REFERENCES
Bagchi, S.K. (2017). Production of biodiesel from a locally
isolated chlorophycean microalga Scenedesmus obliquus (Turpin) Kützing .
[Doctoral disseratation, Agricultural & Food Engineering Department,
Indian Institute of Technology Kharagpur , West Bengal, India]. IIT
Kharagpur Campus Repository.
http://www.idr.iitkgp.ac.in/xmlui/handle/123456789/8255.
Bagchi, S.K., Rao, P.S., & Mallick, N. (2015). Development of an oven
drying protocol to improve biodiesel production for an indigenous
chlorophycean microalga Scenedesmus sp. Bioresource
Technology , 180, 207-213.
Balasubramanian, R.K., Doan, T.T.Y., & Obbard, J.P. (2013). Factors
affecting cellular lipid extraction from marine microalgae.Chemical Engineering Journal , 215-216, 929-936.
Becker, E.W. (1994). Large-scale cultivation. In E. W. Becker (Ed.),Microalgae: Biotechnology and Microbiology (pp. 63-171).
Cambridge University Press.
Becker, E.W. & Venkataraman, L.V. (1982). Biotechnology and
Exploitation of Algae - The Indian Approach . Agency for Technical
Cooperation, Eschlorm, Germany.
Bennamoun, L., Arlabosse, P., & Léonard, A. (2013). Review on
fundamental aspect of application of drying process to wastewater
sludge. Renewable and Sustainable Energy Reviews, 28, 29-43.
Bera, B., Saha, S., & Bhattacharjee, S. (2020). Forest cover dynamics
(1998 to 2019) and prediction of deforestation probability using binary
logistic regression (BLR) model of Silabati watershed, India.Trees, Forest and People, 2, 100034.
Bligh, E.G. & Dyer, W.J. (1959). A rapid method of total lipid
extraction and purification. Canadian Journal of Biochemistry and
Physiology , 37, 911-917.
Chakraverty, A. (1988). Theory of grain drying: post harvest
technology of cereals, pulses and oilseeds. Oxford and IBH Publishing
Co. Pvt. Ltd.
Chen, C., Chang, J., & Lee, D. (2015). Dewatering and Drying Methods
for Microalgae. Drying Technology , 33, 443-454.
Dreiseitl, S., & Ohno-Machado, L. (2002). Logistic regression and
artificial neural network classification models: a methodology review.Journal of Biomedical Informatics , 35, 352-359.
Guldhe, A., Singh, B., Rawat, I., Ramluckan, K. & Bux, F. (2014).
Efficacy of drying and cell disruption techniques on lipid recovery from
microalgae for biodiesel production. Fuel , 128, 46-52.
Hosseinizand, H., Sokhansanj, S., & Lim, C.J. (2018). Studying the
drying mechanism of microalgae Chlorella vulgaris and the optimum
drying temperature to preserve quality characteristics. Drying
Technology , 36, 1049-1060.
Koley, S., Mathimani, T., Bagchi, S.K., Sonkar, S., & Mallick, N.
(2019). Microalgal biodiesel production at outdoor open and polyhouse
raceway pond cultivations: A case study with Scenedesmus
acuminatus using low-cost farm fertilizer medium. Biomass and
Bioenergy , 120, 156-165.
Koley, S., Prasad, S., Bagchi, S.K., & Mallick, N. (2017). Development
of a harvesting technique for large-scale microalgal harvesting for
biodiesel production. RSC Advance , 7, 7227-7237.
Mahadevaswamy, M. & Venkataraman, L.V. (1981). Microbial load in mass
cultures of green algae Scenedesmus acutus and its processed
powder. Journal of Biosciences , 3, 439-447.
O’Connell, D., Savelski, M., & Slater, C.S. (2013). Life cycle
assessment of dewatering routes for algae derived biodiesel processes.Clean Technologies and Environmental Policy , 15, 567-577.
Oehrl, L.L., Hansen, A.P., Rohrer, C.A., Fenner, G.P., & Boyd, L.C.
(2001). Oxidation of phytosterols in a test food system. Journal
of the American Oil Chemists’ Society, 78, 1073-1078.
Rai, L. C., Mallick, N., Singh, J. B., & Kumar, H. D. (1991).
Physiological and biochemical characteristics of a copper tolerant and a
wild type strain of Anabaena doliolum under copper stress. Journal
of Plant Physiology 138, 68- 74.
Saleh, A.M., Hussein, L.A., Abdalla, F.E., El-Fouly, M.M., & Shaheen,
A.B. (1985). The nutritional quality of drum-dried algae produced in
open door mass culture. Zeitschrift für Ernährungswissenschaft,24, 256-263.
Sethi, S.N. & Naik, G.B. (2007). Wonder Gift of Nature:Spirulina . Fishing Chimes , 27, 16-17.
Shi, S., Li, H., Ding, X., & Gao, X. (2020). Effects of household
features on residential window opening behaviors: A multilevel logistic
regression study. Building and Environment , 170, 106610.
Show, K.-Y., Lee, D.-J., & Mujumdar, A. S. (2015). Advances and
challenges on algae harvesting and drying. Drying Technology , 33,
386-394.
Soeder, C.J. & Bolze, A. (1981). Sulphate deficiency stimulates the
release of dissolved organic matter in synchronous culture ofScenedesmus obliquus . Physiologia Plantarum , 52,
233-238.
Sonkar, S., Deb, D., & Mallick, N. (2020). Outdoor cultivation of the
green microalga Chlorella minutissima in mini pond system under
batch and fed-batch modes integrating low-dose sequential phosphate
addition (LDSPA) strategy for biodiesel production. Biomassand Bioenergy , 138, 105596.
Villagracia, A.R.C., Mayol, A.P., Ubando, A.T., Biona, J.B.M.M.,
Arboleda Jr., N.B., David, M.Y., Tumlos, R.B., Lee Jr., H., Lin, O.H.,
Espiritu, R.A., Culaba, A.B., & Kasai, H. (2016). Microwave drying
characteristics of microalgae (Chlorella vulgaris ) for biofuel
production. Clean Technologies and Environmental Policy , 18,
2441-2451.
Wahlen, B.D., Roni, M.S., Cafferty, K.G., Wendt, L.M., Westover, T.L.,
Stevens, D.M., & Newby, D.T. (2017). Managing variability in algal
biomass production through drying and stabilization of feedstock blends.Algal Research , 24, 9-18.
Widjaja, A., Chien, C.-C., & Ju, Y.-H. (2009). Study of increasing
lipid production from fresh water microalgae Chlorella vulgaris .Journal of the Taiwan Institute of Chemical Engineers, 40, 13-20.
Zepka, L.Q., Jacob-Lopes, E., Goldbeck, R., & Queiroz, M.I. (2008).
Production and biochemical profile of the microalgae Aphanothece
microscopica Nägeli submitted to different drying conditions.Chemical Engineering and Processing , 47, 1305-1310.
Table 1 Variables used