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Abstract

this article presents the algorithm for solving a Volterra integro-differential
equation using Fermat collocation method. The constructing and the
properties of Fermat expansion were displayed. The method depends on
modifying the Volterra integro-differential equation with initial conditions
to a system of equations in the coefficients, which must be determined,
of the expansion. We use properties of the matrices to do this modifica-
tion. We investigate accurately the convergence and error analysis of the
problem. Some examples are solved using this algorithm and the absolute
errors were compared with others. The results proved the method is the
most accuracy of the others.
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1 Introduction

There are many applications of Volterra integro-differential equations ( VIDE)
in several sciences mathematics, physics, chemistry, engineering, biology and so
on. So we have different methods for solving these equations such as : [1][2]
variational iteration method for solving Volterra integro-differential equations
of the second kind, and for multi terms and vanishing delays respectively. A
finite difference method for a linear first-order Volterra integro-differential equa-
tion with delay, and for non-linear Volterra partial integro-differential equations
[3][4]. [5] a finite element method of linear Volterra integro-differential equations
using boundary conditions. [6] solution using fixed-point method.

Recently, There are the spectral methods for solving Volterra integro-differential
equations. These methods small errors and small number of unknowns such as:
Chebyshev method [7][8]. Legendre collocation method [9][10]. Solution using
Jacobi collocation method [11]. The first order VIDEs with different kinds were
solved in many articles: [12][13] equations of the second kind and third kind
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respectively. We compared the obtained results with collocation method [14],
standard collocation method (SCM) and chebyshev-Gauss- Lobatto collocation
method (CGLCM) [15], homotopy analysis method (HAM) and finite difference
method (FDM) [16].

This article discussed the first-order Volterra integro-differential equation of
the third kind: [14]

γαV (́γ) = γαη(γ)V (γ)+γα z(γ)+

γ∫
0

ρ(γ, y) V (y) dy , γ ∈ L = [0, l] (1)

Where V (γ) is an unknown function. η(γ), z(γ) ∈ C (L). ρ(γ, y), κ(γ, y)
∈ C(A), and

A = {(γ, y) : γ ∈ L, 0 ≤ y ≤ γ} .
Supose that 0 < α < 1 and ρ(γ, y) = yακ(γ, y).

The paper has the following organization: section 2 presents the important
properties and the first derivative of Fermat polynomials which are useful in
the next sections. In section 3, the algorithm of the method is explained on a
first-order Volterra-Fredholm integral equation using operational matrices. The
convergence and error analysis of the Fermat polynomials are studied in detail
in section 4. We give some numerical examples and compared them with others
in section 5, the results showed the efficiency of the method. In the last section,
we introduce some conclusions.

2 Properties and the first derivative of Fermat
polynomials

In this section, we present the important relations, formulas and the first deriva-
tive of Fermat polynomials [17], which are used in the following sections.
The recurrence relations of Fermat polynomials are:

Υj+2 (γ) = 3γ Υj+1 (γ)− 2 Υj (γ) , j ≥ 0 (2)

With initial values:
Υ0 (γ) = 0, Υ1 (γ) = 1.

Υj (γ) has the Binet’s form:

Υj (γ) =


(
3γ+
√

9γ2−8
)j

+
(
3γ−
√

9γ2−8
)j

2j
√

9γ2−8
, γ 6= 2

3

2
j
2 sin

(
π
4 j
)
, γ = 2

3

, j = 1, 2, .... (3)

and the analytic form:

Υk+1 (γ) =

b k
2 c∑
j=0

(−2)
j

3k−2j
(
k − j
j

)
γk−2j . (4)
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Let V (́γ) be written in the expansion of Fermat polynomials:

V (́γ) =

∞∑
j=1

ej Υj (γ) . (5)

If we approximate V (́γ) as

V (́γ) ≈ VK(γ) =

K+1∑
j=1

ej Υj (γ) = ET Φ(γ), (6)

Where

Φ(γ) = [Υ1 (γ) ,Υ2 (γ) , ...,ΥK+1 (γ)]
T
, (7)

and the coefficients

ET = [e1, e2, ..., eK+1] . (8)

must be determined.
The first derivative of Fermat polynomials: from eq. (7)

d Φ(γ)

d γ
= H(1) Φ(γ),

where H(1) =
(
h
(1)
mn

)
is (K + 1)× (K + 1) matrix and has the form

h(1)mn =

{
3 (n+ 1) 2

m−n−1
2 m > n, (m+ n) odd

0 otherwise
(9)

3 Fermat collocation method

In this section, we use Fermat polynomials to approximate the solution of the
first-order Volterra integro-differential eq. (1). Substitute the expansion (6) in
eq. (1), we have

K+1∑
j=1

ej h(1)mn Υj (γ) = η(γ)

K+1∑
j=1

ej Υj (γ) + z(γ) +

γ∫
0

γ−αρ(γ, y)

K+1∑
j=1

ej Υj (y) dy . (10)

Let

gj (γ) = h(1)mn Υj (γ)− η(γ) Υj (γ)−
γ∫
0

γ−αρ(γ, y) Υj (y) dy.
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So eq. (10) has the form

K+1∑
j=1

ej gj (γ) = z(γ).

There exist K + 1 roots. So we have a system of equations

K+1∑
j=1

ej gj (γi) = z(γi).

The matrix form of this equation is

GT E = F,

Where
G = (gji), i, j = 1, 2, ....K + 1,

and
F = [z(γ1),z(γ2), ...,z(γK+1)]T .

We can determine the unknown constants by the following equation:

E = (GT )−1F.

4 Convergence and error analysis

In this section, the convergence and error analysis of Fermat expansion of VIDE
are discussed. The following theorems are satisfied:

Theorem 1 If V (γ) is defined on [0, 1] and
∣∣V (j)(0)

∣∣ ≤ `j , j ≥ 0 where ` is a
positive constant and if V (γ) has the expansion:

V (γ) =

∞∑
j=1

ej Υj (γ) .

Then:

1) |ej | ≤
`j−1

3j (j − 1) !
cosh

(√
2υ
)

2) The series converges absolutely.

Proof. See [17]

Theorem 2 Let V (γ) satisfy the assumptions stated in theorem (1). Moreover

εK(γ) = |V (γ)− VK(γ)| =
∞∑

j=K+2

ej Υj (γ) be the truncation error so:

4



|εK(γ)| < 2υK+1

3 (K + 1)!
cosh

(√
2υ
)
, υ =

2`

3

Proof. See [17]

Lemma 3 The derivative of Υj is denoted by the following relation:

|Ύj | ≤ 2jj2

Proof. Apply the derivative to the right-hand side of expansion (4) and observe
that γ < 1, then by induction on j, the Lemma is satisfied

Theorem 4 Let V (γ) =
∞∑
j=1

ej Υj (γ) be the exact solution of eq. (1), which

satisfies eq. (4), and VK(γ) =

K+1∑
j=1

ej Υj (γ) be its approximation. If

RK(y) =

∣∣∣∣∣∣VḰ(γ)− η(γ)VK(γ)−
γ∫
0

γ−αρ(γ, y) VK(y) dy −z(γ)

∣∣∣∣∣∣ ,
<K = max

0≤γ≤l
RK(γ),

and if |η(γ)| ≤ η1, |κ(γ, γ| ≤ κ1. Where η1 and κ1 are positive constants. Then
we have the following global error estimate:

<K ≤
2

3

υK+1eυσ

(K + 1)!
cosh

(√
2υ
)

Where

σ = max

{
(K + 1)

2
,

(
υ +

1

2
(4 +K)

)2

, η1,κ1
L

α+ 1

}
.

Proof. From eq. (1), we have

z(γ) = V (́γ)− η(γ)V (γ)−
γ∫
0

γ−αρ(γ, y) V (y) dy .

So

RK(γ) ≤
∞∑

j=K+2

|ej | |Ύj (γ)|+ |η(γ)| |εK(γ)|+

∣∣∣∣∣∣γ−ακ(γ, γ)

γ∫
0

yαdy

∣∣∣∣∣∣ |εK(γ)| .
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From theorems 1, 2 and Lemma 3:

<K ≤
2

3
cosh

(√
2υ
) 

∞∑
j=K+2

υj−1

(j − 1)!
j2 +

(
η1 + κ1

L

α+ 1

)
υK+1

(K + 1)!

 ,

but
∞∑

j=K+2

υj−1

(j − 1)!
j2 =

1

Γ (1 +K)
{(3 + υ +K) υ1+K+

(
1 + 3υ + υ2

)
(Γ (1 +K)− Γ (1 +K, υ)) eυ}.

Then

<K ≤
2

3

υK+1eυ

(K + 1)!
cosh

(√
2υ
)
{(3 + υ +K) (K + 1) +

(
1 + 3υ + υ2

)
+ η1 + κ1

L

α+ 1
}, e−υ < 1

after some calculations:

<K ≤
2

3

υK+1eυ

(K + 1)!
cosh

(√
2υ
) {

(K + 1)
2

+

(
υ +

1

2
(4 +K)

)2

+ η1 + κ1
L

α+ 1

}
.

From the assumptions of the theorem, the proof is completed.

5 Numerical examples

In this section, we solve the Volterra integro-differential equations using Fermat
collocation (FC) method and compare them with other methods:

Example 5 Suppose that the following VIDE [14]
γ

1
2 V (́γ) = 1

20γV (γ) + z(γ) +

γ∫
0

y
1
2 V (y) dy , γ ∈ [0, 1] .

V (́0) = 0.

(11)

The exact solution of eq. (11) is V (γ) = γ
9
2 and

z(γ) =
9

2
γ4 − 1

20
γ

11
2 − 1

6
γ6.

Table 1 compares the absolute error obtained by FCM with obtained by
the collocation method (TC) [14]. We notice that the absolute error in the
proposed method is better than the other. In Figure 1, the results are displayed
at K = 8, 16, 32 and the convergence is exponential.
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Table 1: Comparison between absolute errors with different values of K
K FCM CM [14]
8 3.7× 10−7 2.65× 10−3

16 2.1× 10−7 1.39× 10−3

32 1.3× 10−6 7.09× 10−4

Figure 1: Graph of the error at K=8, 16 and 32

Example 6 Suppose that the following VIDE [15][16]
V´́(γ) = −V (γ) + z(γ)−

γ∫
0

y V (y) dy , γ ∈ [0, 1] .

V (́0) = 10.

(12)

The exact solution of equation (12) is V (γ) = 10− γe−γ and

z(γ) =
(
γ2 + 2γ + 1

)
e−γ + 5γ2 + 8.

In Table 2, there is a comparison between the absolute errors of the present
method with standard collocation method (SCM) and Chebyshev-Gauss- Lo-
batto collocation method (CGLCM) [15], finite difference method (FDM) and
homotopy analysis method (HAM) [16] at K = 12 and different values of γ. In
Figure 2, we illustrate the results of the present method at K = 8, 10, 12 and
16. The Figure shows that the convergence is exponential and the errors in this
method are the best especially when the values of K are large.
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Table 2: Maximum absolute errors with various values of K
γ FCM SCM [15] CGLCM [15] FDM [16] HAM [16]

0.0000 1.8× 10−15 0 0 0 0
0.0714 1× 10−13 1.7× 10−6 5.9× 10−6 2.9× 10−4 5.2× 10−7

0.1429 10× 10−14 1.9× 10−6 2.3× 10−5 3× 10−4 3× 10−7

0.2143 8.5× 10−14 1.8× 10−6 4.9× 10−5 5.4× 10−4 2.8× 10−6

0.2857 8.2× 10−14 1.6× 10−6 7.9× 10−5 5.1× 10−4 1.5× 10−5

0.3571 7.5× 10−14 1.5× 10−6 1.1× 10−4 7.2× 10−4 4.6× 10−5

0.4286 6.8× 10−14 1.3× 10−6 1.2× 10−4 6.5× 10−4 1.1× 10−4

0.5000 6.6× 10−14 1.1× 10−6 1.3× 10−4 8.2× 10−4 2.4× 10−4

0.5714 5.9× 10−14 8.4× 10−7 1× 10−4 7.4× 10−4 4.7× 10−4

0.6429 5.3× 10−14 6.2× 10−7 5.9× 10−5 8.6× 10−4 8.5× 10−4

0.7143 4.4× 10−14 5× 10−7 4.5× 10−6 7.7× 10−4 1.5× 10−3

0.7857 4.3× 10−14 4.3× 10−7 6.9× 10−5 8.6× 10−4 2.4× 10−3

0.8571 3.7× 10−14 3× 10−7 1× 10−4 7.7× 10−4 3.7× 10−3

0.9286 3.2× 10−14 1.4× 10−8 5.6× 10−5 8.2× 10−4 5.6× 10−4

1.0000 3.4× 10−14 4.1× 10−7 1.5× 10−4 7.3× 10−4 8.3× 10−4

Figure 2: Graph of the error at K=8, 10, 12 and 16

Example 7 Suppose that the following VIDE [15][16]
V´́(γ) = −V (γ) +

γ∫
0

e1−γ V (y) dy , γ ∈ [0, 1] .

V (́0) = 1.

(13)

The exact solution of equation (13) is V (γ) = e−γ cosh γ.
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Table 3 lists The numerical results obtained by the proposed method for
K = 16 and different values of γ. We observe the errors in this method are the
least for large values of K . The absolute errors of this method at K = 8, 10,
12, 16 are plotted in Figure 3. We observe from the Figure that the convergence
is exponential.

Table 3: Results of absolute errors for various values of K
γ FCM SCM [15] CGLCM [15] FDM [16] HAM [16]

0.0000 0 0 0 0 0
0.0833 4.1× 10−13 9.8× 10−6 4.6× 10−5 1.8× 10−2 1.9× 10−9

0.1667 3.7× 10−13 9.8× 10−6 7.6× 10−5 2.2× 10−3 3.1× 10−10

0.2500 3.4× 10−13 8.4× 10−6 7.5× 10−5 1.9× 10−3 1.1× 10−9

0.3333 3.4× 10−13 7.7× 10−6 4.1× 10−5 4.5× 10−3 8.4× 10−11

0.4167 3.3× 10−13 7.6× 10−6 2.1× 10−5 2.1× 10−2 2.7× 10−9

0.5000 3.1× 10−13 7.3× 10−6 8.8× 10−5 7.1× 10−3 3.1× 10−10

0.5833 3.1× 10−13 6.8× 10−6 1.3× 10−5 1.1× 10−2 1.2× 10−9

0.6667 3× 10−13 6.2× 10−7 1.2× 10−5 8.2× 10−3 5.6× 10−10

0.7500 2.9× 10−13 5.6× 10−7 3.5× 10−5 3.4× 10−3 1.3× 10−9

0.8333 2.9× 10−13 5.4× 10−7 8.8× 10−5 8.2× 10−3 6.8× 10−10

0.9167 2.8× 10−13 5.2× 10−7 1.3× 10−5 2.9× 10−3 5.2× 10−9

1.0000 2.6× 10−13 4.8× 10−7 1.6× 10−5 3.3× 10−3 9.5× 10−9

Figure 3: Graph of the absolute error at K=8, 10, 12 and 16
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Example 8 Suppose that the following VIDE
V´́(γ) = −γV (γ) + z(γ)−

γ∫
0

V (y) dy , γ ∈ [0, 1] .

V (́0) = 0.

(14)

The exact solution of equation (14) is V (γ) = sin γ and

z(γ) = 1 + γ sin γ.

In Table 4, the errors of this method are displayed at K = 8, 10, 12 and 16.
The absolute errors in the proposed method are very small for large values K.
The errors are plotted in Figure 4. It is clear from the Figure that the absolute
errors decrease drastically with increasing the number of steps.

Table 4: Comparison between the absolute errors with various values of
K

K FCM
8 1.9× 10−9

10 2.4× 10−12

12 3.4× 10−15

16 4.6× 10−14

Figure 4: Graph of the error at K=8, 10, 12 and 16

Example 9 Suppose that the following VIDE
γ

1
2V´́(γ) = −γV (γ) + z(γ)−

γ∫
0

V (y) dy , γ ∈ [0, 1] .

V (́0) = 0.

(15)
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The exact solution of equation (15) is V (γ) = sin γ and

z(γ) = 1− cos γ +
√
γ cos γ + γ sin γ.

Table 5 presents the absolute error for the studied method with various
values of K then displayed them in Figure 5. It is clear from the Figure that
the absolute errors decrease drastically with increasing the number of steps.

Table 5: The absolute errors at different values of K
K FCM
8 1.8× 10−9

10 2.3× 10−12

12 2× 10−15

16 8.1× 10−14

Figure 5: Graph of the error at K=8, 10, 12 and 16

6 Conclusion

The numerical solution of Volterra integro-differential equations is the aim of
this article. We use the collocation method based on the operational matrix of
Fermat polynomials. Then transform the VIDEs for five examples to a system
of linear algebraic equations that are solved by Mathematica software and the
errors are evaluated. The spectral results, that are obtained, point that this
algorithm is high adequacy, viable, easy in applications. The convergence and
error analysis are discussed minutely. This method can solve different types of
differential, integral and integro-differential equations.
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