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Abstract: We investigated the soil physicochemical property and arbuscular mycorrhizal fungi

(AMF) resilience to degradation and deforestation of the Chilimo dry evergreen Afromontane

forest. Topsoil (1-10cm) physicochemical property was determined across four land uses, viz.

natural  forest  (NF),  shrubland  (ShL),  cropland  (CrL),  and  grazing  land  (GrL).  AMF  spore

abundance  (SA)  and  AMF  infectivity  of  these  land  uses  were  also  determined.  One-way

ANOVA results indicated that most soil physicochemical variables were significantly affected

by land-use change. According to the nonmetric multidiamentiaonal scaling ordination result,

soil physicochemical property was found to be resilient to degradation (NF-ShL conversation)

but  not  deforestation  (NF-CrL or  NF-GrL conversions)  of  Chilimo forest.  Whereas  SA was

found to be resilient to both the degradation and deforestation, infectivity was resilient only to

NF-CrL conversion. Although our results did not show a similar pattern in soil property, SA and

AMF infectivity  resilience due to Chilimo forest degradation and deforestation,  both the soil

physicochemical property and AMF infectivity were found to be not resilient to NF conversion

to GrL. Hence, based on our results, it can be concluded that AMF inoculation could be more

beneficial to NF restoration if the planting sites are in GrL. However, in the future, the AMF

community  composition  of  these  four  land  uses  should  be  determined  morphologically  and

molecularly from field soil and trap culture so that AMF resilience to DAF deforestation and

degradation is better understood. 

Keywords:  arbuscular mycorrhizal fungi (AMF), Chilimo forest, deforestation, dry evergreen
Afromontane forests, landuse change, resilience  
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1. Introduction 

The term resilience was first applied in ecology by Holling (1973) to refer to the ability of an

ecosystem and/or its components to resist change due to disturbance. Its curent ecological usage

include  resistance  to  or  recoverery  from disturbance  or  both  (Hodgson et  al.,  2015).  Forest

degradation and deforestation could significantly modify soil physichochemical and biological

properties affecting planted seedlings survival, establishment, and forest restoration (Suding et

al.,  2004).  Hence,  knowledge on soil  physichochemical  property  and arbuscular  mycorrhizal

fungi (AMF) resilience is important for planning forest restoration projects. 

Dry evergreen Afromontane forests (DAF) are forests of the African highlands that are

characterized by the tree specis such as Juniperus procera, Olea europaea, Podocarpus falcatus

and Acacia abyssinica (Friis et al., 2010). These forests are predominantly found in Ethiopia and

comprise the largest proportion of the world’s dry tropical and subtropical forests (Lemeniha and

Itanna, 2004). Most of the DAF have been deforested or have severely degraded and hence, their

restoration is  identified to be a  national  ecosystem restoration  priority  in Ethiopia  (MEFCC,

2018). The recent article published on Nature journal has also recognized DAF restoration to be

a global ecosystem restoration priority (Strassburg et al., 2020). 

Available data indicate that DAF regeneration from soil seed bank and see rain is hardly

possible (Teketay 1995, 2005; Teketay and Anders, 1995). Therefore, DAF restoration greatly

depends on the planting of DAF characterstic tree/shrub seedlings (Aerts et al., 2006). Therefore,

owing to their active restoration need, detrmining the soil physichochemical property and AMF

resilience to the degradation and/or deforestation of DAF is particularly crucial. 

Arbuscular  mycorrhizal  fungi  of  the  subphylum  Glomeromycotina  (Spatafora  et  al.,

2016) form a symbiotic relationship with most terrestrial (Brundrett, 2009) and possibly, aquatic
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(Moora et al., 2016) plants. AM fungi colonize the root cortex and develop extraradical mycelia

(ERM) which are very extensive; as long as 4.2 km per gram of soil (Leake et al., 2004). The

ERM permeate into microsites of mineral soil (Finlay, 2008; Barea et al. 2011) and can extend to

the litter layer (Gui et al., 2017) to significantly increase root access to essential nutrients (Went

and Stark, 1968; Simard and Austin,  2010; Smith et  al.,  2011; Soka and Ritchie,  2014) and

moisture  (Gianinazzi  et  al.,  2010).  Due  to  these  and  other  ecological  functions,  AMF  are

considered  to  be  important  actors  in  forest  restoration  process  (Asmelash  et  al.,  2016;

Neuenkamp et al., 2018). 

Arbuscular  mycorrhizal  fungi  communities  composition  could  be  greatly  affected  by

forest clearing (Xu M et al., 2017; Sepp et al., 2018), degradation (Gavito et al., 2008), or land-

use intensification (Oehl et al., 2003; Moora et al., 2014). However, AMF are ubiquitous, found

almost in every soil (Abbott and Robson, 1991; Brundrett and Abbott, 2002; Smith and Read,

2008) including mine soils (Wang, 2017). AMF abundance (Zangaro et al., 2013; Stürmer and

Siqueira, 2011; Birhane et al, 2018), species richness (Picone, 2000; Zhang et al., 2004; Stürmer

and Siqueira, 2011), and species composition (Johnson and Wedin, 1997; Picone, 2000; Zhang et

al., 2004; Violi et al., 2008; Carrillo-Saucedo et al., 2018) have also been found be to resilient

despite  forest  degraration  and  deforestation.  Hence,  AMF  inoculation  could  be  merited  for

ecosyetems that exibit low resilience to degradation and deforestation. 

Previously  there  have  been a  few (Delelegn  et  al.  2017;  Birhane  et  al.,  2018,  2020)

studies carried out regarding AMF resilience to DAF degradation and deforestation. However,

there  has  not  been  any  comprehensive  study  to  evaluate  soil  physichochemical  and  AMF

resilience to the degradation and deforestation of the the Chilimo dry evergreen Afromontane

forest. Therefore, in this study, we detrmined soil physichochemical property and AMF spore
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abundance and AMF infectivity  along the Chilimo forest  degradation gradient  and evaluated

resilince. Our hypotheses for this study are; 

H1: soil physichocemical property is not resilient  to the degradation and deforestation of the

Chilimo dry evergreen Afromontane forest 

H2: AMF spore abundance is not resilient to the degradation and deforestation of the Chilimo

dry evergreen Afromontane forest 

H3: AMF infectivity  is  not resilient  to the degradation and deforestation of the Chilimo dry

evergreen Afromontane forest

2. Methodology 

2.1.  Study area 

The Chilimo-Gaji forest, commonly called the Chilimo forest, is one of the few DAF in central

Ethiopia. It is located 97 km west of the capital Addis Ababa, 7 km north of Ginchi town, close

to the main Addis Ababa-Ambo road. Situated within the Dandi and Ejersa lafo districts of the

Oromia administrative region, Chilimo forest is geographically located within 38.09° to 38.2°E

longitude and 9.04° to 9.095°N latitude (Fig. 1). The forest is currently found within 2340-2960

m elevation and it comprises of 12 patches that are managed through the participatory forest

management (PFM) scheme. The mean annual temperature ranges between 15 and 20 °C while

the  mean  annual  precipitation  is  1264  mm  (Tesfaye  et  al.,  2016).  Based  on  the  available

literature, the soil types of Chilimo are mainly Vertisols, Luvisols, and Cambisols (Soromessa

and Kelbessa, 2014).

Figure 1: A map showing land use features of Chilimo and location of the sample plots 
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The name Chilimo, to mean darkness, reflects the denseness of the forest in the past (Mohammed

and Inoue, 2012). However, in only 42 years, around 54% of the forest has either been deforested

and become settlement (1%), cultivated land (26%) or bare land (9.8%) or has been degraded to

be changed to shrubland (17.3%) (Tolessa et al., 2017). Currently, the Chilimo forest lays on

1952 hectare of land (Tolessa et al.,  2017) of which, around 400 ha comprises of  Cupressus

lustanica, Eucalyptus saligna, E. camaldulensis, and Pinus patula plantation established 30 years

ago (Mohammed and Inoue, 2012; Tesfaye et al., 2016). 

2.2.  Soil sampling

In mid-February 2019, a reconnaissance survey was carried and sampling design determined. In

this study, since the four land uses were not adjoined and GrL were present in dispersed patches,

stratified systematic sampling (Kershaw Jr. et al, 2017) was employed. Hence, NF and CrL were

stratified in to low (2400-2430m), mid (2600-2630m), and high (2800-2830m) elevations while

the ShL was stratified  in  to  low (2400-2430m),  mid (2500-2530m),  and high (2600-2630m)

elevations. Moreover, the GrL was stratified in to three where, GrL1a is the patch found at 2800-

2830 m elevation and with  Pennisetum clandestinum the dominant cover, GrL2a is the patch

found at  2400-2430 m elevation and with  Pennisetum clandestinum the dominant  cover, and

GrL3b  is  the  patch  at  2400-2430  m  elevation  but  with  Pennisetum  sphacelatum being  the

dominant cover (Table1; Fig. 2; S3). 

Data  collection  took  place  from  late-February  to  early-March  2019,  during  the  dry

season. From each stratum or patch of the four land-use gradients, composite soil samples were

collected systematically from five plots (1m x 1m) spaced  50 m apart and along the contour

(guided by the google map). Hence, the total number of composite soil samples collected were
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60 (15 per land use). Topsoil samples (0-10cm), in which AMF are mainly found (Oehl et al,

2005),  were collected from the four corners of each plot using a soil auger. Then soil samples

were sieved using 2.5 mm sieve at the field until 1kg sieved soil samples were obtained. The soil

samples  were taken to  Addis  Ababa University  and air-dried  for  a  few days.  Air-dried  soil

samples  were  kept  at  room  temperature  (18-21°C)  until  AMF  abundance  and  other

physicochemical  properties were determined.  Meanwhile,  50g soil  subsamples  were used for

AMF  abundance  while  500g  subsamples  were  used  for  the  greenhouse  bioassay and  the

remaining 425g subsamples for soil physicochemical property determination. 

Table 1: The characteristics of the four land-use gradients studied. 

Land
use 

Description Land management 

NF land  with  >80%  canopy  cover  and  dominated  by  the  trees;
Juniperus procera,  Podocarpus falcatus,  Olea europaea  subsp.
cuspidata, Allopyllus abyssinicus, and Prunus africana

Selective cutting

ShL
 

land  that  is  >50%  covered  by  shrubs  or  shrub/trees  mainly
Carissa  spinarum,  Dovyalis  abyssinica,  Maytenus  gracilipes,
Olinia  rochetiana,  Osyris  quadripartita,  Rhus  glutinosa,
Scolopia theifolia and with non-canopy forming (<5 m tall trees)
interspersed    

Selective  cutting,
grazing

CrL
 

land cultivated with mainly wheat but also Teff  (Eragrostis tef),
common bean, field pea, lathyrus 

Plowing,  maybe
chemical  fertilizer
application

GrL
 

abandoned  farmlands  or  grasslands  open  for  grazing  that  are
dominantly  covered  with  Pennisetum  clandestinum (a)  or
Pennisetum sphacelatum (b) 

Overgrazing 

NF=Natural forest, ShL=Shrubland, CrL=Cropland, and GrL=Grazing land. 

Figure  2:  Land-use  gradients  studied.  NF=Natural  forest,  ShL=Shrubland,  CrL=Cropland,
GrL=Grazing land covered with Pennisetum clandestinum (a) or Pennisetum sphacelatum (b)
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2.3.  Soil bulk density, texture, pH and EC 

Bulk density,  soil  texture,  pH, and EC were determined at  ecology and plant ecophysiology

laboratory  at  the  Addis  Ababa  University,  Ethiopia.  Bulk  density  was  determined  using  a

modified clod method (Blake, 1965).  Soil texture was determined by using ASTM 151H soil

hydrometer  (g/ml  scale)  and  following  Day  (1965),  Bouyoucos,  (1962),  and  Anderson  and

Ingram  (1993)  for  soil  dispersion,  hydrometer  reading,  and  percent  texture  computation

respectively. pH and EC were determined by mixing 20g of sieved soil subsamples with 50 ml

distilled water (1:2.5 (w:v)) following Cottenie (1980). The soil mixture was initially shacked for

about 5 minutes on a shaker and allowed to settle  overnight (20 hours) then just  before pH

measurement,  the samples  were very gently shacked by hand and pH of the soil  suspension

measured using a digital pH meter with a glass electrode (Hi9024, microcomputer pH meter).

Then, soil samples were allowed to further settle for 30 minutes and EC was determined on a

carefully decanted supernatant using a digital EC meter (Sx713 cond/TDs/Sal/Res meter). 

2.4.  Total nitrogen, available phosphorus, organic matter, cation exchange capacity,

P:N and C:N 

These  variables  were  determined  at  Debrezeit  Agricultural  Research  Center,  Ethiopia.  Total

nitrogen  (N)  was  determined  on 2g air-dried  soil  subsamples  by  sulfuric  acid-salicylic  acid

digestion,  distillation  into  boric  acid,  and  titration  of  the  resulting  solution  with  hydrogen

chloride (Bremner and Mulvaney, 1982). Plant available phosphorus (P) was determined on 1g

air-dried soil subsamples after Bray-II extraction (Bray and Kurtz, 1945) and spectral absorbance

measurement  (882nm)  of  the  resulting  supernatant  solution  by  using  a  spectrophotometer.

Organic  carbon  (OC)  was  determined  by  oxidizing  1g  of  air-dried  soil  subsamples  with

potassium dichromate in sulphuric acid medium, subsequently adding orthophosphoric acid and
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titrating  the  resulting  solution  with  ferrous  ammonium  sulfate  (Walkley  and  Black,  1934).

Organic  matter  (OM)  was  computed  by  multiplying  OC  by  1.724;  the  conversation  factor

(Anderson and Ingram, 1993). Cation exchange capacity (CEC) was determined on 10g air-dried

soil subsamples according to Chapman (1965). Hence, soil subsamples were first saturated with

ammonium using ammonium acetate. Then using potassium chloride, ammonium was leached

out and the leachate was distilled into boric acid. Finally, the resulting solution was titrated with

sulfuric acid and CEC was computed.  P:N and C:N were determined per plot by dividing P

(ppm) and C (%) values with the respective N (%) values.

2.5.  AMF spore abundance 

Spore abundance was determined by taking 50g air-dried soil subsample of each composite soil

sample. Spores were extracted from soil by wet-sieving (1mm, 180 µm, 90 µm, and 53 µm sieve

sizes)  followed  by  density  gradient  centrifugation  in  50% sucrose  (Brundrett  et  al.,  1996).

Extracted  spores  were counted  on a  90mm plastic  Petri  dish according to  INVAM protocol

(https://invam.wvu.edu/methods/spores/enumeration-of-spores)  using  a  light  stereomicroscope

(Swift stereo 80) at 2x magnification. SA in the number of spores per 50 g soil sample was

computed from the average spore numbers of 40 random fields of observations per Petri dish.

The  ocular  field  diameter  of  the  microscope  was  determined  to  be  9mm  and  hence,  100

observations  were  needed to  cover  the  90  mm Petri  dish.  Rarely,  spores  covered  with  soil,

clusters of spores, and sporocarps were observed and were also counted. SA values per 50 g were

finally converted to SA (g-1). 

  

2.6.  Greenhouse bioassay 
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AMF infectivity  was determined by the greenhouse bioassay method (Moorman and Reeves,

1979;  Abbott  and Robson,  1991)  using  the  INVAM recommended  host  plant,  Zea mays L.

(https://invam.wvu.edu/methods/infectivity-assays/mean-infection-percentage-mip).  Zea  mays

(Melkassa-4 variety) seeds were carefully disinfected with 5% household bleach for 10 minutes

and allowed to germinate on filter paper. Then, one germinated seed was sawn on a 500g soil

subsample collected from each plot (S1). After growing the Zea mays for 6 weeks, the shoot was

cut off and the soil carefully washed off the roots to prepare them for AMF root colonization

determination.  AMF colonization was determined following the ink and vinegar technique as

described by Vierheilig et al.  (1998) and using black Hero fountain pen ink (Asmelah et al.,

2020). Roots were cleared in 10% KOH in an autoclave for 10 minutes (Brundrett et al, 1996)

and cleared roots were stained overnight at room temperature in 5% ink (black Hero fountain pen

ink,  made in  China)  in  vinegar  (common food grade white  vinegar  or  5% acetic  acid).  De-

staining was done by rinsing the stained root in tap water acidified with a drop of vinegar for a

minimum of 20 minutes and further rinsing it in tap water until colonization is determined in a

few minutes or hours (Vierheilig et al., 1998). AMF root colonization was determined by the

gridline  intersection  method  (Giovanetti  and Mosse,  1980)  by  observing roots  under  a  light

stereomicroscope (CETI Steddy Stereo Binocular Microscope) at 5.5x magnification (S2).

    

2.7.  Data analysis 

Nonmetric  multidimensional  scaling  (NMDS) using  similarity  ratio  and  ward  method was

plotted to determine the soil physicochemical property resilience.  NMDS was also plotted to

explore which physicochemical variables discriminated against the land uses. One way ANOVA

was computed to know if forest degradation and deforestation had a significant effect on each of

the soil physicochemical variables (%sand/silt/clay, BD, pH, EC, N, P, OM, CEC P:N and C:N).
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When significant  (p≤ 0.05) effect  was present,  mean values per land use were compared by

Tukey’s HSD (p≤ 0.05) and Dunn-Bonferroni (p≤ 0.05) tests after parametric and nonparametric

one-way ANOVA respectively. Nonparametric Kruskal Wallis tests were carried out to know the

effect of forest degradation and deforestation on fungi spore abundance (SA) and infectivity.

When a significant effect was present, Dunn-Bonferroni (p≤ 0.05) pairwise mean comparison

was made between land uses. For each land use separately, nonparametric Kruskal Wallis test

and Dunn-Bonferroni (p≤ 0.05) pairwise mean comparisons were also carried out to know the

effect of elevation and location on SA and infectivity. Spearman’s rank correlations between SA,

infectivity, and the various soil physicochemical variables was computed to determine the impact

of soil physicochemical property on SA and infectivity. R version 3.6.1 was used to plot NMDS

ordinations.  SPSS  version 20  was  used to  compute  one-way  ANOVA,  mean  pairwise

comparisons,  and  spearman’s  rank  pairwise  correlations.  Bar  graphs  were  plotted  by using

SYSTAT version 13.1.

3. Results

3.1.  The soil physicochemical property across the land-use gradients 

The  NMDS  ordination  depicted  that  soil  physicochemical  property  was  resilient  to  forest

degradation (NF to ShL conversion) but not to deforestation (both NF to CrL or NF to GrL

conversions). It also indicated that within the grazing land, the soil physicochemical property had

low similarity between GrL(a) and GrL(b) (Fig. 3a). N, EC, pH, OM, sand, and CEC positively

contributed to the discrimination of NF and ShL from CrL and GrL while BD, C:N, Clay, and

silt contributed negatively. P and P:N had no role in the discrimination of NF and ShL from CrL

and GrL but were responsible for the discrimination of Grl3b against GrL1a and GrL2a (Fig. 3b).
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The one-way ANOVA results  showed that  except  P,  P:N and C:N, all  the other  soil

physicochemical variables were significantly affected by the land-use change (Table 2). Bulk

density significantly (p<0.05) increased both by degradation and deforestation. The pH ranged

between slightly  acidic  (NF and ShL) to  acidic  (CrL and GrL) and it  significantly  (p<0.05)

reduced by degradation and deforestation. EC and N decreased by degradation but a significant

(p<0.05) reduction resulted only due to deforestation. P showed a variable trend but there were

no  significant  (p<0.05)  degradation  and  deforestation  effects.  The  P:N  increased  both  by

degradation and deforestation but not significantly (p>0.05). The OC (OM) were not affected by

degradation  but  decreased  significantly  (p<0.05)  by  deforestation.  The  C:N,  although  not

significantly  (p>0.05),  decreased  by  degradation  while  it,  on  the  contrary,  increased  by

deforestation. The CEC significantly (p<0.05) increased due to degradation but it more or less

remained similar despite deforestation (Table 2). 

Figure 3: NMDS ordination plots showing the resilience of the soil physicochemical property to
forest degradation and deforestation. The soil physicochemical properties of natural forest and
shrubland were similar while they were distinct between natural forest, cropland, and grazing
land.  The  soil  physicochemical  properties  were  also  different  within  the  grazing  land  with
GrL3b, i.e., plots 51-55, discriminated by P and P:N. 

Table 2: Mean (±SE) soil physicochemical variables across the land-use gradients. 

Variable
s

Land uses ANOVA
NF ShL CrL GrL F Chi-

square
BD 0.61±0.02c 0.71±0.02b 0.88±0.01a 0.83±0.02a 46.951**

*
-

pH 6.64±0.08a 6.25±0.09 b 5.70±0.06c 5.36±0.06d 54.852**
*

-

EC 0.21±0.02a 0.19±0.03a 0.07±0.004b 0.08±0.01b - 33.86***
2

N 0.35±0.01a 0.44±0.10a 0.15±0.01b 0.20±0.02b - 38.962**
*

P 15.44±2.13 17.18±3.61ns 15.10±3.77ns 19.96±3.68ns 0.434 -
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ns 
P:N 44.90±6.32

ns
53.10±14.45
ns

120.76±35.18
ns

124.72±29.51
ns

- 5.909

OM 11.52±0.52
a

11.08±0.75a 5.99±0.60 b 7.46±0.48 b 20.791**
*

-

C:N 19.26±0.76
ns

18.26±1.68ns 24.43±3.39ns 22.79±1.48ns 1.977 -

CEC 23.21±1.27
b

30.75±1.39a 21.69±1.27b 24.59±1.41b 8.845*** -

Sand 80.60±1.24
a 

75.25±0.85b 64.29±1.16c 64.35±1.17 c 53.495**
*

-

Silt 12.10±0.74
b 

15.30±0.60 ab 16.72±0.99 a 12.32±1.53b - 14.970**
*

Clay 7.30±1.00b 9.45±0.54b 18.99±1.89a 23.33±2.24a - 40.510**
*

Means with different letters are statistically (p≤0.05) significant after Tukey or Dunn Bonferroni
tests. “ns” indicates there was no land use effect.*** significant at p≤0.001.

3.2.  The AMF spore abundance (SA) and AMF infectivity across land uses 

Spore abundance and AMF infectivity ranged 3.4-25.3g-1 and 12.0-82.5% respectively (S3) and

land-use  change  had  a  significant  effect  on  both  SA  (Chi-square  =35.403,  p= 0.0001)  and

infectivity  (Chi-square  =23.245,  p=  0.0001).  However,  the  effect  of  forest  degradation  and

deforestation  was  not  necessarily  similar  to  both  SA  and  infectivity.  Hence,  both  forest

degradation and deforestation had significant effects on SA whereas deforestation did not have a

significant effect on infectivity when NF converted to CrL (Figure 4). The highest SA was in the

GrL and the lowest in NF. SA in the ShL, CrL, and GrL were significantly 92.7%, 105.3%, and

148.9% greater than the SA in the NF. The highest infectivity, contrary to SA, was in the NF

while the lowest was in ShL. Infectivity of the NF was significantly 56.4% and 52.2% higher

than  the  infectivity  of  the  ShL  and  GrL  respectively.  Infectivity  of  the  NF,  however  not

significant, was also 11.0% higher than the infectivity of CrL (Figure 4). 

Figure  4:  Mean SA and infectivity  across  the  land  uses.  Means  with  significant  (P≤ 0.05)
differences  are  indicated  with  different  letters.  NF=Natural  forest,  ShL=Shrubland,
CrL=Cropland, GrL=Grazing land.
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Elevation and/or location did not have significant effects on SA in all land uses but were found

to have an impact on the infectivity of ShL and GrL soils (Table 3). In the shrubland, the highest

infectivity was found for ShL1 found at the low elevation while the lowest was found for ShL2

found at the mid-elevation and very closely located to ShL1 compared to ShL3 which is found at

the high elevation and very far away from both ShL1 and ShL2. The infectivity of ShL1 soil was

significantly and 140.23% higher than the infectivity of the ShL2 soil. It was also 12.1% higher

than the infectivity of ShL3 soil, but not significantly (Fig. 5-I). In the grazing land, the highest

infectivity was found for GrL1a which is grazing land located at 2800 m elevation and very far

away from the remaining grazing lands (GrL2a and GrL3b) which were both located at 2400 m

elevation, comparatively close to each other, but with different vegetation cover. The infectivity

of GrL1a soil was significantly and 123.35% higher than the infectivity of GrL3b soil. Although

not significantly, it was also 12.77% higher than the infectivity of GrL2a soil (Figure 5-II).

Table 3:  Effect of elevation and location on AMF spore abundance and infectivity across the
land uses  
Statistics Spore abundance Infectivity

Natural
forest

Shrub
land 

Cropland Grazing
land 

Natural
forest

Shrub
land 

Croplan
d 

Grazing
land 

Chi-
square

1.044 0.606 2.240 3.440 5.049 8.340 1.340 8.960

df 2 2 2 2 2 2 2 2
P-value 0.593 0.739 0.326 0.179 0.080 0.015* 0.512 0.011*
*Significant at P<0.05

Figure 5: Mean infectivity across elevation and location in Shrubland (I) and Grazing land (II).
ShL1=Shrubland at 2400m elevation, ShL2 at 2500m, and ShL3 at 2600m; GrL1a=Grazing land
at 2800m elevation and with Pennisetum clandestinum the dominant cover, GrL2a at 2400m with
grass Pennisetum clandestinum the dominant cover, and GrL3b at 2400 m but with Pennisetum
sphacelatum being the dominant cover.
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3.3.  The correlation of spore abundance (SA) and infectivity with the measured soil

physicochemical variables 

AMF spore abundance and infectivity were weakly, significantly, and negatively correlated (rs= -

0.29, p< 0.05). SA was significantly correlated with most of the soil physicochemical variables

determined. The significant positive correlations were, SA//BD (rs = 0.68, p<0.01), SA//P:N (rs =

0.37, p< 0.01), SA//C:N (rs= 0.35, p< 0.01), SA//silt (rs= 0.26, p< 0.05), and SA//clay (rs= 0.53,

p< 0.01) while the significant negative correlations were, SA//pH (rs = -0.57, p< 0.01), SA//EC

(rs = -0.50, p< 0.01), SA//N (rs = -0.56, p< 0.01), SA//OC or SA//OM (rs = -0.48, p< 0.01), and

SA//sand (rs= 0.61,  p< 0.01).  Infectivity  correlated  significantly,  only with pH (rs= 0.39,  p<

0.01), P:N (rs= 0.26,  p< 0.05), and clay (rs= -0.27,  p< 0.05). Whereas, P did not significantly

correlate  with  neither  SA  nor  infectivity,  P:N  significantly  correlated  with  both  SA  and

infectivity. Moreover, SA correlated with OC (OM) and C:N differently (Table 4). 
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Table 4: Spearman’s rank correlation between SA, infectivity, and soil physicochemical variables

SA Inf BD pH EC N P OM P:N C:N CEC %Sand %Silt %Clay
SA 1.00
Inf -0.29* 1.00
BD 0.68** -0.11 1.00
pH -0.57** 0.39** -0.70** 1.00
EC -0.50** 0.25 -0.73** 0.72** 1.00
N -0.56** -0.001 -0.80** 0.67** 0.80** 1.00
P 0.16 0.22 -0.01 0.16 0.19 -0.03 1.00
OM -0.48** 0.08 -0.77** 0.66** 0.75** 0.79** 0.17 1.00
P:N 0.37** 0.26* 0.37** -0.14 -0.21 -0.52** 0.82** -0.28* 1.00
C:N 0.35** -0.02 0.22 -0.34** -0.30* -0.56** 0.22 -0.03 0.43** 1.00
ECE -0.07 -0.23 -0.27* 0.14 0.19 0.30* 0.07 0.231 -0.10 -0.14 1.00
%Sand -

0.61**
0.25 -

0.69**
0.79** 0.65** 0.68** 0.14 0.60** 0.27* -0.20 -

0.42*
*

1.00

%Silt 0.26* 0.12 0.43** -0.07 -0.33* -0.32* 0.26* -0.31* 0.15 0.42** -0.04 -0.19 1.00
%Clay 0.53** -0.27* 0.60** -

0.79**
-
0.59**

-
0.63**

-0.23 -
0.59**

-
0.29*

0.10 0.40*
*

-
0.93**

-
0.07

1.00

SA=AMF spore abundance, Inf=infectivity, BD=bulk density, EC=electrical conductivity, OM=organic matter, N= total nitrogen, P=
available phosphorus, CEC=cation exchange capacity.
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4. Discussion

4.1.  The  resilience  of  soil  physicochemical  property  to  forest  degradation  and

deforestation
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The level  of soil  physicochemical  property resilience  to  forest  degradation and deforestation

could  potentially  indicate  the  restorability  of  forest  ecosystems  (Schoenholtz  et  al,  2000).

Therefore, the soil physichochemical resilience study we carried out for the highly threatened

Chilimo dry evergreen Afromontane forest (Tolessa et al., 2017) was very timely. Previously,

Tolessa and Senbeta, (2018) and Mammo et al. (2019) studied the physicochemical property of

the natural forest (NF) while Tesfaye et al. (2016) determined soil fertility dynamics due to the

degradation  and  deforestation  of  Chilimo  forest  by  considering  only  N  &  OC.  Our  study,

however,  considered  as  much  land-use  gradient  and  physicochemical  variables  as  possible.

Hence, it is the first comprehensive soil physicochemical resilience study of the Chilimo forest. 

The mean values of the soil physicochemical variables found in this study were in most

cases not comparable to the mean values previously reported for Chlimo and other DAF (S4).

The observed differences with the previous studies on the natural forest (NF) and cropland (CrL)

of the Chilimo forest and environs could mainly relate to the differences in the season of data

collection in the case of N & OC, or methodology in the case of BD & P, or the types of soil

sampled in the case of Hailu et al. (2015). Total nitrogen and OC values of DAF soils were found

to significantly vary due to season (wet vs. dry seasons) of soil sampling (Birhane et al., 2018)

and it was also determined that P values of Olsen and Bray-II extractions could significantly vary

for acidic or slightly acidic DAF ecosystem soils (Mamo et al., 2002). Moreover, while Hailu et

al. (2015) sampled vertisol, only a few of our samples were vertic (S3). The difference in the BD

values compared to Mammo et al. (2019), could most likely be related to the fact that we report

BD determined from sieved soil samples with no gravel and less compaction while Mammo et al.

(2019) reported values from in-situ samples. 
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Our result indicated that soil physicochemical property was resilient to the degradation

but not to deforestation of the Chilimo forest. Similarly, Tesfaye et al. (2016) have observed that

OC and N reduced due to the deforestation of the Chlimo forest. Lemenih et al (2005), Delelegn

et al. (2017), and Birhane et al. (2018), similar to our results, had also reported the reduction of

pH and soil  nutrient  levels  due  to  degradation  and deforestation  of  other  DAF in  Ethiopia.

Therefore, it could be likely that DAF restoration is more challenging as the result of low soil

physicochemical  property  resilience.  However,  this  could  be  known  if  the  soil  functional

resilience is evaluated by using DAF characteristic tree species. Lemenih et al (2005) evaluated

soil functional resilience to deforestation by considering Maize yield and found that although

there was low resilience of soil  physicochemical  property to deforestation,  it  was potentially

resilient functionally for more than 25 years after deforestation.   
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Soil  physicochemical  property  resilience  could  potentially  predict  resilience  of  AMF

community composition (Oehl et al. (2010). This is particularly possible in our case owing to the

fact that the landuse changes are associated with distinct vegetation cover and land management.

Hence, based on our results, we may consider AMF community composition to be resilient to

degradation but not deforestation of the Chilimo forest. Considering only pH and P the most

important soil chemical variables determining AMF community composition (Garcia de Leon et

al., 2018), we may conclude differently about the resilience of AMF community composition due

to  degradation  or  deforestation.  This  is  because  while  pH showed a  marked  change  due  to

degradation and deforestation, P did not change significantly in both cases. Schechter and Bruns

(2012) have remarked that soil physicochemical property resilience could be an important proxy

to AMF community composition if there is a wider difference in a physicochemical property.

Hence, it may not be possible to conclude whether or not the AMF community composition was

resilient to the deforestation of the Chilimo forest based on our soil physicochemical property

result alone.  AMF community composition resilience could also be greatly dependent on the

AMF species pool. Hence, in areas where the species pool is dominated by generalists, AMF

community  composition  could  potentially  be  resilient  despite  a  significant  soil  physical  and

chemical property changes (Hawkes and Keitt, 2015). Our results have indicated that degradation

(NF-ShL conversion) and deforestation (the NF-GrL conversion) of Chilimo forest have resulted

in a significant  AMF functional  changes (infectivity)  and this  could indicate  that there were

considerable  changes  in  AMF  community  composition  possibly  fast  colonizer  species

dominating the NF and CrL and the slow colonizers dominating the ShL and GrL (Oehl et al.,

2003). Moreover, from the factors which could determine infectivity, viz., host species, climate,

edaphic  factors,  and soil  AMF community  composition  (Moreira  et  al.,  2006),  diffrences  in
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infectivity in our case may most likely be related to the soil factors and AMF communities. This

is because, we determined infectivity from trap culture of single host species grown in a similar

greenhouse microclimate. 

5.2.2.  The  resilience  of  soil  AMF  spore  abundance  (SA)  and  infectivity  to  Chilimo  forest

degradation and deforestation

The  degradation  and  deforestation  of  the  Chilimo  forest  have  reduced  the  canopy  cover  to

exposed the soil to elevated temperature potentially resulting in soil moisture and heat stress. We

have also found substantial reductions in soil nutrients. Hence, the resilience (increase in SA) we

found despite forest degradation or deforestation could be related to the fungi stress avoidance

strategy. When fungi are stressed due to scarcity of carbohydrates, soil nutrients, moisture, and

heat among others, AMF sporulation increase to avoid the stress period at the resting phase, the

spore (Violi et al., 2008; Silva-Flores et al., 2019). On the contrary, AMF infectivity was not

resilient to the degradation and the conversion of natural forest to grazing lands. These results are

in perfect agreement with Abbott and Robson (1982) who, in their review, had demonstrated that

while SA could be considerably lower in virgin soils compared to disturbed soils, infectivity

could,  on  the  contrary,  be  significantly  higher.  Previously,  Birhane  et  al.  (2018)  have  also

reported a similar increase and reduction of SA and infectivity respectively due to degradation of

a dry evergreen Afromntane forest in north Ethiopia. Hence, the fact that we found SA increase

along with the increase in soil nutrient stress gradient is corroborated. However, Delelegn et al

(2017) reported a reduction of SA due to DAF deforestation and degradation in north Ethiopia.

The  change  in  infectivity,  in  the  case  of  NF-GrL  conversion,  most  probably,  have

resulted  due  to  soil  physicochemical  property-change-induced AMF community  composition
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shifts.  In  the  case  of  NF-ShL,  it  could  have  resulted  due  mainly  to  vegetation  and  land

management changes. It could as well be the case that some of the soil micronutrients such as

zinc and copper not considered in this study have not been resilient to NF-ShL conversion and

hence,  resulted  in  AMF  composition  change  (Xu  X  et  al.,  2017)  and  reduced  infectivity.

Moreover, despite the significant soil physicochemical property change due to NF conversion to

CrL, the reduction in infectivity was very small and not significant. This may be related to the

NF legacy effect (Fichtner et al., 2014; Hawkes and Keitt, 2015). Since most of the CrL sampled

were  converted  from  NF  much  recently  compared  to  the  ShL  and  GrL,  AMF  community

composition and function may have been retained due to the NF legacy. 

Our  results  have  shown  that  within  each  land  use,  elevation  and  location  did  not

significantly  affect  SA. This  may indicate  that  land use  was a  much more  important  factor

determining SA than elevation or any other related factor. Infectivity was also not affected by

elevation and location in the NF and CrL but it was significantly affected in the ShL and GrL.

The reason why infectivity was significantly low in ShL2 which is in very close proximity to

ShL1 and  at  mid-elevation  is  not  clear.  However,  it  could  be  possible  that  soil  factors  not

considered in this study may have played a role. However, in the case of GrL, the significantly

low infectivity in GrL3b coincides with lower P and P:N values (Fig. 3b; Fig. 5). Hence, it could

be possible  that  these soil  factors are  responsible.  However,  P stress could,  on the contrary,

promote mycorrhization (Gutjahr, 2014). Therefore, the infectivity reduction could most likely

be related to  Pennisetum sphacelatum dominance. Low P level in GrL3b may have resulted in

Pennisetum  sphacelatum dominance  (Walter,  1985),  and  the  Pennisetum  sphacelatum

dominance in return, could have significantly modified AMF species composition and thereby

infectivity.  The  predominance  of  ruderal  plants  for  a  longer  time  in  a  given  site  has  been
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identified to be an important factor resulting in the predominance of certain AMF species and

loss of some other AMF species and leading to a significant AMF species composition shift

(Faggioli et al., 2019). The fact that we found Pennisetum sphacelatum to be comparatively with

very  low  infectivity  has  an  important  implication  in  DAF  restoration.  This  is  because  a

substantial  part  of  the  DAF  ecosystem  is  covered  with  the  non-palatable  Pennisetum  spp.

including  Pennisetum sphacelatum potentially  with low AMF infectivity  and hence requiring

AMF inoculation from the target forest to succeed with DAF restoration. 

The SA found in this study, across the land uses (3.4-25.3 spores g-1), was comparable to

the SA reported (3.6-9.9) & (0.9-14.6) spores g-1 by Birhane et al. (2018) & (2020) for two of the

remnant  DAF of  north  Ethiopia.  It  was  also  comparable  to  the  values  (1.3-24.6  spores  g-1)

reported from DAF nurseries of central and northern Ethiopia (Asmelash et al, 2020) but was

much  lower  than  the  SA values  reported  (41.0-129.0  g-1)  by  Delelegn  et  al.  (2017)  across

landuses in the DAF ecosystem in north Ethiopia.  This difference could,  to some extent,  be

related to the difference in the lowest sieve size used  to separate spores (53µm used in this study

vs. 38 µm). Our results have shown that SA was significantly correlated with most of (+BD, -pH,

-EC,  -N,  -OM, +P:N,  +C:N,  -Sand,  +Silt,  and +Clay)  soil  physicochemical  variables  while

infectivity significantly correlated to few (+pH, +P:N, and -Clay) of the soil physicochemical

variables. This is perfectly aligned with previous reports including the one by Silva-Flores et al.

(2019). Relatively similar to our results, Birhane et al. (2018) also reported a slightly negative

but statistically non-significant SA correlations (Pearson) with pH, EC, and soil nutrients (N, P,

OC). However, Delelegn et al. (2017) reported that no correlation (Spearman) existed between

SA and  pH,  P,  and,  contrary  to  our  results,  reported  a  positive  and  statistically  significant

correlation (spearman) of SA with OC and N. 

22

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450



We have  found a  negative  SA//Infectivity  correlation  similar  to  the  one  reported  by

Moreira et al. (2006) and this correlation could have resulted due to clay content which is also

correlated with SA and infectivity inversely. From several previous studies it was found that clay

content affects SA and infectivity differently and the most probable reason provided was the clay

role on moisture (Silva-Flores et al., 2019). However, in our case, infectivity was determined on

trap cultures which were irrigated regularly. Hence, moisture could less likely be the reason for

the observed SA, infectivity, and clay relationships. The main reason could be the clay content

effects and/or relationships with BD, CEC, OM, and other soil factors. 

5. Conclusion

This study has sufficiently tested the initial hypotheses. Hence, except our H2 which considered

AMF spore  abundance  (SA)  to  be  not  resilient  to  the  degradation  and  deforestation  of  the

Chilimo dry evergreen Afromontane forest, H1 and H3 were proved to hold wholly or partly.

According to our finding, infectivity was lowered due to NF-ShL and NF-GrL conversions but

not  NF-CrL conversion.  Moreover,  both the degradation  and deforestation  of  Chilimo forest

resulted in incresease of SA. Despite  increase of SA due to NF-GrL conversion,  since both

infectivity  and  soil  physichochemical  property  (a  potentially  proxy  to  AMF  community

composition resilience) were not resilient, more importantly, when the land-use changed from

natural forest to Pennisetum sphacelatum dominated grazing land, forest restoration projects on

such grazing lands could potentially  consider AMF inoculation.  However,  when the planting

sites are croplands, there maybe little or no benefit of AMF inoculation. 

In  the  future,  AMF  community  composition  resilience  should  be  investigated  by

detrmining AMF species composition of these four land uses morphologically from field soil and
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trap culture or molecularly. Doing so is also very important because it will enable us to know to

what  extent  AMF  community  composition  and  physichocemical  property  resilince  are

correlarted. Similar studies should also be carried considering the various DAF in Ethiopia so

that  better  AMF inoculation strategies  could be formunalted for successful restoration of the

severely degraded dry evergreen Afromontane forests of Ethiopia. 
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7. Supplementary materials 

S1: Greenhouse bioassay setup

S2:  Root  AMF  infection;  N not  infected,  V vesicle,  IRM intraradical  mycelium,  ERM
extraradical mycelium. 

S3: Measured soil variables across land uses, altitude and per plot

S4: The values of soil physicochemical variables previously reported comparative to the values
found in this study. When previously reported values are ±10% (for pH) or ±25% (for the other
variables) of our results, we consider them to be comparable.  NF natural forest,  CF Chilimo
forest, CrL crop land, DAF dry evergreen Afromontane forests  
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	Abstract: We investigated the soil physicochemical property and arbuscular mycorrhizal fungi (AMF) resilience to degradation and deforestation of the Chilimo dry evergreen Afromontane forest. Topsoil (1-10cm) physicochemical property was determined across four land uses, viz. natural forest (NF), shrubland (ShL), cropland (CrL), and grazing land (GrL). AMF spore abundance (SA) and AMF infectivity of these land uses were also determined. One-way ANOVA results indicated that most soil physicochemical variables were significantly affected by land-use change. According to the nonmetric multidiamentiaonal scaling ordination result, soil physicochemical property was found to be resilient to degradation (NF-ShL conversation) but not deforestation (NF-CrL or NF-GrL conversions) of Chilimo forest. Whereas SA was found to be resilient to both the degradation and deforestation, infectivity was resilient only to NF-CrL conversion. Although our results did not show a similar pattern in soil property, SA and AMF infectivity resilience due to Chilimo forest degradation and deforestation, both the soil physicochemical property and AMF infectivity were found to be not resilient to NF conversion to GrL. Hence, based on our results, it can be concluded that AMF inoculation could be more beneficial to NF restoration if the planting sites are in GrL. However, in the future, the AMF community composition of these four land uses should be determined morphologically and molecularly from field soil and trap culture so that AMF resilience to DAF deforestation and degradation is better understood.
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