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Fig. 1 Geometry of the proposed multi-band MTM unit cell. (a) Schematic layout and cross-sectional views (aa')
(b) Simulation setup.
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Fig. 2 Reflection (S11) and transmission coefficient curves (S21) of the proposed MTM unit cell.
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Fig. 4 (a) Localization of electric field and (b) Distribution of surface current at 3.75 GHz.
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Fig. 5 (a) Localization of electric field and (b) Distribution of surface current at 6.95 GHz.
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Fig. 6 (a) Localization of electric field and (b) Distribution of surface current at 10.25 GHz.
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Fig. 7 (a) Localization of electric field and (b) Distribution of surface current at 13.55 GHz.
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Fig. 9 Analysis of the proposed MTMs basic parameters by varying (a) /, (b) p, and (¢) e.



XX
]

)

g

qd

g

g

N
PPN

)19 141
DX PP

(b)
Fig. 10 Arrangement of arrays designed by employing the proposed MTM unit cell. (a) 2x2 and (b) 4x4.
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Fig. 11 Effective parameters of the 2x2 array. (a) &, (b) g, and (c) 7.
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Fig. 12 Effective parameters of the 4x4 array. (a) &, (b) 4, and (c) 7.
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Fig. 13 Schematic diagram of the proposed unit cell-based transformer oil aging sensor. (a) Perspective view and (b)
Left view.
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Fig. 14 Simulated transmission coefficients of the proposed unit cell-based transformer oil aging sensor.
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Fig. 15 Schematic diagram of the proposed 2x2 MTM array-based transformer oil aging sensor. (a) Perspective
view and (b) Left view.
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Fig. 16 Simulated transmission coefficients of clear and dark transformer oil.
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Fig. 18 (a) Complex permittivity of ethanol-water mixture when the water content increases from 0% to 100% with
a step of 10% by volume. (b) Simulated transmission coefficient curves for ethanol-water mixture when the ethanol
content increases from 0% to 100%.
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Fig. 19 (a) Complex permittivity of methanol-water mixture when the water content increases from 0% to 100%
with a step of 10% by volume. (b) Simulated transmission coefficient curves for methanol-water mixture when the
methanol content increases from 0% to 100%.
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Fig. 20 (a) Complex permittivity of acetone-water mixture when the water content increases from 0% to 100% with
a step of 10% by volume. (b) Simulated transmission coefficient for acetone-water mixture when the acetone content
increases from 0% to 100%.
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Fig. 21 Simulated and calculated resonance frequency and Q factor. (a) Ethanol-water mixture, (b) Methanol-water
mixture, and (c) Acetone-water mixture.
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Fig. 22 Schematic diagram of the proposed NRI MTM based pressure sensor (a) Perspective view, (b) Front view,
(c) Back view, and (d) Left view.
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Fig. 23 S, curves of the pressure sensor.



