Mallory Barnes

and 8 more

Restoring and preventing losses of the world’s forests are promising natural pathways to mitigate climate change. In addition to regulating atmospheric carbon dioxide concentrations, forests modify surface and near-surface air temperatures through biophysical processes. In the eastern United States (EUS), widespread reforestation during the 20th century coincided with an anomalous lack of warming, raising the question of whether reforestation contributed to biophysical cooling and slowed local climate change. Using new cross-scale approaches and multiple independent sources of data, our analysis uncovered links between reforestation and the response of both surface and air temperature in the EUS. Ground- and satellite-based observations showed that EUS forests cool the land surface by 1-2 °C annually, with the strongest cooling effect during midday in the growing season, when cooling is 2 to 5 °C. Young forests aged 25-50 years have the strongest cooling effect on surface temperature, which extends to the near-surface air, with forests reducing midday air temperature by up to 1 °C. Our analyses of historical land cover and air temperature trends showed that the cooling benefits of reforestation extend across the landscape. Locations predominantly surrounded by reforestation were up to 1 °C cooler than neighboring locations that did not undergo land cover change, and areas dominated by regrowing forests were associated with cooling temperature trends in much of the EUS. Our work indicates that reforestation contributed to the historically slow pace of warming in the EUS, highlighting the potential for reforestation to provide local climate adaptation benefits in temperate regions worldwide.