
 Modified subgradient extragradient algorithms for pseudomonotone equilibrium problems and fixed point problem

Lulu Yin1, Hongwei Liu1*

1School of Mathematics and Statistics,

Xidian University, Xi'an, China

Correspondence

*Hongwei Liu, School of Mathematics

and Statistics, Xidian University,

Xi'an, People’s Republic of China.

Email: hwliuxidian@163.com

Funding information:

National Natural Science Foundation of Chian

Grant/Award Number: 11801430

Abstract: In this paper, a new algorithm is considered to find a common element of

the solution set of a pseudomonotone equilibrium problem and fixed point set for a

quasi-nonexpansive  mapping  in  a  real  Hilbert  space.  The  algorithm is  based  on

subgradient  extragradient  method, inertial  method  and viscosity  method.  The

adaptive  step  size  ensures  that  the  algorithm does not  need  to  know apriori  the

Lipschitz constants of the associated bifunction. Under standard assumptions, the

strong convergence of the proposed algorithm was studied . Moreover, numerical

experiments  on  several  specific problems  and  comparison  with  other  algorithms

show the superiority of the algorithm.
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1 Introduction

Let  be a real Hilbert space endowed with inner product  and the induced norm . Let  be a nonempty, closed and convex subset of  and

assume  is a bifunction with , . The equilibrium problem  for  on  is stated as follows:

            Find , such that  for all .                                        (1.1)

We denoted the solution set  of equilibrium problem (1.1) by  .  Equilibrium problem is  also regarded as the Ky Fan inequality  [1] due to  his

contribution to the field. Numerous known models such as optimization problems, variational inequalities, fixed point problems, Nash equilibrium problems

and others  can  be  turned  into  finding  a  solution  of  the  equilibrium problem (1.1).  [2-6] In  recent  decades,  many methods  have been  constructed  for

approximating solution of equilibrium problems. [7-16] One of the most popular methods is the proximal point method, [7,8,9] but the method cannot be applied

to peudomonotone equilibrium problems. [10]

Another method is the proximal-like method (the extragradient method). [11-14] It is necessary to calculate two strongly convex programming problems

of the algorithm in each iteration. However, the evaluation of the subprograms involved in the algorithm may be expensive, in the case where the bifunction

and/or the feasible set have complicated structures. In order to improve this method, many authors have studied the subgradient extragradient  method. [15-18]

In this new method, the second strongly convex programming problems is not performed over onto  the closed convex set but on a half space and allows a

clear computation. On the other hand, iterative methods for finding a common element of the set of solutions of variational inequality and the set of fixed

points of nonlinear mappings have been extensively studied by many authors, where variational inequalities are a special case of equilibrium  problems.

Therefore, it is very attractive to find a common element of the set of solutions of equilibrium problems and the set of fixed points of operators in a real

Hilbert space. [18, 20-22]

Motivated and inspired by the works, [17-19, 23, 24] this paper proposes a new algorithm for finding a common element of the set of fixed points of a quasi-

nonexpansive mapping and the set of solutions of pseudomonotone equilibrium problems. The algorithm is constructed based on subgradient extragradient

method, inertial method and viscosity method. The main advantages of our method are: the self adaptive step-size which avoids the need to know apriori the

Lipschitz  constant  of  the  associated  monotone  operator,  the  strong  convergence  and  the  inertial  technique  employed which  speeds  up  the  rate  of

convergence of the algorithm. Finally, the results of several numerical experiments show that the new algorithm has better convergence than the existing

algorithm.

The paper is organized as follows. In Section 2, we give the basic concepts and preliminary results for our analysis.  Sections 3 study the strong

convergence of the proposed algorithm. Finally, in Section 4, several numerical experiments are reported to show the behavior of the new algorithm.

2 Preliminaries

In this section, we provide some basic concepts, definitions, and lemmas which will be used in later proofs. The strong converge and weak converge of the

sequence  to  are denoted by  and , respectively. For each  and , we have
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                                                     (2.1)

                                   (2.2)

                                           (2.3)

For a closed and convex set , the (metric) projection  is defined, for all  such that . It is

known that  has the following property.

Lemma 2.1 [25] Let  be a nonempty closed convex subset of a real Hilbert space . For any , we have

Definition 2.1 A bifunction  is said to be as follows:

• pseudomonotone on , if , ;

• Lipschitz-type condition on C, if there exist two positive constants  and  such that

Further, we recall that the subdifferential of a convex function  at  is defined by

and the normal cone  to  at a point  is defined by

Lemma 2.2 [26,  Chapter  7] Let   be a nonempty convex subset of a real Hilbert space   and   be a convex subdifferentiable and lower

semicontinuous function on  . Then,   is a solution to the convex problem  if and only if  , where

 denotes the subdifferential of  and  is the normal cone of  at .

Definition 2.2 Let  is a mapping with . Then

(i)  is called quasi-nonexpansive, if , where  is denoted the fixed point set of .

(ii)  is called demiclosed at zero, if ,  and , it follows that .

We  also  recall  the  definition  of  the  proximal  operator  which  is  the  basic  tool  for  the  proposed  algorithm.  For  a  proper,  convex  and  lower

semicontinuous function  and , the proximal mapping of  associated with  is defined by

The following lemma gives an important property of the proximal mapping.

Lemma 2.3 [27] For all ,  and , the following inequality holds:

                              (2.4)

Remark 2.1 From Lemma 2.3, we note that if , then



.

Lemma 2.4 (Peter-Paul inequality) For any , and . Then,

.                                                             (2.5)

Lemma 2.5 (Opial) Let  be a sequence in  such that . Then

.                                             (2.6)

Lemma 2.6 [28] Let  be a sequence of nonnegative real numbers,  be a sequence in (0, 1) such that , and  be a sequence of

real  numbers.  Suppose  that  If   for  every  subsequence   of   satisfying

 then .

3 The convergence of the Algorithm

In this section, we present our algorithm and discuss its convergence analysis. For ease of notation we denote  , which we will

replace it in the following proof. We establish the convergence of the algorithm under the following conditions:

Condition (A):

(A1)  is pseudomonotone on  and  for all ;

(A2)  is convex and subdifferentiable on  for every fixed ;

(A3)  for every sequence  which converges weakly to  and for each ;

(A4)  satisfies the Lipschitz-type condition on  with constants  and .

Condition (B):

(B1)  is a quasi-nonexpansive mapping;

(B2)  is a contraction mapping with contraction parameter .

Condition (C):

(C1)  with ;

(C2)  and ;

(C3) ;

(C4) , i.e. .

Now, we introduce the following algorithm:

Algorithm 3.1

(Step 0) Choose , , , . Choose a non-negative real sequence , such that .

(Step 1) Given the current iterate , choose  such that , where



(Step 2) Set  and compute

If  then stop (  is a solution to the problem (EP)). Otherwise, go to Step 3.

(Step 3) Choose  such that , compute

where 

(Step 4) Compute  and

S  et    and return to step 1.                                                     

Remark 3.1 It is easy to see that, by the definition of  we obtain  Indeed, we have  for all , which together

with  implies that

Lemma 3.1 Algorithm 3.1 generates sequence , which is monotonically decreasing and has a lower bound .

Proof  It is easy to see that  is a monotonically decreasing sequence. Since  satisfies the Lipschitz-type condition with constants  and , in the

case of , we have

Hence, the sequence  has a lower bound .

Remark 3.2 It is deduced that the limit of  exists and we denote . Clearly

. If , Then  is a constant sequence.

The following lemma plays a crucial role in the proof the convergence result.

Lemma 3.2 Let , ,  be the sequences generated by Algorithm3.1. Then



Proof  From  and using Lemma 2.3, we derive

                                      (3.3)

Note that  Let , substituting  into (3.3), we deduce

                                           (3.4)

It follows from  and the pseudomonotonicity of  that . Then the inequality (3.4) implies

                                               (3.5)

By using the definition of the subdifferential and , we obtain

.

In particular, taking  in the last inequality, we have

.

From the definition of  ,  we have , which implies that  . Hence,  we achieve the

following

                                           (3.6)

which together with (3.5) and (2.3) give us

                                    (3.7)

Owing to the definition of  and (3.7), we obtain

                                (3.8)

Lemma  3.3 Let sequences ,  and   be generated  by  Algorithm  3.1.  Assume  that  ,  ,



, and . If  converges weakly to some , then .

Proof  It is clear that ,  and . From the relation of (3.3), we deduce

                                 (3.9)

On the other hand, since  satisfies the Lipschitz-type condition on , we arrive at

                                       (3.10)

According to the relations (3.6) and (3.10), we obtain

                                  (3.11)

Combining (3.9) an9d (3.11) and , we get that, for all ,

Let  ,  using  the  facts that ,  is bounded,  ,   and  the

assumption (A3), we obtain  ,  . That is  . Moreover, since   and   is demi-closed at zero,  we get that

. Then, . This completes the proof.

Theorem 3.1 Let  be the sequence generated by Algorithm 3.1. Suppose conditions (A), (B), (C) are satisfied and . Then,  converges

strongly to a point , where .

Proof  Now we show the sufficiency of the theorem.

Step 1. We show that  is bounded. From the definition of , we deduced , . Using (3.8), we obtain

                                                 (3.12)

From the definition of , we get

                                             (3.13)

According to Remark 3.1, we have , it follows that there exists a constant  such that

                                             (3.14)

Combining (3.12), (3.13) and (3.14), we obtain



                                (3.15)

By means of the definition of  and (3.15), we get

This implies  is bounded. We also get , , , ,  are bounded.

Step 2 We prove that

for some . Indeed, we get

                  (3.16)

for some . By injecting (3.8) into (3.16), we find

                                (3.17)

Also, from (3.15) we have

                                         (3.18)



for some . Combining (3.17) and (3.18), we obtain

This implies that

where .

Step 3 We prove that

for some . Indeed, we have

                                    (3.19)

Combining (2.1) and (3.19), we have

where for some .

Step 4 We  show  that  converges  strongly  to  zero.  Indeed,  suppose  that   is  a  subsequence  of   satisfying

. Then



By Step 2 we obtain

This implies that

                     (3.20)

It is clear that

                         (3.21)

and

                    (3.22)

From (3.20), (3.21) and (3.22), we get

                           (3.23)

Since the sequence  is bounded, it follows that there exists a subsequence  of , which converges weakly to some , such that

                  (3.24)

Using (3.20), (3.21) and Lemma 3.3, we have . Hence, from (3.24) and the definition of , we get

                                (3.25)

Combining (3.23) and (3.25), we have

                      (3.26)

Hence, by (3.26), , Step 3 and Lemma 2.6, we have . This completes the proof.

4 Numerical experiments

In this section, we present some numerical examples to illustrate the convergence and the efficiency of the proposed algorithm in comparison with other

existing algorithms. First, We compare Algorithm 3.1 with  other  Algorithms. [14,18] Next, we compare Algorithm  3.1 with  the  Algorithms. [23,24] We take

and  for our algorithms. We report the number of iterations (iter.) and computing time (time) measured in seconds for all the tests.

To terminate the algorithms, we use the condition  and  for all the algorithms. The followings are the examples in details.

Problem 1. We consider the equilibrium problem for the following bifunction  which comes from the Nash-Cournot equilibrium model.[15]



where  is the zero vector,  and the matrices  and  are two square matrices of order  such that   is symmetric positive semidefinite and

 is negative semidefinite. In this case, the bifunction  satisfies (A1) - (A4) with the Lipschitz-type constants . [12, Lemma 6.2] We

take   and   for  all  Algorithm.  For  Algorithm  3.1 and  Algorithm  3.1, [18] we  choose ,    and

. For Algorithm 3.1, [14] we use . For Algorithm 3.1, we choose  and .

For numerical experiments: we suppose that the feasible set  has the form of

where  is a matrix of the size  (  and  ) with its entries generated randomly in [–2, 0] and  is a vector with its

elements generated randomly. [1, 3] The numerical results are showed in Table 1.

Problem 2 The second problem is HpHard problem, we consider a linear operator , where , every entry of the 

matrix  and of the  skew-symmetric matrix  is uniformly generated from [–2, 2], every diagonal entry of the  diagonal  is uniformly

generated from (0, 2) (so  is positive definite), and  is equal to zero vector. The feasible set is  . For all tests, we take  and

. For Algorithm 3.1, we choose , , ,  and . For Algorithm 2, [23] we

choose  and . For Algorithm 3.1, [24] we take  and . The results are presented in Table 2.

From the numerical results, we see that the proposed algorithms are effective.

5 Conclusions

In this paper, we consider an improved subgradient extragradient method, which combines the inertial method and the viscosity method, and uses a new step

calculation method. It is proved that the sequence generated by the algorithm strongly converges to a common solution of an equilibrium problem and a

fixed point problem in a real Hilbert space. Numerical experiments verify the effectiveness of the proposed algorithm.
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Table 1. Problem 1.



m
Algorithm 3.1 Algorithm 3.1 [14] Algorithm 3.1 [18]

Iter. Time Iter. Time Iter. Time

10 16 0.076 149 0.717 47 1.490

100 18 0.111 148 1.066 85 2.551

200 18 0.194 182 1.920 103 4.645

Table 2. Problem 2.

m
Algorithm 3.1 Algorithm 2 [23] Algorithm 3.1 [24]

Iter. Time Iter. Time Iter. Time

50 9 0.001 97 0.001 148 0.006

500 11 0.002 154 0.013 57 0.058

1000 11 0.004 173 0.073 885 0.606
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