References
A R, A V, I B, H W, KM Z, D S, et al. (2013). Overcoming
intrinsic multidrug resistance in melanoma by blocking the mitochondrial
respiratory chain of slow-cycling JARID1B(high) cells. Cancer cell
23: 811-825.
Alfred Witjes J, Lebret T, Comperat EM, Cowan NC, De Santis M, Bruins
HM, et al. (2017). Updated 2016 EAU Guidelines on Muscle-invasive
and Metastatic Bladder Cancer. Eur Urol 71: 462-475.
Berkenblit A, Eder JP, Jr., Ryan DP, Seiden MV, Tatsuta N, Sherman
ML, et al. (2007). Phase I clinical trial of STA-4783 in
combination with paclitaxel in patients with refractory solid tumors.
Clin Cancer Res 13: 584-590.
Cao H, Zou L, He B, Zeng L, Huang Y, Yu H, et al. (2017). Albumin
Biomimetic Nanocorona Improves Tumor Targeting and Penetration for
Synergistic Therapy of Metastatic Breast Cancer. Advanced Functional
Materials 27.
Cierlitza M, Chauvistre H, Bogeski I, Zhang X, Hauschild A, Herlyn
M, et al. (2015). Mitochondrial oxidative stress as a novel
therapeutic target to overcome intrinsic drug resistance in melanoma
cell subpopulations. Experimental dermatology 24: 155-157.
Cui Q, Wang J-Q, Assaraf YG, Ren L, Gupta P, Wei L, et al.(2018). Modulating ROS to overcome multidrug resistance in cancer. Drug
Resistance Updates 41: 1-25.
Davis S, Weiss M, Wong J, Lampidis T, & Chen L (1985). Mitochondrial
and plasma membrane potentials cause unusual accumulation and retention
of rhodamine 123 by human breast adenocarcinoma-derived MCF-7 cells. The
Journal of biological chemistry 260: 13844-13850.
Deribe YL, Sun Y, Terranova C, Khan F, Martinez-Ledesma J, Gay J,
et al. (2018). Author Correction: Mutations in the SWI/SNF complex
induce a targetable dependence on oxidative phosphorylation in lung
cancer. Nat Med 24: 1627.
Desai N (2012). Challenges in development of nanoparticle-based
therapeutics. AAPS J 14: 282-295.
Dewhirst M, Mowery Y, Mitchell J, Cherukuri M, & Secomb T (2019).
Rationale for hypoxia assessment and amelioration for precision therapy
and immunotherapy studies. The Journal of clinical investigation
129: 489-491.
Hao W, Chang CP, Tsao CC, & Xu J (2010). Oligomycin-induced
bioenergetic adaptation in cancer cells with heterogeneous bioenergetic
organization. J Biol Chem 285: 12647-12654.
Hoskin P, Sibtain A, Daley F, & Wilson G (2003). GLUT1 and CAIX as
intrinsic markers of hypoxia in bladder cancer: relationship with
vascularity and proliferation as predictors of outcome of ARCON. British
journal of cancer 89: 1290-1297.
Housman G, Byler S, Heerboth S, Lapinska K, Longacre M, Snyder N,
et al. (2014). Drug Resistance in Cancer: An Overview. Cancers
6: 1769-1792.
Idris NM, Jayakumar MK, Bansal A, & Zhang Y (2015). Upconversion
nanoparticles as versatile light nanotransducers for photoactivation
applications. Chem Soc Rev 44: 1449-1478.
Jose C, Bellance N, & Rossignol R (2011). Choosing between glycolysis
and oxidative phosphorylation: a tumor’s dilemma? Biochim Biophys Acta
1807: 552-561.
JR M, Y S, M P, S G, M B, C B, et al. (2018). An inhibitor of
oxidative phosphorylation exploits cancer vulnerability. Nature medicine
24: 1036-1046.
Klyubin I, Kirpichnikova K, Ischenko A, Zhakhov A, & Gamaley I (2000).
The role of reactive oxygen species in membrane potential changes in
macrophages and astrocytes. Membrane & cell biology 13:557-566.
Kuang Y, Zhang K, Cao Y, Chen X, Wang K, Liu M, et al. (2017).
Hydrophobic IR-780 Dye Encapsulated in cRGD-Conjugated Solid Lipid
Nanoparticles for NIR Imaging-Guided Photothermal Therapy. ACS Appl
Mater Interfaces 9: 12217-12226.
Lucky SS, Muhammad Idris N, Li Z, Huang K, Soo KC, & Zhang Y (2015).
Titania coated upconversion nanoparticles for near-infrared light
triggered photodynamic therapy. ACS Nano 9: 191-205.
Luo S, Tan X, Fang S, Wang Y, Liu T, Wang X, et al. (2016).
Mitochondria-Targeted Small-Molecule Fluorophores for Dual Modal Cancer
Phototherapy. Advanced Functional Materials 26: 2826-2835.
Ploeg M, Aben KKH, & Kiemeney LA (2009). The present and future burden
of urinary bladder cancer in the world. World Journal of Urology
27: 289-293.
Porporato PE, Filigheddu N, Pedro JMB-S, Kroemer G, & Galluzzi L
(2017). Mitochondrial metabolism and cancer. Cell Research 28:265-280.
Roesch A, Vultur A, Bogeski I, Wang H, Zimmermann KM, Speicher D,
et al. (2013). Overcoming intrinsic multidrug resistance in melanoma by
blocking the mitochondrial respiratory chain of slow-cycling
JARID1B(high) cells. Cancer Cell 23: 811-825.
Sabharwal SS, & Schumacker PT (2014). Mitochondrial ROS in cancer:
initiators, amplifiers or an Achilles’ heel? Nat Rev Cancer 14:709-721.
Santos J, Blackman RK, Cheung-Ong K, Gebbia M, Proia DA, He S, et
al. (2012). Mitochondrial Electron Transport Is the Cellular Target of
the Oncology Drug Elesclomol. PLoS ONE 7.
Selvendiran K, Kuppusamy ML, Ahmed S, Bratasz A, Meenakshisundaram G,
Rivera BK, et al. (2010). Oxygenation inhibits ovarian tumor
growth by downregulating STAT3 and cyclin-D1 expressions. Cancer Biol
Ther 10: 386-390.
Stępień K, Ostrowski RP, & Matyja E (2016). Hyperbaric oxygen as an
adjunctive therapy in treatment of malignancies, including brain
tumours. Medical Oncology 33.
Svatek RS, Hollenbeck BK, Holmang S, Lee R, Kim SP, Stenzl A, et
al. (2014). The economics of bladder cancer: costs and considerations
of caring for this disease. Eur Urol 66: 253-262.
Tan X, Luo S, Long L, Wang Y, Wang D, Fang S, et al. (2017).
Structure-Guided Design and Synthesis of a Mitochondria-Targeting
Near-Infrared Fluorophore with Multimodal Therapeutic Activities.
Advanced Materials 29.
Uthaman S, Mathew AP, Park HJ, Lee BI, Kim HS, Huh KM, et al.(2018). IR 780-loaded hyaluronic acid micelles for enhanced
tumor-targeted photothermal therapy. Carbohydr Polym 181: 1-9.
Wang Y, Liu T, Zhang E, Luo S, Tan X, & Shi C (2014). Preferential
accumulation of the near infrared heptamethine dye IR-780 in the
mitochondria of drug-resistant lung cancer cells. Biomaterials
35: 4116-4124.
Wang Y, Luo S, Zhang C, Liao X, Liu T, Jiang Z, et al. (2018). An
NIR-Fluorophore-Based Therapeutic Endoplasmic Reticulum Stress Inducer.
Adv Mater: e1800475.
Weinberg SE, & Chandel NS (2015). Targeting mitochondria metabolism for
cancer therapy. Nat Chem Biol 11: 9-15.
Wen S, Zhu D, & Huang P (2013). Targeting cancer cell mitochondria as a
therapeutic approach. Future medicinal chemistry 5: 53-67.
Wu L, Zhao J, Cao K, Liu X, Cai H, Wang J, et al. (2018).
Oxidative phosphorylation activation is an important characteristic of
DOX resistance in hepatocellular carcinoma cells. Cell Communication and
Signaling 16.
WX Z, JD R, & E W (2016). Mitochondria and Cancer. Molecular cell
61: 667-676.
Xiao T, Fan JK, Huang HL, Gu JF, Li LY, & Liu XY (2010). VEGI-armed
oncolytic adenovirus inhibits tumor neovascularization and directly
induces mitochondria-mediated cancer cell apoptosis. Cell Res
20: 367-378.
Y S, SK L, Q L, SV I, HY W, Z W, et al. (2019). Gboxin is an
oxidative phosphorylation inhibitor that targets glioblastoma. Nature
567: 341-346.
Yan F, Duan W, Li Y, Wu H, Zhou Y, Pan M, et al. (2016).
NIR-Laser-Controlled Drug Release from DOX/IR-780-Loaded
Temperature-Sensitive-Liposomes for Chemo-Photothermal Synergistic Tumor
Therapy. Theranostics 6: 2337-2351.
Zehnder P, Studer UE, Skinner EC, Thalmann GN, Miranda G, Roth B,
et al. (2013). Unaltered oncological outcomes of radical cystectomy
with extended lymphadenectomy over three decades. BJU Int 112:E51-58.
Zhang C, Liu T, Su Y, Luo S, Zhu Y, Tan X, et al. (2010). A
near-infrared fluorescent heptamethine indocyanine dye with preferential
tumor accumulation for in vivo imaging. Biomaterials 31:6612-6617.
Zhang E, Luo S, Tan X, & Shi C (2014). Mechanistic study of IR-780 dye
as a potential tumor targeting and drug delivery agent. Biomaterials
35: 771-778.
Zielonka J, Joseph J, Sikora A, Hardy M, Ouari O, Vasquez-Vivar J,
et al. (2017). Mitochondria-Targeted Triphenylphosphonium-Based
Compounds: Syntheses, Mechanisms of Action, and Therapeutic and
Diagnostic Applications. Chemical reviews 117: 10043-10120.