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Abstract

Several machine learning algorithms were used to simulate the simulated moving bed (SMB) process,

with the sugar separation of rebaudioside A and stevioside and enantioseparation of 1,1’-bi-2-naphthol

racemate as case studies. It was found the random forest (RF) model and the deep neural network

(DNN) model give satisfactory accuracy with MAEs lower than 0.19% (RF) and 0.08% (DNN). Then

these two models were used to optimize the operation conditions for maximizing the feed flowrate

under specific purity requirements. The RF model failed to give a set of operation conditions better

than the training dataset. But the DNN model gave flowrates about 10% higher than the highest values

in the training datasets, for both sugar separation and enantioseparation systems. Finally the optimized

operation  conditions  for  sugar  separation  were  verified  experimentally,  with  the  final  purities  of

rebaudioside A and stevioside being 99.2% and 98.8% respectively.

Keywords:  Simulated  moving  bed,  Random  forests,  Deep  neural  network,  Rebaudioside  A,

Stevioside
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1. Introduction

In the past few decades, machine learning (ML) has developed rapidly and provides an important

assistance  in  numerous  fields1–3.  Especially,  the  development  of  computer  science  has  greatly

improved the ability to train neural networks with large numbers of layers for hierarchical feature

learning and thus, deep learning becomes a star ML technique because of its successful applications in

speech recognition, image recognition, and natural language processing4. Nowadays, the application of

ML in chemical engineering is also one of the rapid growing fields5, such as for process monitoring

and online optimization6,7, fault detection and diagnosis8,9, construction of prediction models10–13, et al.

Simulated moving bed (SMB) technology is an important unit operation in chemical engineering

to separate chemically similar compounds14–16. As a continuous multicolumn chromatographic process,

SMB can achieve a higher productivity, higher purity, and higher yield while with a greatly reduced

consumption of solvent and solid-phase comparing to the traditional preparative chromatography17–19.

So it has been widely used in various fields, including fine petrol-chemicals, pharmaceuticals, and

biotechnology  industries20–22.  However,  the  design  and  optimization  of  SMB  process  is  pretty

complicated  because  of  the  coupling  effects  among operation  conditions,  including  flow rates  in

different zones and switching periods, which makes a single factor optimization method not feasible.

The usual requirement to simulate the dynamic processes of SMB separation is very time consuming

23,24, which needs to solve the mechanism model described by a series partial differential equations

again and again until reaching a cyclic steady state, especially for optimization where the simulation

processes  at  various  operation  conditions  is  repeated  hundreds  and  even  thousands  of  times.
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Therefore,  replacing  the  mechanism  model  with  ML  model  has  the  potential  to  improve  the

efficiencies of design and optimization of SMB process23,25,26.

Li et al.27 applied the Bayesian regularization BP neural network model to fit a dataset that was

generated from the mechanism model. The dataset contained 9730 groups of data with m2 and m3 as

inputs and the concentration of the extract and raffinate as outputs. The simulation results showed that

the deviation between the ML model and the mechanism model is small and the time required for the

parameter  optimization  can  be  greatly  decreased  when  using  the  ML model.  Unfortunately,  the

optimization results are not verified experimentally.

In this work, various ML models are used and compared in order to replace the mechanism model

of SMB process for the separation of  rebaudioside A and stevioside. Rebaudioside A is a kind of

natural sweeteners with a sweetness 150-300 times higher than that of sucrose28. It is mainly produced

by extraction from stevia (Stevia rebaudianaBertonit). However, the crude extract usually contains

certain amount of stevioside, which has a bitter taste29. Because the high purity rebaudioside A has a

much higher added value30, the separation of rebaudioside A and stevioside received great attentions in

recent years. As shown in Figure 1, the chemical structures of rebaudioside A and stevioside are very

similar,  which makes  it  difficult  to  achieve a  high purity  using macroporous adsorption  resin31,32.

Although further utilization of the recrystallization method can obtain a high purity, the process is

slow and complicated and thus limits the productivity and recovery33. Therefore, it is the aim of our

work to purify rebaudioside A through SMB for the first time. The ML models were compared first

and  two  of  them  with  satisfactory  accuracy  were  then  used  for  the  optimization  of  operation

conditions. The optimized conditions are verified by experiments. Furthermore,  to prove the wide
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applicability  of  ML models  in  SMB processes,  the  ML models  were also  used for  another SMB

system to separate chiral compounds with highly nonlinear isotherms because the isotherms of the

studied system are linear. 

2. Materials and methods

2.1 Materials and apparatus

Rebaudioside A (purity = 99.13%) and stevioside (purity = 99.55%) were purchased from Qufu

Haigen  stevia  sugar  Co.,  Ltd.,  Shandong.  1,3,5-tri-tert-butylbenzene  (TTBB,  purity  =  98%)  was

purchased from Macklin Biochemical Co., Ltd, Shanghai. Acetonitrile (HPLC grade) were obtained

from Cinc High Purily Solvents Co., Ltd., Shanghai. Pure water was provided by Shuibohui Co., Ltd.,

Xiamen.

The preparative columns with an inner diameter of 10 mm and a length of 150 mm were packed

with  70  μm NH2
 adsorbent.  The  adsorbent  was  purchased  from Beijing  Greenherbs  Science  and

Technology  Development  Co.,  Ltd.  An  analytical  column  (id.  4.6  mm  ×  250  mm)  packed  with

Supersil 5 μm NH2-S was purchased from Dalian Elite Analytical Instruments Co. Ltd.

A P230 II HPLC system (Dalian Elite Analytical Instruments Co. Ltd), comprising a P230 II

pump and  a  UV230  II  variable  wavelength  detector,  was  used  to  conduct  the  experiments,  and

EC2006 V1.80 software was used for data acquisition. The operation temperature was kept at 30.0°C

and the detection wavelength was set at 210 nm.

A three-zone SMB system with a configuration of [1,1,2] was used to separate rebaudioside A

and stevioside. Its schematic diagram is shown in  Figure 2  and the device connection diagram for
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SMB system can be found in our previous work34.

2.2 Determination of porosity

The total porosity of the preparative column was determined by a non-retention indicator, 1,3,5-

tri-tert-butylbenzene (TTBB). With NH2
 adsorbent as a stationary phase, pure acetonitrile as a mobile

phase, column temperature setting at 30°C, the concentration of TTBB at 0.5 g/L and an injection

volume of 20μL, the retention time (tR) of TTBB in the preparative column was determined at various

flowrates (Q). According to Eq. (1), tR was used as the vertical coordinates and 1/Q as the abscissa,

then the slope value, i.e. V T , was obtained by linear fitting of experimental data.

tR=
V T

Q
(1)

Where  V T  is  the sum of the total  pore volume in the preparative column and the volume of the

pipelines between injector and detector. After removing the preparative column, the retention time of

TTBB was determined at a flowrate of 0.05 mL/min in order to determine the pipeline volume (V L).

Then the total porosity was calculated by the Eq. (2):

ε t=
V T−V L

V c

(2)

where V c is the geometrical volume of the preparative column.

With  the  total  porosity  ε t and  inner  porosity  ε p provided  by the  manufacturer,  the  external

porosity ε b can be obtained by the Eq.(3):

ε t=εb+(1−ε b)ε p
(3)
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2.3 Determination of adsorption isotherms

The  adsorption-desorption  method  is  adopted  to  determine  the  adsorption  isotherms  of

rebaudioside A and stevioside. First,  the mobile phase containing a single component with known

concentration  (cmob)  was  continuously  delivered  to  the  preparative  column  until  the  adsorption

equilibrium  was  reached.  Then,  the  column  was  washed  with  pure  mobile  phase  to  elute  the

component completely. The collected eluent was used to determine the component concentration in

the eluent (celu). Through mass balance, the equilibrium concentration in the stationary phase can be

calculated by Eq. (4):

q¿
=

celuV elu−(εtV c+V L)cmob

(1−εt)V c

(4)

where V elu is the eluent volume.

2.4 Determination of diffusion and mass transfer coefficients

The axial diffusion coefficient(DL) was estimated by the Chung and Wen correlation35 :

DL=
εbd pu

0.2+0.011 ( ℜ )
0.48

(5)

where d p is the average diameter of adsorbent particles, u is the interstitial velocity of mobile phase,

and ℜ is the Reynolds number.

The  mass  transfer  coefficient  of  rebaudioside A (k L ,RA)  and  stevioside  (k L ,ST)  were  both

estimated by equation as follow36:

1
ke ,i

=H i(
d p
2

60ε p D p ,i

+
d p

6K f ,i

)
(6)

where H  is the Henry constant, DP is the intra-particle diffusion coefficient, and K f  is the film mass
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transfer coefficient.

3. Results & discussion

3.1 Model parameters of SMB system

The  transport-dispersive  linear  driving  force  model37 was  adopted  to  describe  the  dynamic

behavior of  rebaudioside A and stevioside in  the columns.  The model equations are  presented as

follows:

∂c i

∂ t
+
1−ε b

εb

∂q i

∂t
+u

∂c i

∂t
=DL ,i

∂2c i

∂ x2
(7)

∂qi

∂ t
=k e, i(qi

¿
−q i)

(8)

where  c i and  q i are  the concentrations of  component  i in  the liquid and stationary phase,  i = A

(rebaudioside A) or B (stevioside), 
q i

¿ is the equilibrium concentration in the stationary phase, 
t
 is time

and x is the axial distance.

The initial conditions are: 

t=0 , c i=q i=0 (9)

And the boundary conditions are:

x=0 ,
∂ c i

∂ x
=

u
DL,i

(c i−ci
¿
)

(10)

x=L ,
∂c i

∂ x
=0 (11)

where c i
¿ is the concentration of component i at the inlet of a column.
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Eqs. (7-11) constitute a partial difference equation system, which was solved by the space-time

conservation  element/solution  element  method38.  Before  solving  the  model  equations,  the  model

parameters including ε b, DL, k eand adsorption isotherms of rebaudioside A and stevioside have to be

determined first.

To  determine  the  total  porosity  of  the  preparative  column,  the  retention  time of  TTBB was

measured at various flow rates, and the results are shown in Figure 3. Through linear regression of tR

vs 1/Q, we obtained V T=8.748mL. Additionally, the volume of the system pipelines was obtained as

V L

= 0.007 mL. So the total porosity was calculated to be 
ε t

= 0.742. The internal porosity (
ε p

) given

by the manufacturer was 0.563, then ε b= 0.41 was obtained through Eq. (3).

The adsorption isotherms of rebaudioside A and stevioside were determined by the adsorption-

desorption method, respectively. It was found that the equilibrium concentration (q¿) in the stationary

phase has a linear relationship with the concentration (c) in the mobile phase (Figure 4) for both

rebaudioside A and stevioside. By linear regression (with R2 value of 0.9996 for rebaudioside A and

0.9995 for stevioside), the adsorption isotherms were obtained as follows:

q A
¿
=1.979 c A

(12)

qB
¿
=1.581cB

(13)

Finally, the axial diffusion coefficient (DL) and mass transfer coefficients were estimated by Eqs.

(5-6). As shown in Figure 5, DL varies with flow rate linearly. This is because the Reynolds number (

ℜ) in the denominator of Eq.(5) is so small in the range of experimental conditions that it has a little
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effect on the axial diffusion coefficient. Through linear regression, the relationship between DL and Q

was obtained as Eq.(14).

DL=0.044Q (14)

The mass transfer coefficients of rebaudioside A and stevioside vary little with the flowrate (Figure 5).

This is due to the slow internal diffusion rate and so the film transfer contributes little to the overall

transfer coefficient34. The average values with k e, A=21.27 min-1 and k e, B=29.27 min-1 are used in this

work.

3.2 Dataset and preprocessing

To  train  a  ML model  for  the  prediction  of  the  separation  performance  at  certain  operation

conditions,  a  dataset  with  enough  samples  has  to  be  constructed  first.  For  the  separation  of

rebaudioside A and stevioside by SMB system with a 3 zone SMB and a configuration of [1, 1, 2], the

flow rate in Zone I (Q I) was fixed at 2.0 mL/min to avoid that the pressure in the columns rises too

high. Then the other three operation parameters including switching period (t s) and flow rates in Zone

II (Q II) and Zone III (Q III) were generated with the range and step size listed in Table 1. Obviously,

the reasonable operation parameters in SMB separation must meet the conditions in Eq.(15):

Q I ,Q III>Q II ,Q IV
(15)

After  filtering  the  samples  violating  Eq.(15),  a  dataset  with  292,186  samples  was  obtained.  The

purities of extract and raffinate were used as the output after calculation by solving the model equation

listed in Eqs.(7-11).

   To avoid one term with a higher magnitude in the input parameters to dominate the ML model, the
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Z-Score standardization39 was used to normalize the input data, i.e. the input parameters were treated

by Eq.(16):

x¿
=

x−x
σ

(16)

where  x and  σ  is the mean and standard deviation of input parameter  x.  Finally, the dataset was

randomly divided into two sets: a training set with 242,186 samples and a testing set with 50,000

samples.  The  training  set  was  used  to  train  different  ML  models  and  the  selection  of  the

hyperparameters, while the testing set was used to assess the performance of the final models.

   Because the adsorption isotherms of  rebaudioside A and stevioside are linear, to verify the wide

applicability of ML model, the SMB system for enantioseparation of 1,1’-bi-2-naphthol racemate was

selected to generate another dataset, which have highly nonlinear adsorption isotherms  as  shown in

Eq.(17-18).

q A
¿
=

3.73c A

1+0.0466 c A+0.0336cB

+
0.3c A

1+3c A+c B

(17)

qB
¿
=

2.69cB

1+0.0466 c A+0.0336 cB

+
0.1c A

1+3c A+cB

(18)

The parameters for this SMB process were obtained from literature40,41 and presented in Table S1

(supplemental material). The range and step size of input parameters to generate the dataset were

listed in Table 1. After filtering the samples violating Eq.(15), a dataset with 262,753 samples was

obtained. Similar to the sugar separation process, the input parameters of the dataset were normalized

by Z-Score standardization. Then the dataset was randomly divided into two datasets with a testing

dataset containing 50,000 samples and the rest samples as training dataset.

11



3.3 Comparison of different ML models

First,  four typical ML models including support vector machines (SVM), k-nearest neighbors

(KNN), decision trees (DT) and random forests (RF) were tested for the regression task of the two

SMB separation processes. There are 3 input parameters for the sugar separation of  rebaudioside A

and  stevioside  and  4  input  parameters  for  the  enantioseparation  of  1,1’-bi-2-naphthol  racemate,

respectively. While the output parameters are both 2 for the two SMB systems, i.e. the purities of

extract  (PE)  and raffinate  (PR). These algorithms were constructed by using Scikit-learn package42.

The main hyperparameters, such as the kernel function in SVM, the k-value in KNN, the maximum

depth in DT, and the number of estimators in RF were screened, and the other parameters remained as

default values. With the mean absolute error (MAE) as the assessment criteria, the best results of these

algorithms were listed in Table 2.

It can be seen from Table 2 that RF gave the best performance with the lowest MAEs of 0.114%

for the sugar separation process and 0.185% for the enantioseparation process among the four ML

models. The comparison of the target outputs and model predicted outputs by RF and the histograms

of absolute error distribution for the sugar separation SMB systems were shown in Figure 6. It is

obvious that the model predicted purities of extract and raffinate are in good agreement with the target

values, with all the samples locating near the line of y=x. The MAE on the testing dataset is a little

larger than that on the training dataset. This is reasonable because the model is obtained by learning

the training dataset. A little difference between the MAEs on training and testing datasets indicates no

overfitting occurs and the RF model has a good generalization ability. 
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The performance of RF model on the SMB system for enantioseparation of 1,1’-bi-2-naphthol

racemate was shown in Figure 7. The model predicted the purities of extract and raffinate are also fit

well with the target values. But the error is a little larger than that in sugar separation system. This

may be due to the complexity incorporated by the highly nonlinear adsorption isotherms. In general,

the MAE of lower than 0.2% has been smaller enough for application.

Although the RF model gave a satisfactory performance, we tried another model, deep neural

network (DNN) to pursue a much higher accuracy. Because DNN is impressive in its high learning

ability and has been successfully used in many fields for solving complex regression and classification

tasks43–45. 

The structure of the network for the sugar separation SMB system was shown in Figure 8. The

input layer contains 3 neurons corresponding to the operation conditions Q II, Q III and t s. The output

layer contains 2 neurons corresponding to PE and PR. The hidden layers contain several units, with

each unit being composed of a dense layer and a batch normalization (BN) layer. BN layer was used to

normalize  the  output  of  the  last  dense  layer.  This  operation  does  not  incorporate  extra  model

parameters but has the ability to reduce the internal covariate shift  and thus to accelerate training

process46. The rectified linear unit (ReLU) was selected as the activation function for the dense layer,

while the sigmoid function was used as the activation function for the output layer to ensure that the

predicted purities lie in the range of 0 to 1.

   The TensorFlow platform47 was used to build the DNN model. The mean square error (MSE) was

selected as the loss function, and the adaptive moment estimation algorithm (Adam48) was used as the

optimizer with a learning rate of 0.0002. The dataset was fed to the training process with a batch size
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of 128. The training was iterated to a maximum epochs of 6,000, which can be terminated earlier in

case of the loss function on the testing dataset raised or unchanged for 500 epochs.

The number of neurons in each dense layer (referred to as width of the model hereafter) and the

number of units in the hidden layers (referred to as depth of the model hereafter) are two important

hyperparameters that would influence the model performance. So different combinations of the two

values were tested and the results are listed in Table S2 (supplemental materials). While the width of

the model is not too high, such as 64 and 128, the increase of depth will lead to the decrease of MAEs.

And  similarly,  the  increase  of  width  at  a  fixed  depth  will  also  results  in  lower  MAEs.  This  is

reasonable because the increase of width and depth will make the model have a higher capacity and an

improved  learning  ability.  The  model  with  a  width  of  256  and  a  depth  of  4  gave  an  excellent

performance with the MAEs of 0.0241% and 0.0708% for  PE and  PR, respectively. But a further

increase of the width and depth will not bring significant improvement. So the DNN model with 4

units in the hidden layers and 256 neurons in each dense layer was selected as the appropriate model

for the sugar separation process. The MAEs of PE and PR were 63% and 38% lower comparing to

that of RF model, which is obviously a big improvement. Comparisons between the predicted purities

and target values are shown in Fig 9. It can be seen that the DNN model fits excellent with the dataset

and most of the points locate on the line of y=x.

   For the enantioseparation process, the structure of the DNN model is similar to what is shown in

Figure 8 except that the input layer contains 4 neurons corresponding to  Q II,  Q III,  Q IV and t s. The

MAEs at different combinations of width and depth of the model are listed in Table S3 (supplemental

materials). It was found that the DNN model with a depth of 5 and a width of 512 gave a satisfactory
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performance and so  it  was  selected as  the appropriate  model.  Comparing to  the  sugar separation

process, the larger depth and width is understandable because of the increased complexity caused by

the  highly  nonlinear  isotherms in  the  enantioseparation  process.  The  MAEs of  PE and  PR were

0.0295% and 0.0434%, respectively, and they are 84% and 77% lower compared to the values of RF

model.  The  comparison  between the  predicted  purities  and target  values  shown in  Figure  9  also

underlined the high accuracy of DNN model. 

   It should be mentioned that, the improvement of the DNN model upon the RF model is much more

significant for the enantioseparation process than that for the sugar separation process. For the RF

model, the MAEs of enantioseparation process (0.180% for PE and 0.185% for PR) are much higher

than that of sugar separation process (0.066% for PE and 0.114% for PR). This phenomenon is not

found while using the DNN model, which may indicate that the DNN model has a stronger learning

ability for the complex systems. 

3.4 Optimization of SMB process using ML models

   It is expected that the obtained ML models would be much more efficient in the simulation and

optimization  of  SMB  process.  First  the  computational  time  for  the  simulation  of  the  two  SMB

processes was tested using different models. All the evaluations were done on a personal computer

with 3.00 GHz Inter core i5-8500 processor and 16 GB of RAM. The results are shown in Table 3.

Compared to the mechanism model, the RF and DNN models can improve the simulation efficiency

by four orders of magnitude.

   The RF and DNN models were then used to optimize the sugar separation process in order to

15



maximize the feed flow rate (QF) while maintain the purities of extract and raffinate higher than

99.5%. The flow rate of zone I was fixed at 2.0 mL/min, and the decision variables were flowrates in

zone II and zone III and switching period. The optimization problem is expressed as follows:

maxQF [QII ,QIII ,t s ]
(19)

subject ¿:PE , PR≥99.5% 

The BOX complex algorithm34 was used to solve this optimization problem. While using the RF

model to solve the purities at certain operation conditions, a maximum QF value of 0.120 mL/min was

obtained. But for the DNN model, a higher QF value of 0.132 mL/min was obtained. It is interesting

to compare the optimized results with the highest QF value at operation conditions that were included

in the training dataset. After screening, it was found that the highest QF value meanwhile meeting the

constraints of  PE ,PR≥99.5% is exactly 0.12 mL/min. This indicates that the RF model can not

break through the information provided by the dataset, and so it is not appropriate for optimization.

But DNN model has a higher generalization ability and it can give a set of operation conditions better

than the whole training dataset. To verify this hypothesis, the SMB system for enantioseparation of

1,1’-bi-2-naphthol racemate was also optimized by use of the RF and DNN models. For this process,

the  flow  rate  in  zone  I  was  fixed  at  56.83  mL/min  and  the  constraints  were  PE≥93% and

PR≥96.2%
.  The  optimized  

QF

 values  were  6.5  and  7.19  mL/min  for  RF  and  DNN  models,

respectively. While screening the training dataset, the highest  QF that meets the purities constraints

were found to be 6.5 mL/min. Again, the optimized QF value for RF model was not better than the

16



highest value in the dataset. But the DNN model resulted in a feed flowrate 10.6% higher than the best

result in the training dataset. These results strengthen the hypothesis proposed above.

   Finally, the optimized operation conditions using DNN model with Q II=1.66 mL/min,  Q III=1.792

mL/min, and t s=10.09 min, were tested on the laboratory apparatus for three times. The experimental

concentrations of  rebaudioside A and stevioside in the extract and raffinate with time are shown in

Figure 10.  After running 150 switching periods,  the final purity  of the extract  and raffinate were

assayed  to  be  99.20.3%  and  98.80.3%,  respectively,  which  are  in  good  agreement  with  the

prediction of DNN model (both 99.5%).

4. Conclusion

Several machine learning models were tested to predict the product purity at certain operation

conditions in the SMB process, with the sugar separation of rebaudioside A and stevioside as well as

eantioseparation  of  1,1’-bi-2-naphthol  racemate  as  two case  studies.  The  random forest  and deep

neural networks models gave satisfactory performances. The MAEs of RF and DNN models on the

testing dataset were lower than 0.19% and 0.08%, respectively. However, while used for optimization,

the RF model can not find a set of operation conditions better than the training dataset. DNN model

gave feed flowrates about 10% higher than the highest value in the training dataset under specific

purity requirements for the two case studies. The operation conditions for sugar separation obtained

through optimization of DNN model were verified by experiments. The separation of rebaudioside A

and stevioside was achieved by use of a four-column SMB system with purities of 99.2% and 98.8%
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for rebaudioside A and stevioside, respectively. The simulation efficiency of DNN model is highly

improved by about four orders of magnitude than the mechanism model. Such a high efficiency lays a

foundation to apply machine learning models in industry for such as online simulation, optimization

and control.
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Tables

Table 1. The range and step size of the input parameters to generate the dataset for sugar separation of

rebaudioside A and steviosideand enantioseparation of 1,1’-bi-2-naphthol racemate.

Systems Input parameter Range Step size Unit

Sugar separation 

Q II 0.5 - 1.98 0.02 mL/min

Q III 0.52 - 2.50 0.02 mL/min

t s 5.0 - 15.05 0.15 min

Enantioseparation

Q II 6.0 - 52.5 1.5 mL/min

Q III 8.0 - 54.5 1.5 mL/min

Q IV 6.0 - 52.5 1.5 mL/min

t s 2.0 - 4.3 0.1 min

Table 2. The MAEs of SVM, KNN, DT, and RF models for regression of the datasets generated by

two SMB systems.

Systems Outputs SVM NN DT RF

Sugar separation PE
 5.175% 0.108% 0.304% 0.066%

PR
 10.034% 0.439% 0.266% 0.114%

Enatioseparation PE
 5.116% 0.507% 0.306% 0.180%

PR
 7.012% 0.896% 0.265% 0.185%

Table 3. The computational time for simulation SMB process by using different models

SMB systems RF model DNN model Mechanism model

Sugar separation 0.005 s 0.039 s 3 min

Enantioseparation 0.006 0.047 8 min
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Figure Captions

Figure 1. The chemical structure of rebaudioside A and stevioside.

Figure  2.  The  schematic  diagram  of  the  four-column  three-zone  SMB with  the  configuration  of

[1,1,2]. The symbols D, E, F, and R stand for dersorbent, extract, feed and raffinate, respectively.

Figure 3. The relationship between tR of TTBB and 1/Q in preparative column at 30 °C.

Figure  4.  The  relationship  between  equilibrium  concentration  in  stationary  phase  (q¿)  and

concentration in mobile phase (c) for rebaudioside A and stevioside.

Figure 5. The axial diffusion coefficient (DL) and the mass transfer coefficients of rebaudioside A (

k e, RA

) and stevioside (
k e, ST

) at different flow rates.

Figure 6. Comparison of extract (a) and raffinate (b) purities predicted by random forest model and

target values for the SMB separation of rebaudioside A and stevioside, and the distribution of absolute

error of predicted extract purity (c) and raffinate purity (d) on the training and testing datasets.

Figure 7. Comparison of extract (a) and raffinate (b) purities predicted by random forest model and

target values for the SMB separation of 1,1’-bi-2-naphthol racemate, and the distribution of absolute

error of predicted extract purity (c) and raffinate purity (d) on the training and testing datasets.

Figure 8. The structure of the deep neural networks for modeling the SMB process for separation of

rebaudioside A and stevioside.

Figure 9. Comparison of the purities of extract (a) and raffinate (b) in the separation of rebaudioside A

and stevioside,  and  purities  of  extract  (c)  and  raffinate  (b)  in  the  enantioseparation  of  1,1’-bi-2-

naphthol racemate with target values on the training and testing datasets.

Figure 10. The average concentrations of  rebaudioside A (c EA , cRA) and stevioside (c EB , c RB) in the

extract and raffinate, and the purities of extract (PE) and raffinate (PR) in a whole switching period at

various switching numbers.
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