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1. Introduction

In recent years, the tools of fractional calculus have been available and applicable to various

fields of study, much attention has been paid to study fractional differential equation initial

value questions, such as hydromechanics, network traffic, soliton and chaos etc. Especially,

the differential equations involving Riemann-Liouville fractional differential equation of order

0 < α < 1 obtained many well-know result, see [2-6].

Many authors obtained their results under the assumption that f(t, y) satisfy Lipschitz

condition about y. Monotone iterative method is a powerful tool for differential equation, such

as [2-3], and [6].

In this paper, we will use fixed point Theorems to study the existence and uniqueness of so-

lution of following initial value problem about Riemann-Liouville fractional differential operator

of order 0 < α < 1. Using the technique of upper and lower solutions and monotone iterative

method establish an existence result{
Dαu(t) = f(t, u(t), I1−βu(t)), 0 < t ≤ T,
t1−αu(t) |t=0= u0,

(1.1)

there f ∈ C([0, T ] × R × R,R), 0 < α, β < 1 is real number, 0 < T < ∞, Dα is criterion

Riemann-Liouville fractional differential operator.
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2. Preliminaries

In this section, we recall the definition and some concepts on fractional integrals and deriva-

tives, and give some lemma which are useful in next section.

The Riemann-Liouville fractional integral of order α is defined as

Iαy(t) =
1

Γ(α)

∫ t

0
(t− s)α−1y(s)ds,

Riemann-Liouville derivative of order α is defined by

Dαy(t) =
1

Γ(n− α)
(
d

dt
)n

∫ t

0

y(s)

(t− s)α−n+1
ds,

where n = [α] + 1.

When 0 < α < 1, the definition of Riemann-Liouville derivative turn into

Dαy(t) =
1

Γ(1− α)

d

dt

∫ t

0

y(s)

(t− s)α
ds.

Obviously, Dαy(t) = d
dtI

1−αy(t).

Let 0 < α < 1, the space Lα(a, b) = {u ∈ L1(a, b) : Dαu ∈ L1(a, b)}. Here L1(a, b) is the

space of summable functions in a finite interval [a, b].

Theorem 2.1 ([1]) Let 0 < α < 1. Assume f(x) ∈ C(R+) ∩ L1
loc(R

+). Then for all (a, b) ∈
R+ ×R , f(x) ∈ C(R+) ∩ L1

loc(R
+), Cauchy question{

Dαy(x) = f(x),

y(a) = b,

has a unique solution in C(R+) ∩ L1
loc(R

+) given by

y(x) = (b− 1

Γ(α)

∫ a

0
(a− t)α−1f(t)dt)

xα−1

aα−1
+

1

Γ(α)

∫ x

0
(x− t)α−1f(t)dt. (2.1)

Theorem 2.2 ([1]) Assume 0 < α < 1. Let c ∈ R and let g(x) ∈ L1(a, b). If a(x) ∈ L∞(a, b)

or a(x) is bounded on [a, b], they the Cauchy type question (Dαy)(x) = a(x)y(x) + g(x),

lim
x→0+

x1−αy(x) = c,
(2.2)

has a unique solution y(x) in the space Lα(a, b).

Lemma 2.1 ([1]) Let 0 < α < 1 and let y(x) be a Lebesgue measurable function on [0, T ],

(1)if

lim
x→0+

x1−αy(x) = a, a ∈ R
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then

I1−αy(0+) = lim
x→0+

I1−αy(x) = aΓ(α).

(2)if

lim
x→0+

I1−αy(x) = b, b ∈ R

hold, and if there exists the limit lim
x→0+

x1−αy(x), then

lim
x→0+

x1−αy(x) =
b

Γ(α)
.

Lemma 2.2 ([1]) If f(x) ∈ L1(a, b) and 0 < α < 1, then

IαDαf(x) = f(x)− f1−α(a)

Γ(α)
(x− a)α−1

holds almost everywhere on (a, b), where f1−α(x) = I1−α(x).

Lemma 2.3 ([1]) If α > 0 and β > 0, then the equation

IαIβf(x) = Iα+βf(x)

is satisfied at almost every point x ∈ [a, b] for f(x) ∈ Lp[a, b](p ≥ 1). If α + β > 1, then the

relation hold at any point of [a, b].

3. Main results

Let 0 < α < 1, C1−α(J,R) = {u ∈ C((0, T ], R) : t1−αu ∈ C([0, T ], R)}. It is obviously that

C1−α(J,R) is a Banach space. For u ∈ C1−α(J,R), we define the norm

‖u‖C1−α(J,R) = max
t∈[0,T ]

t1−α|u(t)|.

Theorem 3.1. Let 0 < α ≤ 1
2 , 0 < β < 1 satisfy 2α − β > 0. Assume f ∈ C(J × R × R,R)

such that

(H1): exist nonnegative constants K, L satisfy

γ :=
TαΓ(α)

Γ(1 + 2α− β)
[K + LT 1−β] < 1,

and

|f(t, x1, y1)− f(t, x2, y2)| ≤ K|x1 − x2|+ L|y1 − y2|.

(H2): f(t, 0, 0) 6= 0 on t ∈ (0, T ], and

0 < r0 := sup
t∈[0,T ]

(|u0|+
t1−α

Γ(α)

∫ t

0
(t− s)α−1|f(s, 0, 0)|ds) <∞.
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holds, then initial value question (1.1) has a unique solution.

proof. Let 0 < α ≤ 1
2 , 0 < β < 1, λ is a constant, λ > 1

1−γ . Define a bounded closed

subset S of C1−α(J,R) given by

S = {u ∈ C1−α(J,R) : t1−α|u(t)| ≤ λr0}.

Define an operator A on S as follows

Au(t) = u0t
α−1 +

1

Γ(α)

∫ t

0
(t− s)α−1f(s, u(s), I1−βu(s))ds, t ∈ J. (3.1)

Consider question u = Au, we have to show that operator A has a fixed point, In order to

use Banach fixed point Theorem, need to prove A is a contraction mapping. For any u ∈ S,
since (H1), (H2) holds, we have

t1−α|Au(t)| ≤ |u0|+
t1−α

Γ(α)

∫ t

0
(t− s)α−1|f(s, u(s), I1−βu(s))|ds

≤ r0 +
t1−α

Γ(α)

∫ t

0
(t− s)α−1[|f(s, u(s), I1−βu(s))− f(s, 0, 0)|]ds

≤ r0 +
t1−α

Γ(α)

∫ t

0
(t− s)α−1[K|u(s)|+ L

Γ(1− β)

∫ s

0
(s− τ)−β|u(τ)|dτ ]ds

≤ r0 +
t1−α

Γ(α)

∫ t

0
(t− s)α−1[Ksα−1λr0 +

Lλr0

Γ(1− β)

∫ s

0
(s− τ)−βτα−1dτ ]ds

< r0 +
λr0Γ(α)Tα

Γ(1 + 2α− β)
[K + LT 1−β]

< (1 + λγ)r0 < λr0, t ∈ J,

which yields that AS ⊂ S.
Nextly, we show that operator A is contraction operator.

For any u, v ∈ S, using condition (H2), we get

‖Au−Av‖C1−α(J,R) ≤
1

Γ(α)
max
t∈J

t1−α
∫ t

0
(t− s)α−1|f(s, u(s), I1−βu(s))− f(s, v(s), I1−βv(s))|ds

≤ 1

Γ(α)
max
t∈J

t1−α
∫ t

0
(t− s)α−1[K|u(s)− v(s)|

+
L

Γ(1− β)

∫ s

0
(s− τ)−β|u(τ)− v(τ)|dτ ]ds

≤ 1

Γ(α)
‖u− v‖C1−α max

t∈J
t1−α

∫ t

0
(t− s)α−1[Ksα−1

+
L

Γ(1− β)

∫ s

0
(s− τ)−βτα−1dτ ]ds

=
1

Γ(α)
‖u− v‖C1−α max

t∈J
t1−α

∫ t

0
(t− s)α−1[Ksα−1 +

LΓ(α)

Γ(1 + α− β)
sα−β]ds
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≤ [
KTαΓ(α)

Γ(2α)
+
LT 1+α−βΓ(α)

Γ(1 + 2α− β)
]‖u− v‖C1−α .

Since 0 < α ≤ 1
2 , 0 < β < 1 and 2α − β > 0, we have Γ(α) > Γ(2α) > Γ(1 + 2α − β).

Combining the above argument, it is clearly that

‖Au−Av‖C1−α ≤ γ‖u− v‖C1−α . (3.2)

Hence, A is a contraction operator. Apply the Banach fixed point Theorem, it is easy to see

that A has a unique fixed point in S. Thus, we complete this proof. �

Remark 1. When 1
2 < α < 1, 0 < β < 1, and the condition (H1), (H2) holds, by using

the similar method as in the proof of Theorem 3.1, question (1,1) have a unique solution too.

For u ∈ Lp, we define the norm ‖u‖p = (
∫ T

0 |u(t)|pdt)
1
p , 1 ≤ p < ∞. In (1.1), assume

f(x, y, z) = g(z), g is a function about I1−βu(t). Then we consider Cauchy question{
Dαu(t) = g(I1−βu(t)), 0 < t ≤ T,
t1−αu(t) |t=0= u0,

(3.3)

Theorem 3.2. Let 0 < α, β < 1. Assume g ∈ C(R) ∩ Lp(R), there p ∈ (1, 1
α) is a constant.

Then the Cauchy question (3.3) has a unique solution.

proof. Let 0 < α < 1, define a set B as follows

B = {u ∈ t1−αC(J,R) : t1−αu(t)→ u0(t→ 0+)},

It is obvious that B is a Banach space.

Define the operator T on B by

(T u)(t) = u0t
α−1 +

1

Γ(α)

∫ t

0
(t− s)α−1g(I1−βu(s))ds, t ∈ J, (3.4)

by the boundedness of fractional integration operator Iα, for each u ∈ B, as t→ 0+, we have

t1−α(T u)(t) = u0 +
t1−α

Γ(α)

∫ t

0
(t− s)α−1g(I1−βu(s))ds→ u0,

which yields that T B ⊂ B.
Then we consider question u = T u. In order to use Schauder’s fixed point Theorem, we must

prove T is a continuous and compact operator.

For given ε > 0, any un, u0 ∈ B,n = 1, 2, . . . with un → u0(n→∞). Let q is a constant such

that 1
p + 1

q = 1 + α, we have

|(T un)(t)− (T u0)(t)| ≤ 1

Γ(α)

∫ t

0
(t− s)α−1|g(I1−βun)− g(I1−βu0)|ds
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≤ 1

Γ(α)
(

∫ t

0
|(t− s)α−1|qds)

1
q (

∫ t

0
|g(I1−βun)− g(I1−βu0)|pds)

1
p

≤ 1

Γ(α)
(

1

q(α− 1) + 1
)
1
q

T 1+α−β

(1− β)Γ(1− β)
‖g‖Lp sup

t∈J
|un(t)− u0(t)|

→ 0,

as n→∞. Which implies that T is continuous for t ∈ J.
Secondly, we prove that operator T is equicontinuous on J.

Let t1, t2 ∈ J, t1 < t2. Consider the function f(x) = (t1 − x)α−1 − (t2 − x)α−1, x ∈ [0, t1],

for any 1 ≤ p < ∞, exist constant C1 such that ‖f‖Lp ≤ C1‖f‖L1 . C2 = ( 1
q(α−1)+1)

1
q , M =

(
∫ T

0 |g(I1−βu(s))|pds)
1
p are constants. For given ε > 0, we take

δ = min{T, [
εΓ(α+ 1)

M(C1 + C2) + 2α|u0|
]
1
α }.

Then, when |t1 − t2| < δ, for each u ∈ B, we have

|(T u)(t1)− (T u)(t2)| ≤ 1

Γ(α)
|
∫ t1

0
(t1 − s)α−1g(I1−βu(s))ds−

∫ t2

0
(t2 − s)α−1g(I1−βu(s))ds|

+|u0||tα−1
1 − tα−1

2 |

≤ 1

Γ(α)
|
∫ t1

0
[(t1 − s)α−1 − (t2 − s)α−1]g(I1−βu(s))ds|

+
1

Γ(α)

∫ t2

t1

(t2 − s)α−1|g(I1−βu(s))|ds+ |u0||tα−1
1 − tα−1

2 |

≤ 1

Γ(α)
(

∫ t1

0
[(t1 − s)α−1 − (t2 − s)α−1]qds)

1
q (

∫ t1

0
|g(I1−βu(s))|pds)

1
p

+
1

Γ(α)
(

∫ t2

t1

[(t2 − s)α−1]qds)
1
q (

∫ t2

t1

|g(I1−βu(s))|pds)
1
p

+2α|u0||t1 − t2|α

≤ C1

αΓ(α)
[(t2 − t1)α − (tα2 − tα1 )](

∫ T

0
|g(I1−βu(s))|pds)

1
p

+
C2

Γ(α)
(t2 − t1)

q(α−1)+1
q (

∫ T

0
|g(I1−βu(s))|pds)

1
p + 2α|u0||t1 − t2|α

<
M

Γ(α)
[
C1

α
+ C2]|t2 − t1|α + 2α|u0||t1 − t2|α,

because q > 1, δ > 0, then δα ≥ δ
q(α−1)+1

q . Consequently, we obtain that

|(T u)(t1)− (T u)(t2)| < ε. (3.5)

We see that the operator T : B → B is equicontinuous on J, by Arzela-Ascoli’s Theorem, T
is a compact operator. Schauder’s fixed point theorem guarantees operator T has a fixed point.

Hence Cauchy question (3.3) has a unique solution. This proof is completed. �
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The following is an existence of solution of the Cauchy question for fractional differential

equation use the monotone iterative method, we must introduce the upper and lower solution.

Definition 3.1. A function u∗ ∈ C1−α(J,R) is called a upper solution of Cauchy problem

(1.1), if it satisfies {
Dαu∗(t) ≥ f(t, u∗(t), I1−βu∗(t)), 0 < t ≤ T,
t1−αu∗(t) |t=0≥ u0.

(3.6)

And a function u∗ ∈ C1−α(J,R) is called a lower solution of Cauchy problem (1.1), if it

satisfies {
Dαu∗(t) ≤ f(t, u∗(t), I

1−βu∗(t)), 0 < t ≤ T,
t1−αu∗(t) |t=0≤ u0.

(3.7)

(H3): A function a(t) ∈ Lα(J,R), and if a(t) ≤ 0, there exist a nondecreasing function a(t) ∈
L1−β(J,R) such that −a(t) ≤ a(t) and

3(T + 1− α)

T 3−βΓ2(α)
max
t∈(0,T ]

∫ t

0
(t− s)−βa(s)ds < 1. (3.8)

Lemma 3.1. Assume that u∗, w∗ ∈ C1−α(J,R) are locally Hölder continuous and satisfy the

non-strict inequalities (3.6) and (3.7), f ∈ C(J ×R×R,R). Suppose further that

f(t, x1, y1)− f(t, x2, y2) ≤ a(t)(x2 − x1), (3.9)

and a(t) ∈ Lα(J,R) satisfy condition (H3). Then u∗(0) ≥ w∗(0) implies that u(t) ≥ w(t).

Lemma 3.2. Let 0 < α, β < 1 and a(t) satisfy (H3), if w ∈ C1−α([0, T ]) satisfies the problem{
Dαw(t) ≥ −a(t)w(t), 0 < t ≤ T,
t1−αw(t) |t=0≥ 0.

(3.10)

Then w(t) ≥ 0 for t ∈ (0, T ].

Proof. If the assertion is false, similar to the proof of Lemma 2.1 in [2], we assume w(t) <

0, t ∈ (0, T ], because t1−αw(t) |t=0≥ 0 and w ∈ C1−α([0, T ]), so exist interval [t0, t1] ⊆ (0, T ]

such that w(t) < 0, t ∈ (t0, t1] and w(t0) = 0; assume that t∗ ∈ (t0, t1] is the first minimal point

of w(t) on (t0, t1]. Therefore, there will be

w(t∗) < 0. (3.11)

Firstly, let a(t) > 0, t ∈ (0, T ]. From (3.10), we have

Dαw(t) ≥ 0, t ∈ (t0, t1]

hence

Dαw(t∗) ≥ 0,
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Apply the definition of Riemann-Liouville fractional derivative, we can obtain that

1

Γ(1− α)
w(t∗)t

−α
0 > Dαw(t∗) ≥ 0.

Thus

w(t∗) > 0.

It contradicts relation (3.11), so we obtain the result when a(t) > 0.

Secondly, if a(t) ≤ 0, nondecreasing function a(t) ∈ L1(J,R) such that −a(t) ≤ a(t), by

the monotone of Riemann-Liouville fractional integral operator Iα and I1−β, use the fractional

integral operator Iα to the both sides of (3.10), we have

w(t)− [t1−αw(t)|t=0]tα−1 ≥ −Iα[a(t)w(t)], t ∈ (0, T ],

because t1−αw(t) |t=0≥ 0 and by the assertion of t∗, we can obtain that

w(t∗) ≥ −Iα[a(t∗)w(t∗)].

Thus

w(t∗) + Iα[a(t∗)w(t∗)] = w(t∗) +
1

Γ(α)

∫ t∗

0
(t∗ − s)α−1a(s)w(s)ds

=
1

Γ(α)

∫ t∗

0
[Γ(α)t∗w(t∗) + (t∗ − s)α−1a(s)w(s)]ds

≥ 0,

Note that w ∈ C1−α([0, T ]), so at least exist a set E1 ⊆ [0, t∗], µ(E1) > ε > 0 such that

Γ(α)t∗w(t∗) + (t∗ − s)α−1a(s)w(s) ≥ 0, s ∈ E1,

there µ is Lebesgue measure. And so

Γ(α)t∗w(t∗) + (t∗ − t)α−1a(t)w(t∗) > 0, t ∈ E1,

by assuming that w(t∗) < 0, we have

Γ(α)t∗ + (t∗ − t)α−1a(t) < 0,

using the condition (H3)

a(t) > Γ(α)t∗(t∗ − t)1−α,

because a(s) is nondecreasing function, so a(t) ≤ a(t∗).

Taking into account that t < t∗ when t ∈ E1, we have

a(t∗) > Γ(α)t∗(t∗ − t)1−α

> Γ(α)t∗
t∗ − t

t∗ − t+ 1− α
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≥ Γ(α)t∗
t∗ − t

µ(E1) + 1− α
, t ∈ E1.

Since t < t∗, t ∈ E1, we can select a function σ(t), 0 ≤ σ(t) ≤ 1, t ∈ E1 such that t = σ(t)t∗,

therefore, the above inequality can be written as

a(t∗) > Γ(α)
(1− σ(t))t2∗
µ(E1) + 1− α

, t ∈ E1. (3.12)

Apply fractional integral I1−β to the both sides of (3.12), we obtain

I1−βa(t∗) > I1−βΓ(α)
(1− σ(t))t2∗
µ(E1) + 1− α

=
(1− σ(t))Γ(α)

(µ(E1) + 1− α)Γ(1− β)

∫ t∗

0
(t∗ − s)−βs2ds

=
(1− σ(t))Γ(α)Γ(3)

(µ(E1) + 1− α)Γ(4− β)
t3−β∗

>
(1− σ(t))Γ(α)

3(µ(E1) + 1− α)Γ(1− β)
t3−β∗

≥ (1− σ(t))Γ(α)

3(µ(E1) + 1− α)Γ(1− β)
µ(E1)3−β,

that is ∫ t∗

0
(t∗ − s)−βa(s)ds >

(1− σ(t))Γ(α)

3(µ(E1) + 1− α)
µ(E1)3−β.

by inequality (3.8), we can obtain that

(1− σ(t))Γ(α)

µ(E1) + 1− α
µ(E1)3−β <

Γ2(α)T 3−β

T + 1− α
, t ∈ E1. (3.13)

Consider the inequality about x

(T + 1− α)(1− σ(t))x3−β − Γ(α)T 3−βx− (1− α)Γ(α)T 3−β < 0, (3.14)

since 2 < 3 − β < 3, it is obviously that inequality (3.14) has no positive solution, thus when

µ(E1) > ε > 0, inequality (3.13) is false. It is a contradiction, we complete this proof. �

Remark 2. In Lemma 3.3, a(t) ∈ Lα(J,R) and satisfy condition (H3), in case a(t) < 0, t ∈ J,
assume there exists a constant M such that −a(t) ≤M, t ∈ J. Then, the inequality (3.8) become

M < (1−β)T 2Γ2(α)
3(T+1−α) .

Theorem 3.3. Assume that u∗, u∗ ∈ C1−α(J,R) are upper and lower solutions of Cauchy ques-

tion (1,1), and satisfy u∗ ≥ u∗, t1−αu∗(t) |t=0≥ t1−αu∗(t) |t=0 . In addition, f ∈ C(J ×R×R,R)

satisfy Lemma 3.1 and condition (H3).

Then Cauchy question (1,1) has a maximal solution and a minimal solution.
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Proof. Let Ω = {x ∈ C1−α(J,R) : u∗ ≤ x ≤ u∗}. For any x ∈ Ω, consider the boundary

value problems {
Dαu(t) = f(t, x(t), I1−βx(t))− a(t)[u(t)− x(t)], t ∈ (0, T ],

t1−αu(t) |t=0= u0,
(3.15)

By Theorem 2.2 and condition (H3), for every x, boundary value problem (3,15) exists a unique

solution.

Define operator N by

Nu(t) = u0t
α−1 +

1

Γ(α)

∫ t

0
(t− s)α−1Fu(s)ds,

where F is defined by Fu(s) = f(s, x(s), I1−βx(s))−a(s)[u(s)−x(s)], s ∈ J, obviously operator

N is continuous in view of continuity of F . Then the solution initial value problem (3.15) is a

fixed point of operator N .
Define the operator B : Ω→ C1−α(J,R) by

Bx = u, x ∈ Ω.

B is a continuous operator. In fact, operator B is equicontinuous on J.

We will use operator B to construct the sequences {un}, {vn}. Firstly, we prove B is a

monotone operator in Ω, let u1(t), u2(t) ∈ C1−α(J,R), u1(t) ≤ u2(t). Suppose that ui = Bxi, (i =

1, 2), set µ = u1 − u2. Then

Dαµ = Dαu1 −Dαu2

= f(t, x1, I
1−βx1)− a(t)[u1 − x1]− f(t, x2, I

1−βx2) + a(t)[u2 − x2]

≤ a(t)[x2 − x1]− a(t)[u1 − x1] + a(t)[u2 − x2]

= −a(t)µ,

and t1−αµ(t)|t=0 = 0.

This conclusion and Lemma 3.2 implies that Bx1 ≤ Bx2, t ∈ J, so B is monotone operator.

Secondly, we prove u∗ ≤ Bu∗ and u∗ ≥ Bu∗, set Bu∗ = u1, u1 is s unique solution of question

(3.15) with x = u∗, put ν = u∗ − u1. Then

Dαν = Dαu∗ −Dαu1

≤ f(t, u∗, I
1−βu∗)− [f(t, u∗, I

1−βu∗)− a(t)(u1 − u∗)]

= −a(t)ν,

and t1−α(u∗(t)− u1(t))|t=0 ≤ 0.

This shows that ν(t) ≤ 0, t ∈ J, which implies that u∗ ≤ Bu∗. One can show similarly,

u∗ ≥ Bu∗. Hence operator B : Ω→ Ω.
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Let u0 = u∗, v0 = u∗. We define the sequences {un}, {vn} on J by

un = Bun−1, vn = Bvn−1, n = 1, 2, · · ·.

Combining the above argument, we can obtain

u∗ = u0 ≤ u1 ≤ · · · ≤ un ≤ vn ≤ · · · ≤ v1 ≤ v0 = u∗. (3.16)

We see that the sequence {un} is monotone nondecreasing and is bounded sequences on

J, the sequence {vn} is monotone nonincreasing and is bounded sequence on J. In fact, the

monotone of operator B implies that B−1
exist, and B−1 : C1−α(J,R)→ Ω by

x = B−1u.

As a result

‖x‖∞ = ‖B−1u‖∞ ≤ ‖B−1‖‖u‖∞.

Consequently, B is a monotone bounded operator. Furthermore, since u ∈ Ω, I1−βu ∈ [−c, c],
there c = T 1−β

(1−β)Γ(1−β) max{‖u∗‖, ‖u∗‖}, thus exists a positive constant N such that

max
s∈J
|Fu(s)| ≤ N.

Then we prove equicontinuity of operator B on J. For given ε > 0, take

δ0 = min{T, [
εΓ(α+ 1)

2(N + |u0|)
]
1
α }.

Let t1, t2 ∈ J, t1 < t2. For each x ∈ Ω, when |t1 − t2| < δ0, we see that

|Bx(t1)− Bx(t2)| ≤ 1

Γ(α)
|
∫ t1

0
(t1 − s)α−1Fu(s)ds−

∫ t2

0
(t2 − s)α−1Fu(s)ds|+ |u0||t

α−1

1 − tα−1
2 |

≤ N

Γ(α)
|
∫ t1

0
[(t1 − s)α−1 − (t2 − s)

α−1
]ds|+ |u0||t

α−1

1 − tα−1
2 |

+
N

Γ(α)
|
∫ t2

t1

(t2 − s)
α−1

ds|

≤ 2N

Γ(α+ 1)
|t1 − t2|α + |u0|2α|t1 − t2|α

<
2(N + Γ(α+ 1)|u0|)

Γ(α+ 1)
|t1 − t2|α < ε.

Hence, operator B is equicontinuous on J.

Therefore, sequences {un}, {vn} exists subsequences {unk}, {vnk} uniformly converge on J,

assume unk → λ(k →∞), vnk → κ(k →∞), λ ≤ κ. It is easy to show that λ, κ are solutions of

initial value questions (1.1), by (3.15), we have{
Dαλ(t) = f(t, λ(t), I1−βλ(t))− a(t)[λ(t)− λ(t)], t ∈ (0, T ],

t1−αλ(t) |t=0= u0,
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and {
Dακ(t) = f(t, κ(t), I1−βκ(t))− a(t)[κ(t)− κ(t)], t ∈ (0, T ],

t1−ακ(t) |t=0= u0,

Then we prove λ, κ is minimal solution and maximal solution of (1.1). Let θ ∈ C1−α(J,R)

is any solution of question (1.1) such that u∗ ≤ θ ≤ u∗, 0 < t ≤ T, we have to prove that

λ ≤ θ ≤ κ, 0 < t ≤ T. In fact, by (3.15), (3.16), we know that at least exist a k such that

uk ≤ θ ≤ vk, 0 < t ≤ T, set p = uk+n − θ. Then

Dαp(t) = Dαuk+n(t)−Dαθ(t)

= [f(t, uk+n−1(t), I1−βuk+n−1(t))− a(t)(uk+n(t)− uk+n−1(t))]− f(t, θ(t), I1−βθ(t))

≤ a(t)(θ(t)− uk+n−1(t))− a(t)(uk+n(t)− uk+n−1(t))

= −a(t)p(t),

and t1−α(uk+n(t)− θ(t))|t=0 = 0.

Which implies that uk+n ≤ θ, 0 < t ≤ T, this prove by induction for all n. Taking limit as

n→∞, we conclude that λ ≤ θ. Similarly, we can prove that θ ≤ κ, 0 < t ≤ T. Combining the

above argument, we can obtain λ ≤ θ ≤ κ, 0 < t ≤ T. The proof is completed. �

Corollary 3.1. In Theorem 3.3, if a(t) ∈ C([0, T ], [0,∞)) such that

f(t, x1, y1)− f(t, x2, y2) ≤ a(t)|x2 − x1|,

u∗, u∗ ∈ C1−α([0, T ]) are upper and lower solutions of initial value question (1.1), then λ = θ = κ

is a unique solution of (1.1).

Proof. Assume θ ≤ κ, then κ− θ = s ≥ 0, we consider Dαs,

Dαs = f(t, κ, I1−βκ)− f(t, θ, I1−βθ) ≤ a(t)|κ− θ|,

and t1−αs(t)|t=0 = 0. This implies by Lemma 3.2 that s ≤ 0 on [0, T ]. Thus λ = θ = κ is the

unique solution of (1.1).
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