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ABSTRACT: In this paper, we mainly study the existence of solution of fractional differential

equations. Firstly, the existence of the maxmum solution and minmum solution of the differential

equation are proved by using the fixed point theorem and the monotone iteration method.

Secondly, the existence of the solution of the original equation is proved by using the newly

constructed differential equation. Finally, the application of the monotone iteration method is

given through an example.
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1. INTRODUCTION

In recent years, fractional differential equations have gained considerable importance duo to

their increasing applications in a variety of fields,1 such as hydromechanics, network traffic, Soli-

ton and chaos etc.2,3 Many people paid attention to fractional differential equation initial value

problems (see,e.g.,Lakshmikantham and Vatsala,4 Nirto and Rodriguez-Lopez,5). In particular,

the differential equations involving Riemann-Liouville fractional differential equation of order

0 < α < 1 obtained many well-know results.8−11,12−16 The fractional differential equation model

can describe phenomena that the general model cannot describe,17 and researcher use fractional

differential models to modeling anomalous behavior and memory effects.18,19

In this paper, we use fixed point Theorems to study the existence and uniqueness of solutions

of the following initial value problems about Riemann-Liouville fractional differential operator

of order 0 < α < 1. Using the technique of upper and lower solutions and monotone iterative

method, we establish an existence result for a Cauchy problem of the Riemann-Liouville type

fractional differential equations given by{
Dαu(t) = f(t, u(t), I1−βu(t)), 0 < t ≤ T,
t1−αu(t) |t=0= u0,

(1)
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where f ∈ C([0, T ]× R× R,R), 0 < T <∞, Dα is the Riemann-Liouville fractional differential

operator of order 0 < α < 1, I1−β is the Riemann-Liouville fractional integral operator of order

0 < 1− β < 1 .

The outline of this paper is as follows. In Section 2, we describe the necessary background

material related to our problems and prove an auxiliary lemma. Section 3 contains the main

results. Section 4 is a example to illustrate our result.

2. PRELIMINARIES

In this section, we recall the definitions and some concepts on fractional integrals and deriva-

tives, and give some lemmas which are useful in next sections.

The Riemann-Liouville fractional integral of order α is defined as

Iαy(t) =
1

Γ(α)

∫ t

0
(t− s)α−1y(s)ds,

Riemann-Liouville derivative of order α is defined by

Dαy(t) =
1

Γ(n− α)

(
d

dt

)n ∫ t

0

y(s)

(t− s)α−n+1
ds,

where n = [α] + 1. When 0 < α < 1, the definition of Riemann-Liouville derivative can be

written as

Dαy(t) =
1

Γ(1− α)

d

dt

∫ t

0

y(s)

(t− s)α
ds.

Obviously, Dαy(t) = d
dtI

1−αy(t).

Let 0 < α < 1, the space Lα(a, b) = {u ∈ L1(a, b) : Dαu ∈ L1(a, b)}. Here L1(a, b) is the

space of summable functions on finite interval [a, b].

Lemma 2.110 Let 0 < α < 1. Assume that f : [0,∞) × X → X is continuous. Then the

Cauchy problem {
Dα

0+u(t) = f(t, u(t)), 0 < t <∞,
I1−α

0+ u(0) = u0,

is equivalent to the integral equation

u(t) = u0t
α−1 +

1

Γ(α)

∫ t

0
(t− x)α−1f(x, u(x))dx, t > 0. (2)

provided the right side is point wise defined on (0,∞).

Lemma 2.21 Assume that 0 < α < 1. Let c ∈ R and let g(x) ∈ L1(a, b). If a(x) ∈ L∞(a, b) or
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a(x) is bounded on [a, b], then the Cauchy type problem (Dαy)(x) = a(x)y(x) + g(x),

lim
x→0+

x1−αy(x) = c,
(3)

has a unique solution y(x) in the space Lα(a, b).

Lemma 2.31 Let 0 < α < 1 and y(x) be a Lebesgue measurable function on [0, t],

(1)if lim
x→0+

x1−αy(x) = a, a ∈ R, then

I1−αy(0+) = lim
x→0+

I1−αy(x) = aΓ(α).

(2)if lim
x→0+

I1−αy(x) = b, b ∈ R holds, and if the limit lim
x→0+

x1−αy(x) exists, then

lim
x→0+

x1−αy(x) =
b

Γ(α)
.

3. MAIN RESULTS

Let 0 < α < 1, C1−α(J,R) = {u ∈ C((0, T ],R) : t1−αu ∈ C([0, T ],R)}. It is obvious that

C1−α(J,R) is a Banach space. For u ∈ C1−α(J,R), define the norm ‖u‖1 = max
t∈[0,T ]

t1−α|u(t)|.

Lp(J,R) is the Lp space with the norm ‖u‖p =

(∫ T
0 |u(t)|pdt

) 1
p

, 1 ≤ p < ∞. In (1), assume

f(x, y, z) = g(z), g is a function about I1−βu(t). We consider the Cauchy problem{
Dαu(t) = g(I1−βu(t)), 0 < t ≤ T,
t1−αu(t) |t=0= u0,

(4)

Theorem 3.1. Let 0 < α, β < 1. Assume that g ∈ C(J,R)∩Lp(J,R), p ∈ (1, 1
α) is a constant.

Then the Cauchy problem (4) has a unique solution.

proof. Let 0 < α < 1, define a set B as follows

B =

{
u ∈ t1−αC(J,R) : t1−αu(t)→ u0(t→ 0+)

}
,

It is obvious that B is a Banach space. Define the operator T on B by

(T u)(t) = u0t
α−1 +

1

Γ(α)

∫ t

0
(t− s)α−1g

(
I1−βu(s)

)
ds, t ∈ J, (5)

by the boundedness of fractional integration operator Iα, for each u ∈ B, as t→ 0+, we have

t1−α(T u)(t) = u0 +
t1−α

Γ(α)

∫ t

0
(t− s)α−1g

(
I1−βu(s)

)
ds→ u0,

which yields that T B ⊂ B. Then we consider the equation u = T u. In order to use Schauder’s

fixed point Theorem, we shall prove T is a continuous and compact operator. For given ε > 0,
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any un, u0 ∈ B,n = 1, 2, . . . with un → u0(n→∞). Let q is a constant such that 1
p + 1

q = 1 +α,

we have

|(T un)(t)− (T u0)(t)| ≤ 1

Γ(α)

∫ t

0
(t− s)α−1

∣∣∣∣g(I1−βun)− g(I1−βu0)

∣∣∣∣ds
≤ 1

Γ(α)

(∫ t

0
|(t− s)α−1|qds

) 1
q
(∫ t

0

∣∣∣∣g(I1−βun)− g(I1−βu0)

∣∣∣∣pds) 1
p

≤ 1

Γ(α)

(
1

q(α− 1) + 1

) 1
q T 1+α−β

(1− β)Γ(1− β)
‖g‖Lp sup

t∈J

∣∣un(t)− u0(t)
∣∣

→ 0(n→∞).

Which implies that T is continuous for t ∈ J.
Next, we prove that T is equicontinuous on J. Let t1, t2 ∈ J, t1 < t2. Consider the function

f(x) = (t1 − x)α−1 − (t2 − x)α−1, x ∈ [0, t1], we can obtain that ‖f‖L1 ≤ 1
Γ(α+1)(t2 − t1)α. For

given ε > 0, we take

δ = min

{
T,

(
εΓ(α+ 1)

2(‖u‖p + |u0|)

) 1
α
}
.

When |t1 − t2| < δ, for any u ∈ B. Applying the generalized Minkowski’s inequality

|(T u)(t1)− (T u)(t2)| ≤ 1

Γ(α)

∣∣∣∣ ∫ t1

0
(t1 − s)α−1g(I1−βu(s))ds−

∫ t2

0
(t2 − s)α−1g(I1−βu(s))ds

∣∣∣∣
+|u0||tα−1

1 − tα−1
2 |

≤ 1

Γ(α)

∣∣∣∣ ∫ t1

0
((t1 − s)α−1 − (t2 − s)α−1)g(I1−βu(s))ds

∣∣∣∣
+

1

Γ(α)

∫ t2

t1

(t2 − s)α−1|g(I1−βu(s))|ds+ |u0||tα−1
1 − tα−1

2 |

≤ 1

Γ(α)

∫ t1

0

∣∣∣∣(t1 − s)α−1 − (t2 − s)α−1

∣∣∣∣ds(∫ T

0
|g(I1−βu(s))|pds

) 1
p

+
1

Γ(α)

∫ t2−t1

0

∣∣∣∣(t2 − t1 − x)α−1

∣∣∣∣dx(∫ T

0
|g(I1−βu(s))|pds

) 1
p

+2α|u0||t1 − t2|α

≤ 2‖u‖p
Γ(α+ 1)

|t1 − t2|α + 2α|u0||t1 − t2|α < ε. (6)

We see that the operator T : B → B is equicontinuous on J, by Arzela-Ascoli’s Theorem, T
is a compact operator. And Schauder’s fixed point theorem guarantees that T has a fixed point.

Hence Cauchy problem (4) has a unique solution. This proof is completed.

Theorem 3.2. Let 0 < α ≤ 1
2 , 0 < β < 1 satisfy 2α − β > 0. Assume f ∈ C(J × R × R,R)

such that

(H1): exist nonnegative constants K, L satisfy

γ :=
TαΓ(α)

Γ(1 + 2α− β)

[
K + LT 1−β

]
< 1,
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and

|f(t, x1, y1)− f(t, x2, y2)| ≤ K|x1 − x2|+ L|y1 − y2|.

(H2): f(t, 0, 0) 6= 0 on t ∈ (0, T ], and

0 < r0 := sup
t∈[0,T ]

(
|u0|+

t1−α

Γ(α)

∫ t

0
(t− s)α−1|f(s, 0, 0)|ds

)
<∞,

hold. Then, the initial value problem (1) has a unique solution.

proof. Let 0 < α ≤ 1
2 , 0 < β < 1, λ is a constant, λ > 1

1−γ . Define a bounded closed

subset S of C1−α(J,R) given by

S =

{
u ∈ C1−α(J,R) : t1−α|u(t)| ≤ λr0

}
.

Define an operator A on S as follows

Au(t) = u0t
α−1 +

1

Γ(α)

∫ t

0
(t− s)α−1f(s, u(s), I1−βu(s))ds, t ∈ J. (7)

Consider equation u = Au. In order to use Banach fixed point Theorem, we need to prove

A is a contraction mapping. For any u ∈ S, since (H1), (H2) hold, we have

t1−α|Au(t)| ≤ |u0|+
t1−α

Γ(α)

∫ t

0
(t− s)α−1

∣∣∣∣f(s, u(s), I1−βu(s))

∣∣∣∣ds
≤ r0 +

t1−α

Γ(α)

∫ t

0
(t− s)α−1

(∣∣f(s, u(s), I1−βu(s))− f(s, 0, 0)
∣∣)ds

≤ r0 +
t1−α

Γ(α)

∫ t

0
(t− s)α−1

(
Ksα−1λr0 +

Lλr0

Γ(1− β)

∫ s

0
(s− τ)−βτα−1dτ

)
ds

< r0 +
λr0Γ(α)Tα

Γ(1 + 2α− β)

[
K + LT 1−β

]
< (1 + λγ)r0 < λr0, t ∈ J,

which yields that AS ⊂ S. Next, it will be shown that operator A is a contraction operator. For

any u, v ∈ S, by condition (H2), we obtain

‖Au−Av‖1 ≤
1

Γ(α)
max
t∈J

t1−α
∫ t

0
(t− s)α−1

∣∣∣∣f(s, u(s), I1−βu(s))− f(s, v(s), I1−βv(s))

∣∣∣∣ds
≤ 1

Γ(α)
max
t∈J

t1−α
∫ t

0
(t− s)α−1

(
K
∣∣u(s)− v(s)

∣∣
+

L

Γ(1− β)

∫ s

0
(s− τ)−β

∣∣u(τ)− v(τ)
∣∣dτ)ds

≤ 1

Γ(α)
‖u− v‖1 max

t∈J
t1−α

∫ t

0
(t− s)α−1

(
Ksα−1 +

LΓ(α)

Γ(1 + α− β)
sα−β

)
ds

≤
[
KTαΓ(α)

Γ(2α)
+
LT 1+α−βΓ(α)

Γ(1 + 2α− β)

]
‖u− v‖1.
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Since 0 < α ≤ 1
2 , 0 < β < 1 and 2α−β > 0, we have Γ(α) > Γ(2α) > Γ(1 + 2α−β). Combining

the above argument, it is clear that

‖Au−Av‖1 ≤ γ‖u− v‖1. (8)

Therefore, A is a contraction operator. Applying the Banach fixed point Theorem, it is easy to

see that A has a unique fixed point in S. Thus, we complete this proof.

When 1
2 < α < 1, 0 < β < 1, and the condition (H1), (H2) hold, by using the similar method as

in the proof of Theorem 3.1, problem (1) has a unique solution too. Next, the existence result of

Cauchy problem (1) needs to use monotonic iterative method. For this reason, we first introduce

the concept of upper and lower solutions, and then prove an important inequality.

Definition 3.1. Let u∗, u∗ ∈ C1−α(J,R), if{
Dαu∗(s) ≥ f(s, u∗(s), I1−βu∗(s)), 0 < s ≤ T,
s1−αu∗(s) |s=0≥ u0.

(9)

we say u∗ is a upper solution of Cauchy problem (1), and u∗ is a lower solution of Cauchy

problem (1), if {
Dαu∗(s) ≤ f(s, u∗(s), I

1−βu∗(s)), 0 < s ≤ T,
s1−αu∗(s) |s=0≤ u0.

(10)

(H3): A function a(t) ∈ Lα(J,R), and if a(t) ≤ 0, there exists a nondecreasing function a(t) ∈
L1−β(J,R) such that −a(t) ≤ a(t) and

3(T + 1− α)

T 3−βΓ2(α)
max
t∈(0,T ]

∫ t

0
(t− s)−βa(s)ds < 1. (11)

Lemma 3.1. Assume that u∗, w∗ ∈ C1−α(J,R) are locally Hölder continuous and satisfy the

non-strict inequalities (9) and (10), f ∈ C(J × R× R,R). Suppose further that

f(t, x1, y1)− f(t, x2, y2) ≤ a(t)(x2 − x1), (12)

and a(t) ∈ Lα(J,R) satisfy condition (H3). Then u∗(0) ≥ w∗(0) implies that u(t) ≥ w(t).

Lemma 3.2. Let 0 < α, β < 1 and a(t) satisfy (H3), assume w ∈ C1−α([0, T ]), and satis-

fies the problem {
Dαw(t) ≥ −a(t)w(t), 0 < t ≤ T,
t1−αw(t) |t=0≥ 0.

(13)

Then we have

w(t) ≥ 0, 0 < t ≤ T.

Proof. If the assertion is false, we assume that w(t) < 0, t ∈ (0, T ], because t1−αw(t) |t=0≥ 0
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and w ∈ C1−α([0, T ]), so exists interval [t0, t1] ⊆ (0, T ] such that w(t) < 0, t ∈ (t0, t1] and

w(t0) = 0; Assume that t∗ ∈ (t0, t1] is the first minimal point of w(t) on (t0, t1]. Therefore, there

will be

w(t∗) < 0. (14)

First, let a(t) > 0, t ∈ (0, T ]. From (13), we have Dαw(t) ≥ 0, t ∈ (t0, t1], hence

Dαw(t∗) ≥ 0.

From the definition of Riemann-Liouville fractional derivative, we can get

1

Γ(1− α)
w(t∗)t

−α
0 > Dαw(t∗) ≥ 0.

Thus w(t∗) > 0. It contradicts relation (14), so we obtain the result when a(t) > 0.

Next, if a(t) ≤ 0, nondecreasing function a(t) ∈ L1(J,R) such that −a(t) ≤ a(t), by the

monotone of Riemann-Liouville fractional integral operator Iα and I1−β, we apply the fractional

integral operator Iα on the both sides of (13),

w(t)− [t1−αw(t)|t=0]tα−1 ≥ −Iα[a(t)w(t)], t ∈ (0, T ],

because t1−αw(t) |t=0≥ 0 and by the assertion of t∗, we can obtain that

w(t∗) ≥ −Iα[a(t∗)w(t∗)].

Thus

w(t∗) + Iα[a(t∗)w(t∗)] = w(t∗) +
1

Γ(α)

∫ t∗

0
(t∗ − s)α−1a(s)w(s)ds

=
1

Γ(α)

∫ t∗

0

(
Γ(α)t∗w(t∗) + (t∗ − s)α−1a(s)w(s)

)
ds

≥ 0,

Note that w ∈ C1−α([0, T ]), so there is at least a set E1 ⊆ [0, t∗], µ(E1) > ε > 0 such that

Γ(α)t∗w(t∗) + (t∗ − s)α−1a(s)w(s) ≥ 0, s ∈ E1,

where µ is Lebesgue measure. Thus

Γ(α)t∗w(t∗) + (t∗ − t)α−1a(t)w(t∗) > 0, t ∈ E1,

by assuming that w(t∗) < 0, we have

Γ(α)t∗ + (t∗ − t)α−1a(t) < 0,

using the condition (H3)

a(t) > Γ(α)t∗(t∗ − t)1−α,

because a(s) is a nondecreasing function, so a(t) ≤ a(t∗). Taking into account that t < t∗ when

t ∈ E1, we have

a(t∗) > Γ(α)t∗(t∗ − t)1−α
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> Γ(α)t∗
t∗ − t

t∗ − t+ 1− α
≥ Γ(α)t∗

t∗ − t
µ(E1) + 1− α

.

Since t < t∗, t ∈ E1, we can select a function σ(t), 0 ≤ σ(t) ≤ 1, t ∈ E1 such that t = σ(t)t∗,

therefore, the above inequality can be written as

a(t∗) > Γ(α)
(1− σ(t))t2∗
µ(E1) + 1− α

, t ∈ E1. (15)

We apply fractional integral I1−β to the both sides of (15),

I1−βa(t∗) > I1−βΓ(α)
(1− σ(t))t2∗
µ(E1) + 1− α

=
(1− σ(t))Γ(α)

(µ(E1) + 1− α)Γ(1− β)

∫ t∗

0
(t∗ − s)−βs2ds

>
(1− σ(t))Γ(α)

3(µ(E1) + 1− α)Γ(1− β)
t3−β∗ ≥ (1− σ(t))Γ(α)

3(µ(E1) + 1− α)Γ(1− β)
µ(E1)3−β,

that is ∫ t∗

0
(t∗ − s)−βa(s)ds >

(1− σ(t))Γ(α)

3(µ(E1) + 1− α)
µ(E1)3−β,

by inequality (14), we can obtain that

(1− σ(t))Γ(α)

µ(E1) + 1− α
µ(E1)3−β <

Γ2(α)T 3−β

T + 1− α
, t ∈ E1. (16)

Consider the inequality about x

(T + 1− α)(1− σ(t))x3−β − Γ(α)T 3−βx− (1− α)Γ(α)T 3−β < 0, (17)

since 2 < 3 − β < 3, it is obvious that inequality (17) has no positive solution, thus when

µ(E1) > ε > 0, inequality (16) is false. It is a contradiction, we complete this proof.

In Lemma 3.3, a(t) ∈ Lα(J,R) satisfies condition (H3), in case a(t) < 0, t ∈ J, there exists

a constant M such that −a(t) ≤M, t ∈ J. Then, the inequality (11) becomes 3(T+1−α)
(1−β)T 2Γ(α)2

M < 1.

Theorem 3.3. Assume that u∗, u∗ ∈ C1−α(J,R) are upper and lower solutions of Cauchy

problem (1), and satisfy u∗ ≥ u∗, t1−αu∗(t) |t=0≥ t1−αu∗(t) |t=0 . In addition, f ∈ C(J×R×R,R)

satisfies Lemma 3.1 and condition (H3).

Then Cauchy problem (1) has a maximal solution and a minimal solution.

Proof. Let Ω =

{
y ∈ C1−α(J,R) : u∗ ≤ y ≤ u∗

}
. For any x ∈ Ω, consider the initial

value problem {
Dαu(t) = f(t, x(t), I1−βx(t))− a(t)[u(t)− x(t)], t ∈ (0, T ],

t1−αu(t) |t=0= u0.
(18)

By Lemma 2.2 and condition (H3), for every x, boundary value problem (18) exists a unique

solution.
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Define operator N by

Nu(t) = u0t
α−1 +

1

Γ(α)

∫ t

0
(t− s)α−1Fu(s)ds,

where Fu(s) = f(s, x(s), I1−βx(s))−a(s)[u(s)−x(s)], s ∈ J, obviously, operatorN is continuous

in view of continuity of F . Then the solution initial value problem (18) is a fixed point of operator

N .
Define the operator B : Ω→ C1−α(J,R) by

Bx = u, x ∈ Ω.

B is a continuous operator. In fact, operator B is equicontinuous on J.

We will use operator B to construct the sequences {un}, {vn}. First, we prove B is a monotone

operator on Ω, let u1(t), u2(t) ∈ C1−α(J,R), u1(t) ≤ u2(t). Suppose that ui = Bxi, (i = 1, 2), set

µ = u1 − u2. Then

Dαµ = Dαu1 −Dαu2

= f(t, x1, I
1−βx1)− a(t)[u1 − x1]− f(t, x2, I

1−βx2) + a(t)[u2 − x2]

≤ a(t)[x2 − x1]− a(t)[u1 − x1] + a(t)[u2 − x2]

= −a(t)µ,

and t1−αµ(t)|t=0 = 0.

This conclusion and Lemma 3.2 imply that Bx1 ≤ Bx2, t ∈ J, so B is a monotone operator.

Next, we prove u∗ ≤ Bu∗ and u∗ ≥ Bu∗, set Bu∗ = u1, u1 is a unique solution of problem (18)

with x = u∗, put ν = u∗ − u1. Then

Dαν = Dαu∗ −Dαu1

≤ f(t, u∗, I
1−βu∗)− [f(t, u∗, I

1−βu∗)− a(t)(u1 − u∗)]

= −a(t)ν,

and t1−α(u∗(t)− u1(t))|t=0 ≤ 0.

This shows that ν(t) ≤ 0, t ∈ J, which implies that u∗ ≤ Bu∗. One can show similarly,

u∗ ≥ Bu∗. Hence operator B : Ω→ Ω.

Let u0 = u∗, v0 = u∗. We define the sequences {un}, {vn} on J by

un = Bun−1, vn = Bvn−1, n = 1, 2, · · ·.

Combining the above argument, we can obtain

u∗ = u0 ≤ u1 ≤ · · · ≤ un ≤ vn ≤ · · · ≤ v1 ≤ v0 = u∗. (19)
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We see that the sequence {un} is monotone nondecreasing and is bounded on J, the sequence

{vn} is monotone nonincreasing and is bounded on J. In fact, the monotone of operator B implies

that B−1
exist, and B−1 : C1−α(J,R)→ Ω by

x = B−1u.

Thus we have

‖x‖∞ = ‖B−1u‖∞ ≤ ‖B−1‖‖u‖∞.

Consequently, B is a monotone bounded operator. Furthermore, since u ∈ Ω, I1−βu ∈ [−c, c],
where c = T 1−β

(1−β)Γ(1−β) max{‖u∗‖, ‖u∗‖}, thus exists a positive constant N such that

max
s∈J
|Fu(s)| ≤ N.

Then we prove equicontinuity of operator B on J. For given ε > 0, take

δ0 = min

{
T,

(
εΓ(α+ 1)

2(N + |u0|)

) 1
α
}
.

Let t1, t2 ∈ J, t1 < t2. For each x ∈ Ω, when |t1 − t2| < δ0, we have

|Bx(t1)− Bx(t2)| ≤ 1

Γ(α)

∣∣∣∣ ∫ t1

0
(t1 − s)α−1Fu(s)ds−

∫ t2

0
(t2 − s)α−1Fu(s)ds

∣∣∣∣+ |u0||t
α−1

1 − tα−1
2 |

≤ N

Γ(α)

∣∣∣∣ ∫ t1

0

(
(t1 − s)α−1 − (t2 − s)

α−1

)
ds

∣∣∣∣+ |u0||t
α−1

1 − tα−1
2 |

+
N

Γ(α)

∣∣∣∣ ∫ t2

t1

(t2 − s)
α−1

ds

∣∣∣∣
≤ 2N

Γ(α+ 1)
|t1 − t2|α + |u0|2α|t1 − t2|α

<
2(N + Γ(α+ 1)|u0|)

Γ(α+ 1)
|t1 − t2|α < ε.

Hence, operator B is equicontinuous on J.

Therefore, sequences {un}, {vn} exist subsequences {unk}, {vnk}, such that {unk}, {vnk}
uniformly converge on J, assume unk → λ(k →∞), vnk → κ(k →∞), λ ≤ κ. It is easy to show

that λ, κ are solutions of initial value problem (1), by (18), we have{
Dαλ(t) = f(t, λ(t), I1−βλ(t))− a(t)[λ(t)− λ(t)], t ∈ (0, T ],

t1−αλ(t) |t=0= u0,

and {
Dακ(t) = f(t, κ(t), I1−βκ(t))− a(t)[κ(t)− κ(t)], t ∈ (0, T ],

t1−ακ(t) |t=0= u0,

Then we prove λ, κ are minimal and maximal solutions of (1). Let θ ∈ C1−α(J,R) is any

solution of problem (1) such that u∗ ≤ θ ≤ u∗, 0 < t ≤ T, we shall prove that λ ≤ θ ≤ κ, 0 <
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t ≤ T. In fact, by (18), (19), we know that at least exists a k such that uk ≤ θ ≤ vk, 0 < t ≤ T,
set p = uk+n − θ. Then

Dαp(t) = Dαuk+n(t)−Dαθ(t)

= [f(t, uk+n−1(t), I1−βuk+n−1(t))− a(t)(uk+n(t)− uk+n−1(t))]− f(t, θ(t), I1−βθ(t))

≤ a(t)(θ(t)− uk+n−1(t))− a(t)(uk+n(t)− uk+n−1(t))

= −a(t)p(t),

and t1−α(uk+n(t)− θ(t))|t=0 = 0.

Which implies that uk+n ≤ θ, 0 < t ≤ T, this prove by induction for all n. Taking limit as

n→∞, we conclude that λ ≤ θ. Similarly, we can prove that θ ≤ κ, 0 < t ≤ T. Combining the

above argument, we can obtain λ ≤ θ ≤ κ, 0 < t ≤ T. The proof is completed.

Corollary 3.1. Let u∗, u∗ ∈ C1−α([0, T ]), a(t) ∈ C([0, T ], [0,∞)) such that

f(t, x1, y1)− f(t, x2, y2) ≤ a(t)|x2 − x1|,

u∗ and u∗ are the upper and lower solutions of initial value problem (1), then λ = θ = κ is a

unique solution of (1).

Proof. Assume that θ ≤ κ, then κ− θ = s ≥ 0, we consider Dαs,

Dαs = f(t, κ, I1−βκ)− f(t, θ, I1−βθ) ≤ a(t)|κ− θ|,

and t1−αs(t)|t=0 = 0. Lemma 3.2 implies that s ≤ 0 on [0, T ]. Thus λ = θ = κ is the unique

solution of (1).

4. EXAMPLE

We now give a example to illustrate our results.

Example 4.1. Consider the following fractional differential equation initial value problem{
Dαu(t) = t−α

Γ(1−α) + (t− u(t)) 1
Γ(1−β)

∫ t
0 (t− s)−β|u(s)|ds, 0 < t ≤ 1,

t1−αu(t) |t=0= 0,
(20)

Let u∗(t) = 1, u∗(t) = t− 1, t ∈ [0, 1]. Then, we have

Dαu∗(t) =
t−α

Γ(1− α)
≥ t−α

Γ(1− α)
+ (t− 1)

t1−β

Γ(2− β)

=
t−α

Γ(1− α)
+ (t− u∗(t)) 1

Γ(1− β)

∫ t

0
(t− s)−β|u∗(s)|ds,

11



and

Dαu∗(t) =
t1−α

Γ(2− α)
≤ t1−α

Γ(2− α)
− t2−β

Γ(3− β)
+

t1−β

Γ(2− β)

=
t−α

Γ(1− α)
+ (t− u∗(t))

1

Γ(1− β)

∫ t

0
(t− s)−β|u∗(s)|ds.

which implies that u∗ is a upper solution and u∗ is a lower solution of (20). By the Theorem

3.3, problem (20) has solutions on [u∗, u
∗].
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