References:
1. Deniz M, Tezer H. Vertical transmission of SARS CoV-2: a systematic
review Melis Deniz & Hasan Tezer Vertical transmission of SARS CoV-2: a
systematic review. doi:10.1080/14767058.2020.1793322
2. Zhu H, Wang L, Fang C, et al. Clinical analysis of 10 neonates born
to mothers with 2019-nCoV pneumonia. Transl Pediatr .
2020;9(1):51-60. doi:10.21037/tp.2020.02.06
3. Liu P, Zheng J, Yang P, et al. The immunologic status of newborns
born to SARS-CoV-2–infected mothers in Wuhan, China. J Allergy
Clin Immunol . 2020;146(1):101. doi:10.1016/j.jaci.2020.04.038
4. Samuels N, van de Graaf RA, de Jonge RCJ, Reiss IKM, Vermeulen MJ.
Risk factors for necrotizing enterocolitis in neonates: a systematic
review of prognostic studies. BMC Pediatr . 2017;17(1):105.
doi:10.1186/s12887-017-0847-3
5. Stout G, Lambert DK, Baer VL, et al. Necrotizing enterocolitis during
the first week of life: A multicentered case - Control and cohort
comparison study. J Perinatol . 2008;28(8):556-560.
doi:10.1038/jp.2008.36
6. Klein RL, Novak RW, Novak PE. T-cryptantigen exposure in neonatal
necrotizing enterocolitis. J Pediatr Surg . 1986;21(12):1155-1158.
doi:10.1016/0022-3468(86)90031-X
7. Boralessa H, Modi N, Cockburn H, et al. I M M U N O H E M A T O
L O G Y RBC T Activation and Hemolysis in a Neonatal Intensive Care
Population: Implications for Transfusion Practice .
8. Nkhoma ET, Poole C, Vannappagari V, Hall SA, Beutler E. The global
prevalence of glucose-6-phosphate dehydrogenase deficiency: A systematic
review and meta-analysis. Blood Cells, Mol Dis .
2009;42(3):267-278. doi:10.1016/j.bcmd.2008.12.005
9. Kuipers MT, van Zwieten R, Heijmans J, et al. Glucose-6-phosphate
dehydrogenase deficiency-associated hemolysis and methemoglobinemia in a
COVID-19 patient treated with chloroquine. Am J Hematol .
2020;95(8):E194-E196. doi:10.1002/ajh.25862
10. Maillart E, Leemans S, Van Noten H, et al. A case report of serious
haemolysis in a glucose-6-phosphate dehydrogenase-deficient COVID-19
patient receiving hydroxychloroquine. Infect Dis (Auckl) .
2020;52(9):659-661. doi:10.1080/23744235.2020.1774644
11. Lancman G, Marcellino BK, Thibaud S, Troy K. Coombs-negative
hemolytic anemia and elevated plasma hemoglobin levels in COVID-19.Ann Hematol . 2020:1. doi:10.1007/s00277-020-04202-3
12. Garratty G. Immune hemolytic anemia associated with negative routine
serology. Semin Hematol . 2005;42(3):156-164.
doi:10.1053/j.seminhematol.2005.04.005
13. Zanella A, Barcellini W. Treatment of autoimmune hemolytic anemias.Haematologica . 2014;99(10):1547-1554.
doi:10.3324/haematol.2014.114561
14. Angileri F, Légaré S, Marino Gammazza A, Conway de Macario E,
Macario AJL, Cappello F. Is molecular mimicry the culprit in the
autoimmune haemolytic anaemia affecting patients with COVID-19? Br
J Haematol . 2020;190(2):e92-e93. doi:10.1111/bjh.16883
15. Lazarian G, Quinquenel A, Bellal M, et al. Autoimmune haemolytic
anaemia associated with COVID-19 infection. Br J Haematol .
2020;190(1):29-31. doi:10.1111/bjh.16794
16. Wahlster L, Weichert‐Leahey N, Trissal M, Grace RF, Sankaran VG.
COVID‐19 presenting with autoimmune hemolytic anemia in the setting of
underlying immune dysregulation. Pediatr Blood Cancer .
2020;67(9). doi:10.1002/pbc.28382
17. Hindilerden F, Yonal-Hindilerden I, Akar E, Yesilbag Z, Kart-Yasar
K. Severe autoimmune hemolytic anemia in Covid-19 infection.Mediterr J Hematol Infect Dis . 2020;12(1):e2020053.
doi:10.4084/mjhid.2020.053
18. Severance TS, Rahim MQ, French J, et al. COVID‐19 and hereditary
spherocytosis: A recipe for hemolysis. Pediatr Blood Cancer . July
2020. doi:10.1002/pbc.28548