0 and all g ∈ M \ Sn. Therefore obviously,

A(ε) =
{
g ∈ G : |f(g)− s| ≥ ε

}
⊂ H ∪ Sk0 .

Since I is admissible, H ∪ Sk0 ∈ I, so A(ε) ∈ I. Hence, f ∈ w(G) is I-convergent
to s. �
Theorem 2.8. Let I ⊂ 2G be an admissible ideal with the property (AP ). If
f(g) ∈ w(G) is I-convergent to s, then f is I∗-convergent to s.

Proof. Suppose that I satisfies condition (AP ) and f(g) ∈ w(G) is I-convergent to
s. Then, A(ε) =

{
g ∈ G : |f(g)− s| ≥ ε

}
∈ I for every ε > 0. Put

A1 = {g ∈ G : |f(g)− s| ≥ 1} and An =

{
g ∈ G :

1

n
≤ |f(g)− s| < 1

n+ 1

}
for n ≥ 2, n ∈ N. Obviously Ai ∩ Aj = ∅ for i ̸= j. By condition (AP ), there
exists a sequence of sets (Bn)n∈N such that Aj △Bj are infinite sets for j ∈ N and
B =

∪∞
j=1Bj ∈ I. It is sufficient to prove that there exist M ⊂ G, M ∈ F(I) (i.e.,

M = G \B) and a n0 = n0(ε) ∈ N such that for every ε > 0

|f(g)− s| < ε,

for all n > n0 and all g ∈ M \ Sn.
Let ξ > 0. Choose k ∈ N such that 1

k+1 < ξ. Then,

{
g ∈ G : |f(g)− s| ≥ ξ

}
⊂

k+1∪
j=1

Aj .
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Since Aj △Bj , j = 1, 2, ..., k + 1 are finite sets, there exists n0 such that

k+1∪
j=1

Bj ∩ (M \ Sn0) =

k+1∪
j=1

Aj ∩ (M \ Sn0).(2.2)

If g ∈ M \ Sn0 and g /∈
∪k+1

j=1 Bj , then g /∈
∪k+1

j=1 Aj by (2.2). But then

|f(g)− s| < 1

n+ 1
< ξ.

Hence, f is I∗-convergent to s. �

Definition 2.9. Let G be a discrete countable amenable semigroup with identity
in which both right and left cancelation laws hold. A function f ∈ w(G) is said to
be I-Cauchy sequence, for any Folner sequence {Sn} for G if for every ε > 0, there
exists an h = h(ε) ∈ G such that{

g ∈ G : |f(g)− f(h)| ≥ ε
}
∈ I.

Theorem 2.10. If f ∈ w(G) is I-convergent for Folner sequence {Sn} for G, then
it is I-Cauchy for same sequence.

Proof. Let f ∈ w(G) is I-convergent to s for Folner sequence {Sn} for G. Then for
every ε > 0, we have

Aε =
{
g ∈ G : |f(g)− s| ≥ ε

}
∈ I.

Since I is an admissible ideal there exists an h ∈ G such that h /∈ Aε. Let

Bε =
{
g ∈ G : |f(g)− f(h)| ≥ 2ε

}
.

Taking into account the inequality

|f(g)− f(h)| ≤ |f(g)− s|+ |f(h)− s|,

we observe that if g ∈ Bε, then

|f(g)− s|+ |f(h)− s| ≥ 2ε.

On the other hand, since h /∈ Aε we have |f(h) − s| < ε and so |f(g) − s| > ε.
Hence g ∈ Aε and so we have

Bε ⊂ Aε ∈ I.
Thus Bε ∈ I, i.e., f is I-Cauchy sequence. �

Definition 2.11. Let G be a discrete countable amenable semigroup with identity
in which both right and left cancelation laws hold. A function f ∈ w(G) is said to
be I∗-Cauchy sequence, for any Folner sequence {Sn} for G if there exists M ⊂ G,
M ∈ F(I) (i.e., G \M ∈ I) and a k0 = k0(ε) ∈ N such that for every ε > 0

|f(g)− f(h)| < ε,

for all n > k0 and g, h ∈ M \ Sn.

Theorem 2.12. If f ∈ w(G) is I∗-Cauchy for Folner sequence {Sn} for G, then it
is I-Cauchy for same sequence.
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Proof. Let f ∈ w(G) be an I∗-Cauchy for Folner sequence {Sn} for G. Then by
definition, there exists M ⊂ G, M ∈ F(I) (i.e., G \M ∈ I) and a k0 = k0(ε) ∈ N
such that for every ε > 0

|f(g)− f(h)| < ε,

for all n > k0 and g, h ∈ M \ Sn. Let H = G \M . It is clearly H ∈ I and

(2.3) Aε =
{
g ∈ G : |f(g)− f(h)| ≥ ε

}
⊂ H ∪ Sk0 .

Since I is admissibe ideal, the set on the right side of (2.3) belongs to I and so
Aε ∈ I. Consequently, f is I-Cauchy for same sequence. �

Following Lemma can be proved similar to the Lemma 1.1.

Lemma 2.13. Let {Pi}i∈N be a countable collection of subsets of G such that {Pi} ∈
F(I) for each i, where F(I) is a filter associate with an admissible ideal I with
property (AP ). Then there exists a set P ⊂ G such that {Pi} ∈ F(I) and the set
P \ Pi is finite for all i.

Theorem 2.14. If I ⊆ 2G is an admissible ideal with property (AP ) then, the
concepts I-Cauchy and I∗-Cauchy coincide for any Folner sequence {Sn} for G.

Proof. If f ∈ w(G) be an I∗-Cauchy for Folner sequence {Sn} for G, then it is
I-Cauchy by Theorem (2.12), where I need not have the (AP ) property. Now it
is sufficient to prove that f is I∗-Cauchy under assumption that f is an I-Cauchy
sequence.

Let f be an I-Cauchy sequence. Then, by definition, for every ε > 0 there exists
an h = h(ε) ∈ G such that{

g ∈ G : |f(g)− f(h)| ≥ ε
}
∈ I.

Let

Pi =

{
g ∈ G : |f(g)− f(mi)| <

1

i

}
, i = 1, 2, ...

wheremi = h(1i ). It is clear that Pi ∈ F(I) for i = 1, 2, ... . Since I has the property
(AP ), then by Lemma 2.13 there exists a set P ⊂ G such that P ∈ F(I) and P \Pi

is finite for all i. Now we show that for every ε > 0 there exists k0 = k0(ε) ∈ N such
that for g,m ∈ P \ Sn

|f(g)− f(m)| < ε,

for all n > k0. To prove this, let ε > 0 and j ∈ N such that j > 2
ε . If g,m ∈ P \ Sn,

then P \ Pi is a finite set, so there exists k0 = k0(j) such that g,m ∈ Pj \ Sn for all
n > k0. Therefore, for g,m,mj ∈ Pj \ Sn we have

|f(g)− f(mj)| <
1

j
and |f(m)− f(mj)| <

1

j
,

for all n > k0. Hence, for g,m,mj ∈ Pj \ Sn it follows that

|f(g)− f(m)| < |f(g)− f(mj)|+ |f(m)− f(mj)| < ε,

for all n > k0. Thus, for any ε > 0 there exists k0 = k0(ε) such that for g,m ∈
P \ Sn ∈ F(I)

|f(g)− f(m)| < ε,

for all n > k0. Hence, f is I∗-Cauchy. �
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3. I-Limit Points and I-Cluster Points

In this section, we introduce the notions of I-limit points and I-cluster points of
the functions defined on discrete countable amenable semigroups.

Definition 3.1. The s ∈ R is is said to I-limit point of the f ∈ w(G), for any
Folner sequence {Sn} for G, provided that there is a set M ⊂ G, M /∈ I such that
lim f(g) = s (g ∈ M \ Sn) for any Folner sequence (Sn) for G.

Definition 3.2. The number c ∈ R is said to be an I-cluster point of the f ∈ w(G)
provided that for each ε > 0 we have {g ∈ G : |f(g) − c| < ε} /∈ I for any Folner
sequence {Sn} for G.

For an f ∈ w(G), let If
Λ(G) and If

Γ(G) denote the set of all I-limit points and
I-cluster points of f , respectively.

Theorem 3.3. Let I be an admissible ideal. Then, for each f ∈ w(G) we have

If
Λ(G) ⊆ If

Γ(G).

Proof. Let s ∈ If
Λ(G). Then, there exists a set M /∈ I such that lim f(g) = s

(g ∈ M \ Sn). Hence, for every δ > 0 there exists a k0 = k0(δ) ∈ N such that for
g ∈ M \ Sn we have |f(g)− s| < δ, for all n > k0. Hence,{

g ∈ G : |f(g)− s| < δ
}
⊃ M \ Sn

and so {
g ∈ G : |f(g)− s| < δ

}
/∈ I,

which means that s ∈ If
Γ(G). �

Theorem 3.4. Let I be an admissible ideal. The set If
Λ(G) is closed set in R for

each function f(g) ∈ w(G).

Proof. Let r ∈ If
Λ(G) and ε > 0. There exists r0 ∈ If

Λ(G) ∩ B(r, ε). Choose δ ≥ 0
such that B(r0, δ) ⊂ B(r, ε). We obviously have{

g ∈ G : |r − f(g)| < ε
}
⊃

{
g ∈ G : |r0 − f(g)| < δ

}
.

Hence,
{
g ∈ G : |r − f(g)| < ε

}
/∈ I and r ∈ If

Λ(G). �

4. I-Limit Superior and I-Limit Inferior

For f ∈ w(G), we define the following sets:

Bf =
{
b ∈ R : {g ∈ G : f(g) > b} /∈ I

}
,

similarly

Af =
{
a ∈ R : {g ∈ G : f(g) < a} /∈ I

}
.

Definition 4.1. For an f ∈ w(G), the I-limit superior for any Folner sequence
(Sn) for G is given by

I − lim sup f =

{
supBf , Bf ̸= ∅
−∞, Bf = ∅.
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Also I-limit inferior for any Folner sequence (Sn) for G is given by

I − lim inf f =

{
inf Af , Af ̸= ∅
∞, Af = ∅.

It is easy to see that, for an f ∈ w(G) and for any Folner sequence {Sn} for G,
I − lim inf f ≤ I − lim sup f .

Definition 4.2. The function f ∈ w(G) is said to be I-bounded for any Folner
sequence {Sn} for G if there is a number K such that

{
g ∈ G : |f(g)| > K

}
∈ I.

Note that I-boundedness implies that I − lim sup f and I − l lim inf f finite. The
following theorem can be proved by a straightforward least upper bound argument.

Theorem 4.3. For any Folner sequence (Sn) for G if µ = I − lim sup f is finite,
then for every ε > 0{

g ∈ G : f(g) > µ− ε
}
/∈ I and

{
g ∈ G : f(g) > µ+ ε

}
∈ I(4.1)

Conversely, if (4.1) holds for every ε > 0, then µ = I − lim sup f .

The dual statement for I − lim inf f is as follows.

Theorem 4.4. For any Folner sequence {Sn} for G, if λ = I − lim inf f is finite,
then for every ε > 0{

g ∈ G : f(g) < λ+ ε
}
/∈ I and

{
g ∈ G : f(g) < λ− ε

}
∈ I(4.2)

Conversely, if (4.2) holds for every ε > 0, then λ = I − lim inf f .

Theorem 4.5. For any Folner sequence {Sn} for G the I-bounded function is
I-convergent if and only if I − lim sup f = I − lim inf f .

Proof. For any Folner sequence {Sn} for G, let λ = I − lim inf f and
µ = I − lim sup f . First assume that I − lim f(g) = s and ε > 0, then{

g ∈ G : |f(g)− s| ≥ ε
}
∈ I

and so {
g ∈ G : f(g) > s+ ε

}
∈ I,

which implies that µ ≤ s. Also, we have{
g : f(g) < s− ε

}
∈ I,

which implies that s ≤ λ. Therefore µ ≤ λ, which we combine with the fact that
I − lim inf f ≤ I − lim sup f , to conclude that µ = λ.

Now, we assume that for any Folner sequence (Sn) for G, I − lim inf f =
I − lim sup f . If ε > 0, then (4.1) and (4.2) imply{

g : f(g) > s+
ε

2

}
∈ I and

{
g : f(g) < s− ε

2

}
∈ I.

Hence, for any Folner sequence (Sn) for G, we have I − lim f = s. �
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