References
1. Lu, M., Supercapacitors: materials, systems, and applications .
John Wiley & Sons: 2013.
2. Simon, P.; Gogotsi, Y., Materials for electrochemical capacitors.Nature Materials 2008, 7 (11), 845-854.
3. Merlet, C.; Rotenberg, B.; Madden, P. A.; Taberna, P.-L.; Simon, P.;
Gogotsi, Y.; Salanne, M., On the molecular origin of supercapacitance in
nanoporous carbon electrodes. Nature Materials 2012,11 (4), 306-310.
4. Zhan, C.; Lian, C.; Zhang, Y.; Thompson, M. W.; Xie, Y.; Wu, J.;
Kent, P. R.; Cummings, P. T.; Jiang, D. e.; Wesolowski, D. J.,
Computational insights into materials and interfaces for capacitive
energy storage. Advanced Science 2017, 4 (7),
1700059.
5. Vatamanu, J.; Bedrov, D., Capacitive Energy Storage: Current and
Future Challenges. Journal of Physical Chemistry Letters2015, 6 (18), 3594-3609.
6. Simon, P.; Gogotsi, Y., Charge storage mechanism in nanoporous
carbons and its consequence for electrical double layer capacitors.Philosophical Transactions Mathematical Physical & Engineering
Sciences 2010, 368 (1923), 3457-3467.
7. Salanne, M.; Rotenberg, B.; Naoi, K.; Kaneko, K.; Taberna, P.-L.;
Grey, C. P.; Dunn, B.; Simon, P., Efficient storage mechanisms for
building better supercapacitors. Nature Energy 2016,1 (6), 1-10.
8. Huang, S.; Zhu, X.; Sarkar, S.; Zhao, Y., Challenges and
opportunities for supercapacitors. APL Materials 2019,7 (10), 100901.
9. Simon, P.; Gogotsi, Y.; Dunn, B., Where do batteries end and
supercapacitors begin? Science 2014, 343 (6176),
1210-1211.
10. Gogotsi, Y.; Nikitin, A.; Ye, H.; Zhou, W.; Fischer, J. E.; Yi, B.;
Foley, H. C.; Barsoum, M. W., Nanoporous carbide-derived carbon with
tunable pore size. Nature materials 2003, 2 (9),
591-594.
11. Dash, R.; Chmiola, J.; Yushin, G.; Gogotsi, Y.; Laudisio, G.;
Singer, J.; Fischer, J.; Kucheyev, S., Titanium carbide derived
nanoporous carbon for energy-related applications. Carbon2006, 44 (12), 2489-2497.
12. Chmiola, J.; Yushin, G.; Gogotsi, Y.; Portet, C.; Simon, P.;
Taberna, P.-L., Anomalous increase in carbon capacitance at pore sizes
less than 1 nanometer. Science 2006, 313 (5794),
1760-1763.
13. Largeot, C.; Portet, C.; Chmiola, J.; Taberna, P.-L.; Gogotsi, Y.;
Simon, P., Relation between the ion size and pore size for an electric
double-layer capacitor. Journal of the American Chemical Society2008, 130 (9), 2730-2731.
14. Kondrat, S.; Georgi, N.; Fedorov, M. V.; Kornyshev, A. A., A
superionic state in nano-porous double-layer capacitors: insights from
Monte Carlo simulations. Physical Chemistry Chemical Physics2011, 13 (23), 11359-11366.
15. Shim, Y.; Kim, H. J., Nanoporous Carbon Supercapacitors in an Ionic
Liquid: A Computer Simulation Study. Acs Nano 2010,4 (4), 2345-2355.
16. Feng, G.; Cummings, P. T., Supercapacitor Capacitance Exhibits
Oscillatory Behavior as a Function of Nanopore Size. Journal of
Physical Chemistry Letters 2011, 2 (22), 2859-2864.
17. Wu, P.; Huang, J.; Meunier, V.; Sumpter, B. G.; Qiao, R., Complex
capacitance scaling in ionic liquids-filled nanopores. Acs Nano2011, 5 (11), 9044-9051.
18. Xing, L.; Vatamanu, J.; Borodin, O.; Bedrov, D., On the Atomistic
Nature of Capacitance Enhancement Generated by Ionic Liquid Electrolyte
Confined in Subnanometer Pores. Journal of Physical Chemistry
Letters 2013, 4 (1), 132-140.
19. Huang, J.; Sumpter, B. G.; Meunier, V., Theoretical model for
nanoporous carbon supercapacitors. Angewandte Chemie2008, 120 (3), 530-534.
20. Jiang, D.-e.; Jin, Z.; Wu, J., Oscillation of capacitance inside
nanopores. Nano Letters 2011, 11 (12), 5373-5377.
21. Prehal, C.; Koczwara, C.; Jäckel, N.; Schreiber, A.; Burian, M.;
Amenitsch, H.; Hartmann, M. A.; Presser, V.; Paris, O., Quantification
of ion confinement and desolvation in nanoporous carbon supercapacitors
with modelling and in situ X-ray scattering. Nature Energy2017, 2 (3), 1-8.
22. Xu, K.; Shao, H.; Lin, Z.; Merlet, C.; Feng, G.; Zhu, J.; Simon, P.,
Computational Insights into Charge Storage Mechanisms of
Supercapacitors. Energy & Environmental Materials 2020,3 (3), 235-246.
23. Qing, L.; Li, Y.; Tang, W.; Zhang, D.; Han, Y.; Zhao, S., Dynamic
Adsorption of Ions into Like-Charged Nanospace: A Dynamic Density
Functional Theory Study. Langmuir 2019, 35 (12),
4254-4262.
24. Lian, C.; Jiang, D.-e.; Liu, H.; Wu, J., A generic model for
electric double layers in porous electrodes. The Journal of
Physical Chemistry C 2016, 120 (16), 8704-8710.
25. Feng, G.; Jiang, D.-e.; Cummings, P. T., Curvature effect on the
capacitance of electric double layers at ionic liquid/onion-like carbon
interfaces. Journal of Chemical Theory and Computation2012, 8 (3), 1058-1063.
26. Jackel, N.; Simon, P.; Gogotsi, Y.; Presser, V., Increase in
capacitance by subnanometer pores in carbon. ACS Energy Letters2016, 1 (6), 1262-1265.
27. Chmiola, J.; Largeot, C.; Taberna, P. L.; Simon, P.; Gogotsi, Y.,
Desolvation of ions in subnanometer pores and its effect on capacitance
and double‐layer theory. Angewandte Chemie International Edition2008, 47 (18), 3392-3395.
28. Urita, K.; Urita, C.; Fujita, K.; Horio, K.; Yoshida, M.; Moriguchi,
I., The ideal porous structure of EDLC carbon electrodes with extremely
high capacitance. Nanoscale 2017, 9 (40),
15643-15649.
29. Borchardt, L.; Leistenschneider, D.; Haase, J.; Dvoyashkin, M.,
Revising the concept of pore hierarchy for ionic transport in carbon
materials for supercapacitors. Advanced Energy Materials2018, 8 (24), 1800892.
30. Morales, C. M.; Thompson, W. H., Simulations of Infrared Spectra of
Nanoconfined Liquids: Acetonitrile Confined in Nanoscale, Hydrophilic
Silica Pores. The Journal of Physical Chemistry A 2009,113 (10), 1922-1933.
31. Srimuk, P.; Lee, J.; Budak, O. z.; Choi, J.; Chen, M.; Feng, G.;
Prehal, C.; Presser, V., In situ tracking of partial sodium desolvation
of materials with capacitive, pseudocapacitive, and battery-like
charge/discharge behavior in aqueous electrolytes. Langmuir2018, 34 (44), 13132-13143.
32. Jiang, J.; Cao, D.; Jiang, D.-e.; Wu, J., Kinetic charging inversion
in ionic liquid electric double layers. The Journal of Physical
Chemistry Letters 2014, 5 (13), 2195-2200.
33. Merlet, C.; Péan, C.; Rotenberg, B.; Madden, P. A.; Daffos, B.;
Taberna, P.-L.; Simon, P.; Salanne, M., Highly confined ions store
charge more efficiently in supercapacitors. Nature Communications2013, 4 (1), 1-6.
34. Pean, C.; Daffos, B.; Rotenberg, B.; Levitz, P.; Haefele, M.;
Taberna, P.-L.; Simon, P.; Salanne, M., Confinement, desolvation, and
electrosorption effects on the diffusion of ions in nanoporous carbon
electrodes. Journal of the American Chemical Society2015, 137 (39), 12627-12632.
35. Thompson, W. H., Solvation dynamics and proton transfer in
nanoconfined liquids. Annual Review of Physical Chemistry2011, 62 , 599-619.
36. Qing, L.; Tao, J.; Yu, H.; Jiang, P.; Qiao, C.; Zhao, S.; Liu, H., A
molecular model for ion dehydration in confined water. AIChE
Journal 2020, 66 (6), e16938.
37. Zhao, S.; Liu, Y.; Chen, X.; Lu, Y.; Liu, H.; Hu, Y., Unified
framework of multiscale density functional theories and its recent
applications. In Advances in Chemical Engineering , Elsevier:
2015; Vol. 47, pp 1-83.
38. Lian, C.; Liu, H., Classical Density Functional Theory Insights for
Supercapacitors. In Supercapacitors–Theoretical and Practical
Solutions , 2018.
39. Qing, L.; Lei, J.; Zhao, T.; Qiu, G.; Ma, M.; Xu, Z.; Zhao, S.,
Effects of Kinetic Dielectric Decrement on Ion Diffusion and Capacitance
in Electrochemical Systems. Langmuir 2020, 36(15), 4055-4064.
40. Jiang, D.-e.; Meng, D.; Wu, J., Density functional theory for
differential capacitance of planar electric double layers in ionic
liquids. Chemical Physics Letters 2011, 504(4-6), 153-158.
41. Gouaux, E.; MacKinnon, R., Principles of selective ion transport in
channels and pumps. Science 2005, 310 (5753),
1461-1465.
42. Edwards, D. M.; Madden, P. A.; McDonald, I. R., A computer
simulation study of the dielectric properties of a model of methyl
cyanide: I. The rigid dipole case. Molecular Physics1984, 51 (5), 1141-1161.
43. Liu, Y.; Zhao, S.; Wu, J., A site density functional theory for
water: Application to solvation of amino acid side chains. Journal
of Chemical Theory and Computation 2013, 9 (4),
1896-1908.
44. Zhou, J.; Lu, X.; Wang, Y.; Shi, J., Molecular dynamics study on
ionic hydration. Fluid Phase Equilibria 2002,194 , 257-270.
45. Shao, Q.; Zhou, J.; Lu, L.; Lu, X.; Zhu, Y.; Jiang, S., Anomalous
hydration shell order of Na+ and K+ inside carbon nanotubes. Nano
Letters 2009, 9 (3), 989-994.
46. Barker, J. A.; Henderson, D., Perturbation theory and equation of
state for fluids. II. A successful theory of liquids. The Journal
of Chemical Physics 1967, 47 (11), 4714-4721.
47. Zhao, S.; Jin, Z.; Wu, J., New Theoretical Method for Rapid
Prediction of Solvation Free Energy in Water. The Journal of
Physical Chemistry B 2011, 115 (21), 6971-6975.
48. Zhao, S.; Ramirez, R.; Vuilleumier, R.; Borgis, D., Molecular
density functional theory of solvation: From polar solvents to water.The Journal of Chemical Physics 2011, 134 (19),
194102.
49. Siderius, D. W.; Gelb, L. D., Extension of the Steele 10-4-3
potential for adsorption calculations in cylindrical, spherical, and
other pore geometries. The Journal of Chemical Physics2011, 135 (8), 084703.
50. Wu, J.; Li, Z., Density-functional theory for complex fluids.Annual Review of Physical Chemistry 2007, 58 ,
85-112.
51. Yu, Y. X.; Wu, J., Structures of hard-sphere fluids from a modified
fundamental-measure theory. Journal of Chemical Physics2002, 117 (22), 10156-10164.
52. Roth, R.; Evans, R.; Lang, A.; Kahl, G., Fundamental measure theory
for hard-sphere mixtures revisited: the White Bear version.Journal of Physics: Condensed Matter 2002, 14(46), 12063.
53. Rosenfeld, Y., Structure and effective interactions in
multi-component hard-sphere liquids: the fundamental-measure density
functional approach. Journal of Physics: Condensed Matter2002, 14 (40), 9141-9152.
54. Blum, L.; Rosenfeld, Y., Relation between the free energy and the
direct correlation function in the mean spherical approximation.Journal of Statistical Physics 1991, 63 (5-6),
1177-1190.
55. Hansen, J.-P.; McDonald, I. R., Theory of simple liquids .
Elsevier: 1990.
56. Laudisio, G.; Dash, R. K.; Singer, J. P.; Yushin, G.; Gogotsi, Y.;
Fischer, J. E., Carbide-derived carbons: a comparative study of porosity
based on small-angle scattering and adsorption isotherms.Langmuir 2006, 22 (21), 8945-8950.
57. Guardia, E.; Pinzon, R., On the solvation shell of
Na+ and Cl− ions in acetonitrile: A
computer simulation study. Journal of Molecular Liquids2000, 85 (1-2), 33-44.
58. Della Monica, M.; Senatore, L., Solvated radius of ions in
nonaqueous solvents. The Journal of Physical Chemistry1970, 74 (1), 205-207.
59. Górniak, R.; Lamperski, S., Investigation of the electrical double
layer with a graphene electrode by the grand canonical Monte Carlo
simulation. The Journal of Physical Chemistry C 2014,118 (6), 3156-3161.
60. Kondrat, S.; Perez, C.; Presser, V.; Gogotsi, Y.; Kornyshev, A.,
Effect of pore size and its dispersity on the energy storage in
nanoporous supercapacitors. Energy & Environmental Science2012, 5 (4), 6474-6479.