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Abstract

In this paper, a new SEIR model incorporating the effects of awareness programs on the epidemic spreading

is analyzed. Two types of equilibria and the basic reproduction number of the model are given, and an algebraic

approach is used to prove the global stability of the equilibria. Then the sensitivity analysis of the basic repro-

duction number and endemic equilibrium is performed. Moreover, the effects of awareness and media parameters

on system dynamics are analyzed. Finally, we conduct numerical simulation to verify the analytical results.
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1 Introduction

In recent decades, the infectious diseases have become a great threat to the global personal and property

security. Public health services always search for new ways to reduce the spread of infectious diseases, such as

vaccination, isolation, treatment, and so on. Among these new ways, vaccination is one of the most effective public

policies to prevent the transmission of epidemic [1]. But some vaccines are not completely effective. Even, there

are some diseases that do not have vaccines [2]. For example, Corona virus disease 2019 is an infectious disease

associated with the fever and pneumonia, it is considered as the biggest global threat worldwide because of tens

of millions of confirmed infections, accompanied by hundreds of thousands of deaths over the world. [3]. The

limitation of the medical resources, the absence of specific therapeutic treatment and effective vaccine, all make it

more difficult to curb the transmission of the COVID-19 [4]. In this case, it is very important to educate people

about the disease prevention via various media (e.g., TV, newspaper, social networking sites), this usually results

in people raising the awareness of the epidemic and take a series of protective measures to lower their probability

of becoming infected.

Many mathematical models are proposed to study the effects of awareness on epidemics. These models can

be divided into two major classes: network-based models and mean-field models. There are two ways to explain

the effects of awareness: (i) By changing the rate of diseases transmission and taking preventive measures [5-9].

Kiss et al. [5] extended a simple SIRS model to account for the treatment class. They proved that the awareness

of the whole population could reduce the prevalence of infection. An SIRS model that considering the effects
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of private and public awareness on epidemic was studied [6,7]. (ii) By introducing a mass media compartment

to represent the public interaction with mass media [10 − 16]. Greenhalgh et al. [11] presented a brief and nice

commentary on the literature related to awareness and their effects on the dynamics of infectious diseases. Xiao et

al. [12] quantified and evaluated the media impacts on the control of emerging infectious diseases, they modeled

such media impacts using a piecewise smooth function depending on both the case number and its rate of change.

Zhou et al. [15] considered that optimal media reporting intensity on mitigating spread of an emerging infectious

disease. They formulate the novel media function f(I,M,α1, α2) with αi(i = 1, 2) denoting the weight of infected

humans and media reports.

In this paper, on the basis of [7] and [16], we develop a new SEIR model to analysis the effects of awareness

programs on epidemic. In this paper, the unaware humans are the humans without disease awareness or the

humans who have disease awareness but do not take effective protective measures. Since people will get the

progress of the epidemic through the media, when the new cases reported by the media decrease, some aware

individuals may no longer take protective measures, thus becoming unaware individuals. Therefore, the loss of

awareness is related to media reports. Further, we assume that the increase of infected and exposed individuals

will have an impact on media reports [16]. In addition, we assume that the medical personals and hospitalized

humans have taken necessary protective items. That is, only exposed and infected humans can spread diseases,

the hospitalized humans can not spread the virus. The birth and death of humans are considered in our model,

so the total population is not constant.

The reminder of the paper is organized as follows. The SEIR epidemic model is established in Section 2. The

basic reproduction number and the stability analysis of equilibria are given in Section 3. The sensitivity analysis

of basic reproduction number and endemic equilibrium are discussed, effects of parameters on system dynamics

and the numerical simulations are performed in Section 4. We end with Section 5 of discussion.

2 The model description

In this section, we formulate an SEIR model based on some realistic assumptions. The total population N(t)

is sub-divided into six compartments: unaware susceptible (S), aware susceptible (Sa), exposed (E), infected (I),

hospitalized (H) and recovered (R). M represents the cumulative density of awareness programs driven by the

media reports. The transition relations of all compartments are summarised in Fig. 1. Dotted lines represent the

effects of the exposed and infected humans on the awareness programs.



Fig. 1. Classes and transitions in the model.

Under the above assumptions, the relevant differential equations are

dS
dt = A− θβS(I + δE)− αSM + ωSaM − dS,
dSa

dt = −βSa(I + δE) + αSM − ωSaM − dSa,
dE
dt = θβS(I + δE) + βSa(I + δE)− (d+ σ)E,

dI
dt = σE − (d+ µ+ γ1 + γ2) I,

dH
dt = γ1I − (µ+ d+ γ)H,

dR
dt = γ2I + γH − dR,
dM
dt = c+ η(σE + γ1I)− τM.

(2.1)

With initial conditions S(0) > 0, Sa(0) > 0, E(0) > 0, I(0) > 0, H(0) > 0, R(0) > 0,M(0) > 0. Note that

dN
dt = A− dN − µ(I +H) ≥ 0.

So we consider only solutions with initial conditions inside the biologically feasible region

Γ = {(S, Sa, E, I,H,R,M) ∈ R7
+|S + Sa + E + I +H +R ≤ A

d , 0 < M ≤ c
τ }.

Here, A is the constant recruitment rate to the unaware susceptible humans, β is infection rate from aware

susceptible to exposed humans, which is increased by the factors θ > 1 for unaware susceptible humans, and the

increase occurs due to their failure to take enough protective measures. δ is the relative infection rate of exposed

to infected humans. Disease awareness is assumed to spread from the aware susceptible to the unaware susceptible

humans at a rate α and to be lost at a rate ω. d is the natural death rate. 1/σ is the incubation period. µ

is the disease induced death rate. γ1 is the hospitalized rate for infected humans. γ2 and γ are the cured rates

for infected and hospitalized humans, respectively. c is the constant recruitment rate of awareness programs. τ

represents the spontaneous disappearance rate of awareness programs.

Since the variables R and H do not appear in the other five equations in system (2.1), for convenience of

calculation, the system (2.1) is simplified as follows

dS
dt = A− θβS(I + δE)− αSM + ωSaM − dS,
dSa

dt = −βSa(I + δE) + αSM − ωSaM − dSa,
dE
dt = θβS(I + δE) + βSa(I + δE)− (d+ σ)E,

dI
dt = σE − (d+ µ+ γ1 + γ2) I,

dM
dt = c+ η(σE + γ1I)− τM.

(2.2)



3 Analysis of the model

3.1 Disease-free equilibrium and basic reproduction number

It is easy to obtain the system (2.2) has a disease-free equilibrium

P 0 =
(
S0, S0

a, E
0, I0,M0

)
= ( (ωc+dτ)A

d(αc+ωc+dτ) ,
αcA

d(αc+ωc+dτ) , 0, 0,
c
τ ).

As we all know, the transmissibility of a virus at the initial stage of an epidemic is measured by the basic

reproduction numberR0, which measures the average number of new infections generated by one infected individual

in the population during the average infection period. According to the concepts of next generation matrix and

the basic reproduction number presented in [17], we define

F =

 θβδS + βδSa θβS + βSa

0 0

 , V =

 d+ σ 0

−σ d+ µ+ γ1 + γ2

 ,

FV −1
(
P 0
)

=

 θβδS
0 + βδS0

a

d+ σ
+

(θβS0 + βS0
a)σ

(d+ σ)(d+ µ+ γ1 + γ2)

βS0θ + βS0
a

d+ µ+ γ1 + γ2

0 0

 .
So a straightforward calculation of ρ(FV −1) gives that the basic reproduction number of disease is R0 and

R0 =
βA((d+ µ+ γ1 + γ2)δ + σ)(dτθ + cωθ + cα)

d(dτ + cα+ cω)(d+ σ) (d+ µ+ γ1 + γ2)
.

3.2 Existence of endemic equilibrium

Theorem 3.1 If R0 > 1, there exists a unique endemic equilibrium for system (2.2), which is recorded as P ∗ =

(S∗, S∗
a , E

∗, I∗,M∗).

Proof. It is easy to obtain the endemic equilibrium P ∗ satisfies

A− θβS(I + δE)− αSM + ωSaM − dS = 0,

−βSa(I + δE) + αSM − ωSaM − dSa = 0,

θβS(I + δE) + βSa(I + δE)− (d+ σ)E = 0,

σE − (d+ µ+ γ1 + γ2) I = 0,

c+ η(σE + γ1I)− τM = 0.

(3.1)

From the 4th and 5th equations of system (3.1), obtain

E∗ =
(d+ µ+ γ1 + γ2) I∗

σ
, M∗ =

(d+ µ+ γ1 + γ2) I∗η + ηγ1I
∗ + c

τ
. (3.2)

Then substituting (3.2) into the third equation of system (3.1) and obtain

S∗
a =

((βτθ(δT + σ) + αησ(T + γ1))I∗ + σ(αc+ dτ))S∗ −Aστ
σωηI∗(T + γ1) + σωc

, (3.3)



substituting (3.2) and (3.3) into the second equation of system (3.1) and obtain

S∗ =
((ω (T + γ1) ησ + τβσ + τβδT ) I∗ + σ(ωc+ dτ)) (d+ σ)T

(((T + γ1) (ωθ + α)ησ + θτβσ + θτβδT ) I∗ + σ(θdτ + cωθ + cα))β(δT + σ)
. (3.4)

Then

S∗
a + S∗ = b1I

∗+b2
c1I∗+c2

,

where

b1 = ((T + γ1)(ω + α)ησ + τβσ + τβδT )(d+ σ)T, b2 = (dτ + cω + cα)σ(d+ σ)T,

c1 = β ((T + γ1) (ωθ + α)ησ + θτβσ + θτβδT ) (δT + σ), c2 = βσ(θdτ + cωθ + cα)(δT + σ),

T = d+ γ1 + γ2 + µ.

From system (2.1), we have S∗
a + S∗ = A−(d+σ)E∗

d , so S∗
a + S∗ = Aσ−(d+σ)TI∗

dσ . We denote

f(I) =b1I + b2 = b1I + (dτ + cω + cα)σ(d+ σ)T,

g(I) =
Aσ − (d+ σ)TI

dσ
(c1I + c2)

=− c1(d+ σ)T

dσ
I2 +

Ac1 − β(d+ σ)(θdτ + cωθ + cα)(δT + σ)T

d
I +

βAσ(θdτ + cωθ + cα)(δT + σ)

d
.

Then at the endemic equilibrium we have

f(I) = g(I), I ∈
(

0,
Aσ

T (d+ σ)

)
. (3.5)

We define

ϕ(I) =f(I)− g(I)

=
c1(d+ σ)T

dσ
I2 +

(
b1 −

Ac1 − β(d+ σ)(θdτ + cωθ + cα)(δT + σ)T

d

)
I

+ (dτ + cω + cα)σ(d+ σ)T − βAσ(θdτ + cωθ + cα)(δT + σ)

d
.

Assuming that I∗1 and I∗2 are the roots of ϕ(λ) = 0 and obtain

I∗1 =

√
(Tc2(d+ σ) + (b1d+Ac1)σ)2 − 4c1dσ(Tb2(d+ σ) +Ab1σ)− Tc2(d+ σ)− b1dσ +Ac1σ

2c1T (d+ σ)

<

√
(Tc2(d+ σ) + (b1d+Ac1)σ)2 − Tc2(d+ σ)− b1dσ +Ac1σ

2c1T (d+ σ)
<

Aσ

T (d+ σ)
,

I∗2 =
−
√

(Tc2(d+ σ) + (b1d+Ac1)σ)2 − 4c1dσ(Tb2(d+ σ) +Ab1σ)− Tc2(d+ σ)− b1dσ +Ac1σ

2c1T (d+ σ)
.

According to the V ieta theorem,

I∗1 I
∗
2 = dσ2T (d+σ)(dτ+cω+cα)−βAσ2(θdτ+cωθ+cα)(δT+σ)

c1(d+σ)T
= dσ2T (d+σ)(dτ+cω+cα)

c1(d+σ)T
(1−R0).

So if R0 > 1, then I∗1 I
∗
2 < 0, and there exists a unique positive root of equation ϕ(I) = 0, which is I∗1 . So there

is only an endemic equilibrium P ∗ for system (2.2).



3.3 The stability of equilibria

Theorem 3.2 The disease-free equilibrium P 0 is locally asymptotically stable if R0 < 1 and it is unstable if

R0 > 1.

Proof. The Jacobian matrix of system (2.2) at P 0 is

J
(
P 0
)

=



−αcτ − d
ωc
τ −θβδS0 −θβS0 −αS0 + ωS0

a

αc
τ −ωcτ − d −βδS0

a −βS0
a αS0 − ωS0

a

0 0 βδ(θS0 + S0
a)− d− σ θβS0 + βS0

a 0

0 0 σ −d− µ− γ1 − γ2 0

0 0 ησ ηγ1 −τ


.

The characteristic equation of J
(
P 0
)

is

Φ(λ) = (λ+ d)
(
λ+ ωc

τ + αc
τ + d

)
(λ+ τ)(λ2 + k1λ+ k2) = 0,

where

k1 = (d+ µ+ γ1 + γ2) + (d+ σ)
(

1− βδ(θS0+S0
a)

(d+σ)

)
, k2 = (d+ σ)(d+ µ+ γ1 + γ2)(1−R0).

where λ denotes the eigenvalue and

λ1 = −d, λ2 = −
(
ωc
τ + αc

τ + d
)
, λ3 = −τ .

We define g(λ) = λ2 +k1λ+k2, then λ4 and λ5 are the roots of equation g(λ) = 0. If R0 < 1, then
βδ(θS0+S0

a)
(d+σ) < 1,

so λ4 + λ5 = −k1 < 0, λ4λ5 = k2 > 0. Then all roots of Φ(λ) have negative real parts. Hence, the disease-free

equilibrium P 0 is locally asymptotically stable if R0 < 1 and it is unstable if R0 > 1.

Theorem 3.3 If R0 < 1, then the disease-free equilibrium P 0 is globally asymptotically stable.

Proof. Motivated by the method in [18], consider a Lyapunov function defined by

V1 = S − S0 − S0 ln
S

S0
+ Sa − S0

a − S0
a ln

Sa
S0
a

+ E +
β(θS0 + S0

a)

d+ µ+ γ1 + γ2
I.

For simplicity, denote X = S
S0 , Y = Sa

S0
a

, Z1 = E, Z2 = I, Z3 = M
M0 . So the derivative of function V1 along

solutions of system (2.2) is given by

V̇1(P 0) =Ṡ

(
1− 1

X

)
+ Ṡq

(
1− 1

Y

)
+ Ė +

β(θS0 + S0
a)

d+ µ+ γ1 + γ2
İ

=X
(
−dS0

)
+

1

X
(−A) + Y

(
−dS0

a

)
+
Y Z3

X

(
−ωS0

aM
0
)

+
XZ3

Y

(
−αS0M0

)
+ Z1

(
βσ(θS0 + S0

a)

d+ µ+ γ1 + γ2
− (d+ σ) + βδ

(
θS0 + S0

a

))
+ Z3

(
αM0S0 + ωS0

aM
0
)

+A+ dS0 + dS0
a.

Denote



Ġ1 =B1

(
X +

1

X
− 2

)
+B2

(
Z3 +

1

Z3
− 2

)
+B3

(
XZ3

Y
+

1

X
+

1

Z3
+ Y − 4

)
+B4

(
XZ3

Y
+
Y Z3

X
+

1

Z3
+

1

Z3
− 4

)
+ Z1(d+ σ) (R0 − 1) .

Let V̇1(P 0) = Ġ1, since their coefficients correspond to equal, we can obtainB1 = −dS0 = − (ωc+dτ)A
(αc+ωc+dτ) , B2 = αM0S0 + ωS0

aM
0 = αcA(dτ+2ωc)

dτ(αc+ωc+dτ) ,

B3 = −dS0
aM

0 = − αc2A
τ(αc+ωc+dτ) , B4 = −ωS0

aM
0 = − αωc2A

τd(αc+ωc+dτ) .

Denote D1 = Z3 + 1
Z3
− 2, D2 = XZ3

Y + 1
X + 1

Z3
+ Y − 4,

D3 = XZ3

Y + Y Z3

X + 1
Z3

+ 1
Z3
− 4.

According to the properties of Mean Inequality, we can obtain D3 ≥ 2(Z3 + 1
Z3
− 2), so

V̇1(P 0) =Ġ1 ≤ B1

(
X +

1

X
− 2

)
+B2

(
Z3 +

1

Z3
− 2

)
+B3

(
XZ3

Y
+

1

X
+

1

Z3
+ Y − 4

)
+ 2B4

(
Z3 +

1

Z3
− 2

)
+ Z1(d+ σ) (R0 − 1)

=− (ωc+ dτ)A

(αc+ ωc+ dτ)

(
X +

1

X
− 2

)
+

αcA

(αc+ ωc+ dτ)

(
Z3 +

1

Z3
− 2

)
+B3

(
XZ3

Y
+

1

X
+

1

Z3
+ Y − 4

)
+ Z1(d+ σ) (R0 − 1)

=− ((ω − α)c+ dτ)A

(αc+ ωc+ dτ)

(
X +

1

X
− 2

)
+B3

(
XZ3

Y
+

1

X
+

1

Z3
+ Y − 4

)
+ Z1(d+ σ) (R0 − 1)

Since when R0 < 1, the disease does not spread, so human’s protection measures are reduced, that is the awareness

spread rate α is less than the awareness loss rate ω [7], which is ω − α > 0. So V̇1 ≤ 0. V̇1 = 0 if and only if

X = 1
X = 1

Z3
= Y = 1, Z1 = 0. That is S = S0, E = 0, Sa = S0

a, M = M0. That is {(S, Sa, E, I,M)) |V̇1 = 0} ={
P 0
}

. By LaSalle’s Invariance Principle[19], the disease-free equilibrium P 0 is globally asymptotically stable.

Theorem 3.4 If R0 > 1, then the endemic equilibrium P ∗ is globally asymptotically stable.

Proof. [See Appendix A] Consider a Lyapunov function defined by

V2 =S − S∗ − S∗ ln
S

S∗ + Sa − S∗
a − S∗

a ln
Sa
S∗
a

+ E − E∗ − E∗ ln
E

E∗

+
β(θS∗ + S∗

a)

d+ µ+ γ1 + γ2
(I − I∗ − I∗ ln

I

I∗
).



For simplicity, denote X = S
S∗ , Y = Sa

S∗
a

, Z1 = E
E∗ , Z2 = I

I∗ , Z3 = M
M∗ . So the derivative of function V2 along

solutions of system (2.2) is given by

V̇2(P ∗) =Ṡ

(
1− 1

X

)
+ Ṡa

(
1− 1

Y

)
+ Ė

(
1− 1

Z1

)
+

β(θS∗ + S∗
a)

d+ µ+ γ1 + γ2
İ

(
1− 1

Z2

)
=X(−dS∗ − βδθE∗S∗) +

1

X
(−A) + Y (−βδE∗S∗

a − dS∗
a) +

Y Z3

X
(−ωS∗

aM
∗)

+
XZ3

Y
(−αS∗M∗) + Z1 (−(d+ σ)E∗ + βδE∗ (θS∗ + S∗

a) + βI∗ (θS∗ + S∗
a))

+ Z3 (αM∗S∗ + ωS∗
aM

∗) +
Y Z2

Z1
(−βI∗S∗

a) +
Z1

Z2
(−βI∗ (θS∗ + S∗

a))

+
XZ2

Z1
(−βθI∗S∗) +A+ dS∗ + dS∗

a + (d+ σ)E∗ + βI∗(θS∗ + S∗
a).

Denote

Ġ2 = B1

(
X +

1

X
− 2

)
+B2

(
Z3 +

1

Z3
− 2

)
+B3

(
Z1

Z2
+
XZ2

Z1
+

1

X
− 3

)
+B4

(
XZ3

Y
+

1

X
+

1

Z3
+ Y − 4

)
+B5

(
XZ3

Y
+
Y Z3

X
+

1

Z3
+

1

Z3
− 4

)
+B6

(
XZ3

Y
+

1

X
+

1

Z3
+
Z1

Z2
+
Y Z2

Z1
− 5

)
.

Let V̇2(P ∗) = Ġ2, since their coefficients correspond to equal, we can obtain
B1 = −dS∗ − βδθE∗S∗, B2 = αM∗S∗ + ωS∗

aM
∗,

B3 = −βθI∗S∗, B4 = −(βδE∗ + d)S∗
a ,

B5 = −ωS∗
aM

∗, B6 = −βI∗S∗
a .

Denote 
D1 = Z3 + 1

Z3
− 2, D2 =

(
XZ3

Y + 1
X + 1

Z3
+ Y − 4

)
,

D3 =
(
XZ3

Y + Y Z3

X + 1
Z3

+ 1
Z3
− 4
)
, D4 =

(
XZ3

Y + 1
X + 1

Z3
+ Z1

Z2
+ Y Z2

Z1
− 5
)
,

Dmin = min{Di}, i = 1, 2, 4.

According to the properties of Mean Inequality, we can obtain D3 ≥ 2(Z3 + 1
Z3
− 2), so

V̇2(P ∗) = Ġ2 ≤B1

(
X +

1

X
− 2

)
+B3

(
Z1

Z2
+
XZ2

Z1
+

1

X
− 3

)
+ (B2 +B4 + 2B5 +B6)Dmin

=− (dS∗ + βδθE∗S∗)

(
X +

1

X
− 2

)
− βθI∗S∗

(
Z1

Z2
+
XZ2

Z1
+

1

X
− 3

)
+ (αM∗S∗ + ωS∗

aM
∗ − (βδE∗ + d)S∗

a − 2ωS∗
aM

∗ − βI∗S∗
a)Dmin

=− (dS∗ + βδθE∗S∗)

(
X +

1

X
− 2

)
− βθI∗S∗

(
Z1

Z2
+
XZ2

Z1
+

1

X
− 3

)
.

Since P ∗ exists under the condition R0 > 1, so if R0 > 1, then V̇2 ≤ 0. V̇2 = 0 if and only if X = 1
X , Z1 = 1

Z1
,

Z2 = 1
Z2

. That is S = S∗, E = E∗, I = I∗. That is {(S, Sa, E, I,M)) |V̇2 = 0} = {P ∗}. By LaSalle’s Invariance

Principle[19], the endemic equilibrium P ∗ is globally asymptotically stable.



4 Numerical simulation

Since the data of the recent outbreak of COVID-19 is available, so the parameter selection in this paper is based

on the parameter of disease COVID-19[20]. Since Wuhan implemented the strategy of closing the city on January

23, 2020, the data we fitted start from January 23, 2020. Data information includes the cumulative number of

confirmed cases and the number of death cases, shown in Fig. 2.

Table 1. Estimated initial values of variables and parameters for system (2.2).

Parameters Description Value Source

A The constant recruitment rate to S 0.017 data
θ Disease intensity increasing factor 75 [4]
β Infection rate from Sa to E 0.027 [21,4]
θβ Infection rate from S to E 0.027 [21,4]
δ Relative infection probability of E compared with I 0.23 [4]
α Awareness spreading rate from S to Sa 0.152 Fitted
ω Awareness losing rate from Sa to S 3 × 10−6 Fitted
γ1 Hospitalized rate of I to H 0.11 [16]
γ2 Recovery rate of I 0.330 [16]
γ Recovery rate of H 0.13 [16]
σ Progression rate of E to I 0.2 [16]
d Natural death rate 0.01 data
µ Disease-induced death rate 0.003 [16]
c Natural recruitment rate of media reports 0.8 [4]
η Implementation rate affected by epidemic 2.951 [16]
τ Depletion rate of media reports 0.735 [16]

Variables Description Initial quantity Source

S Unaware susceptible humans 9.00 × 106 [22]
Sa Aware humans 2132 [22]
E Exposed humans 4000 [22]
I Infected humans 935 [22]
H Hospitalized humans 494 [22]
R Recovered humans 34 [22]
M Media items 163 [16]

Accord to the data in Table 1, we calculate and assume that initial values of population density are S(0) =

0.999156823, Sa(0)=2.366894E-04, E(0)=4.4407E-04, I(0)=1.03801E-04, H(0)=5.48426E-05, R(0)=3.77459E-06,

M(0)=1.80958E-05, respectively, that is, the initial values of total population is N(0) = 1. Then we fit the model

to the daily data of confirmed cases and deaths as shown in Fig. 2. It is easy to see that some values on the fitting

curve are larger than the actual values, the reason is that after a period of disease outbreak: (i)The hospitals

had some treatment experiences, so the recovery rate of patients increased, (ii) The government actively adopts

protective measures such as home isolation and disinfection, which reduces the infection rate, thus reducing the

number of infected and hospitalized humans.
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Fig. 2. The black curves are the fitting curves, the blue circles represent (a) the density of confirmed cases per

day from Jan 23 to Jul 24, (b) the cumulative density of disease-induced death from Jan 23 to Apr 16.

4.1 Sensitivity analysis based on perturbation of fixed point estimations

Understanding the relative importance of parameters is helpful to guide in developing of efficient intervention

strategies in infectious disease areas where resources are scarce. Sensitivity analysis is commonly used to determine

the robustness of system predictions to parameter values. In this section, sensitivity analysis using the fixed point

estimation has been applied to determine the relative importance of different parameters responsible[23].

Definition. The normalized forward sensitivity index of a variable, h, that depends differentially on a parameter,

m, is defined as:

Υm = Υh
m :=

∂h

∂m
× m

h
. (4.1)

4.1.1 Sensitivity analysis of R0

Since the initial disease transmission is directly related to basic reproduction number R0, thus, we calculate

the sensitivity indexes of R0 are given in Table 2.

Table 2. Sensitivity indexes of R0

Parameters Sensitivity indexes of R0 Corresponding % changesa

A ΥA = +1.0000000000 −1.00000000
θ Υθ = +0.8193245475 −1.22051752
β Υβ = +1.0000000000 −1.00000000
δ Υδ = +0.3425161904 −2.91957000
α Υα = −0.7623081596 +1.32823580
ω Υω = +0.00000000001 −4015.71245
γ1 Υγ1 = −0.159653905 +6.36028540
γ2 Υγ2 = −0.478961716 +2.12009510
σ Υσ = −0.2948971420 +3.50418150
µ Υµ = −0.0043541974 +233.210464
c Υc = −0.7620593242 +1.32867530
τ Υτ = +0.7620593248 −1.60513058

a The corresponding % changes needed to affect a 1% decrease in the value of R0.

From Table 2, we note that the sensitivity index may depend on several parameters of the system, also can



be a constant. For example, ΥA = Υβ = +1 indicates that increasing (decreasing) A or β by a given percentage

increases (decreases) always R0 by that same percentage. Except ΥA and Υβ , other indexes are the functions of

other parameters, the sensitivity indexes of R0 will change with the changes in parameter values. The sensitivity

indexes ΥA,Υθ,Υβ ,Υδ,Υω and Υτ are positive impacts on R0 and the rest of the parameters have negative

impacts. That is, 1% increase in δ, resulting in 0.3425161904% increase in R0, on the other hand 1% increase in

α, will decrease R0 by 0.7623081596%. It’s easy to see parameters A, β, θ, α, τ and c are most sensitive to R0, a

small variation in these parameter will lead to relatively large quantitative change in R0.

4.1.2 Sensitivity analysis of the P ∗

Sensitivity analysis of the endemic equilibrium has been used to determine the relative importance of different

parameters responsible for equilibrium disease prevalence[23,24]. So by carrying out similar argument to the R0,

obtain

Table 3. The sensitivity indexes of P ∗

Parm Sensitivity indexes

S Sa E I M

A −0.013436645 −1.007742642 +0.523538652 +0.231142893 +0.522481371

θ −0.9874059e-4 −0.001838875 +0.922673e-4 +0.407361e-4 +0.920810e-4

β −0.243485264 −4.582431196 +0.229806228 +0.101459704 +0.229342137

δ −0.013416143 −0.252494927 +0.012662422 +0.005590473 +0.012636851

α −0.012016129 +0.901210758 −0.042342549 −0.018694282 −0.042257039

ω +0.197431496 −14.90138000 +0.695710988 +0.307157169 +0.694306005

γ1 +0.013066122 +0.246794533 −0.012374363 −0.005874713 −0.011782796

γ2 +0.013078626 +0.245856439 −0.012330301 −0.005855260 −0.012487102

σ +0.013281899 +0.250144895 −0.014553368 −0.005493466 −0.012417572

µ +0.013078626 +0.245856439 −0.012330301 −0.005855260 −0.012487102

c −0.002273524 +0.170513988 −0.008011467 −0.003537072 +0.128059134

τ +0.002484162 −0.186311053 +0.008753715 +0.003864775 −0.139923580

The sensitivity indexes of endemic equilibrium P ∗ = (0.09244, 1.5189, 0.004221, 0.001864, 0.001434), with re-

spect to the twelve input parameters, are given in Table 1, in particular, here β = 0.037. From Table 3,

the most sensitive parameter for S∗ is β followed by ω,A, δ, σ, µ, γ2, γ1, α, τ, c, θ. The most sensitive parame-

ter for S∗
a is ω followed by β,A, α, δ, σ, γ1, γ2, µ, τ, c, θ. The most sensitive parameter for E∗ is ω followed by

A, β, α, σ, δ, γ1, γ2, µ, τ, c, θ. The most sensitive parameter for I∗ is ω followed by A, β, α, γ1, γ2, µ, δ, σ, τ, c, θ. The

most sensitive parameter for M∗ is ω followed by A, β, τ, c, α, δ, µ, γ2, σ, γ1, θ.

4.2 Effects of awareness programs on system dynamics

Since we are focusing on the awareness impacts on the transmission of epidemic, accord to the data in Table

1, we plotted the density of exposed(E(t)), infected and hospitalized humans (I(t) + H(t)) with different values

of the awareness parameters α, ω and media parameters c, η, τ , as shown in Fig. 3.
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Fig. 3. The effects of α, c, τ and η on the density of exposed, infected and hospitalized humans.

Fig. 3 illustrates that increasing α, c and η by three times from its baseline value would lead to the peak time

of humans advanced and decrease the peak size of humans. Otherwise, decreasing τ could lead to the peak time

of humans advanced and decrease the peak size of humans.

4.3 Numerical verification of global stability of equilibria

In this section, we give simulation result for the exposed, infected and hospitalized humans by using the data

in the Table 1. In particular, we take β = 0.037 in studying endemic equilibrium, and take β = 0.027 at the

disease-free equilibrium.
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Fig. 4. Dynamical behavior around disease-free equilibrium P 0.

Fig. 4 depicts variations of the density of humans as a function of time. Fig. 4(a,b,c) show the trajectories



of E, I and H with different initial conditions x = x(0), x1 = 5x(0), x2 = 10x(0), x3 = 20x(0) and x4 =

40x(0),(x = E or I or H). Fig. 4(d) depicts the global stability of disease-free equilibrium, and it is clear that

all solutions converge to the DFE (P 0). In this case, β = 0.027, R0 = 0.7663 and disease-free equilibrium

P 0 = (0.09692, 1.60307, 0, 0, 0, 1.08844). Similarly, for β = 0.037, R0 = 1.0497 and endemic equilibrium P ∗ =

(0.09244, 1.5189, 0.004221, 0.001864, 0.001434, 1.0926), and all solutions converge to the EE (P ∗) as shown in Fig.

5.
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Fig. 5. Dynamical behavior around endemic equilibrium P ∗.

5 Discussion

In order to study the effects of disease awareness on the spread of infectious diseases, we have proposed and

analyzed an SEIR mathematical model. A detailed analysis shows that the proposed system posses two equilibria,

namely one disease free and one endemic whose existence and asymptotic stability criteria depend on the numerical

value of basic reproduction number R0. That is if R0 < 1, the disease-free equilibrium P 0 is globally asymptotically

stable, if R0 > 1, the endemic equilibrium P ∗ is globally asymptotically stable, but the disease-free equilibrium

P 0 is unstable. To control the spread of disease better, we analyzed the sensitivity of R0 and P ∗ with respect

to different parameters, respectively, we also discussed the effects of awareness and media parameters on system

dynamics. The results show that increasing the awareness transmission can not only directly reduce the incidence

of diseases, but also reduce the incidence of diseases by reducing the disease infection rate and increasing the

recovery rate, and so on.

Hence, when an epidemic occurs in a region, we should (1) reduce the humans input as much as possible so as

to reduce the susceptible humans(reduce A), (2) go to densely populated places as little as possible(reduce β and

θ), (3) actively take protective measures, wash hands frequently and wear masks, etc(increase α), (4) intensify

epidemic propaganda effects and actively report the progress of epidemic(increase c and reduce τ).
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Appendix A.The global stability of endemic equilibrium

Consider the following positive definite function

V2 =S − S∗ − S∗ ln
S

S∗ + a1(Sa − S∗
a − S∗

a ln
Sa
S∗
a

) + a2(E − E∗ − E∗ ln
E

E∗ )+

+ a3(I − I∗ − I∗ ln
I

I∗
) + a4(M −M∗ −M∗ ln

M

M∗ ).

For simplicity, denote X = S
S∗ , Y = Sa

S∗
a

, Z1 = E
E∗ , Z2 = I

I∗ , Z3 = M
M∗ . Then the derivative of function V2 along

solutions of system (2.2) is given by

V̇2(P ∗) =Ṡ

(
1− 1

X

)
+ Ṡa

(
1− 1

Y

)
+ Ė

(
1− 1

Z1

)
+ İ

(
1− 1

Z2

)
+ Ṁ

(
1− 1

Z3

)
=X(−dS∗ − a2βδθE∗S∗) +

1

X
(−A) + Y (−a2βδE∗S∗

a − a1dS∗
a) +XZ1 (a2βδθE

∗S∗ − βδθE∗S∗)

+XZ2 (a2βθI
∗S∗ − βθI∗S∗) + Z1 (−a2(d+ σ)E∗ + βδE∗ (θS∗ + a1S

∗
a) + a3σE

∗ + a4ησE
∗)

+ Z2 (−a3 (d+ µ+ γ1 + γ2) + a1βS
∗
a + a4ηγ1 + βθS∗) I∗ +XZ3 (−αS∗M∗ + a1αS

∗M∗)

+ Z3 (−a4τM∗ + αM∗S∗ + a1ωS
∗
aM

∗) + Y Z1 (−a1βδE∗S∗
a + a2βδE

∗S∗
a)

+ Y Z2 (−a1βI∗S∗
a + a2βI

∗S∗
a) + Y Z3 (ωS∗

aM
∗ − a1ωS∗

aM
∗) +

Y Z3

X
(−ωS∗

aM
∗)

+
XZ3

Y
(−a1αS∗M∗) +

XZ2

Z1
(−a2βθI∗S∗) +

Y Z2

Z1
(−a2βI∗S∗

a)

+
Z1

Z2
(−a3σE∗) +

Z1

Z3
(−a4σηE∗) +

Z2

Z3
(−a4ηγ1I∗) +

1

Z3
(−a4c)

+A+ a4 (c+ τM∗) + dS∗ + a1dS
∗
a + a2E

∗(d+ σ) + a3I
∗ (d+ µ+ γ1 + γ2) .

There are following seven cases{
X, 1

X

}
,
{
Z3,

1
Z3

}
,
{
Z1

Z2
, XZ2

Z1
, 1
X

}
,
{
XZ3,

1
X ,

1
Z3

}
,{

XZ3

Y , 1
X ,

1
Z3
, Y
}
,
{
XZ3

Y , Y Z3

X , 1
Z3
, 1
Z3

}
,
{
Z2Y
Z1

, XZ3

Y , 1
X ,

Z1

Z2
, 1
Z3

}
.

Denote

Ġ2 =B1

(
X +

1

X
− 2

)
+B2

(
Z3 +

1

Z3
− 2

)
+B3

(
Z1

Z2
+
XZ2

Z1
+

1

X
− 3

)
+B4

(
XZ3 +

1

X
+

1

Z3
− 3

)
+B5

(
XZ3

Y
+

1

X
+

1

Z3
+ Y − 4

)
+B6

(
XZ3

Y
+
Y Z3

X
+

1

Z3
+

1

Z3
− 4

)
+B7

(
Z2Y

Z1
+
XZ3

Y
+

1

X
+
Z1

Z2
+

1

Z3
− 5

)
.



In the following we let V̇2(P ∗) = Ġ2 to determine the coefficients ai(i = 1, 2, 3, 4) and Bi(i = 1, 2, ..., 7). Since

the terms Z1, Z2, Z1X,Z2X,Z1Y,Z2Y, Z3Y,
Z1

Z3
and Z2

Z3
of function V̇2(P ∗) do not appear in function Ġ2, their

coefficients should be equal to zero, so ai(i = 1, 2, 3, 4) can be uniquely determined as

a1 = a2 = 1, a3 =
β(θS∗+S∗

a)
d+µ+γ1+γ2

, a4 = 0.

Then by V̇2(P ∗) = Ġ2, comparing the coefficients of the like terms between them yields, which gives
B1 = −dS∗ − βδθE∗S∗, B2 = αM∗S∗ + ωS∗

aM
∗,

B3 = −βθI∗S∗, B4 = 0, B5 = −(βδE∗ + d)S∗
a ,

B6 = −ωS∗
aM

∗, B7 = −βI∗S∗
a .
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