References
A R, A V, I B, H W, KM Z, D S, et al. (2013). Overcoming intrinsic multidrug resistance in melanoma by blocking the mitochondrial respiratory chain of slow-cycling JARID1B(high) cells. Cancer cell 23: 811-825.
Alfred Witjes J, Lebret T, Comperat EM, Cowan NC, De Santis M, Bruins HM, et al. (2017). Updated 2016 EAU Guidelines on Muscle-invasive and Metastatic Bladder Cancer. Eur Urol 71: 462-475.
Berkenblit A, Eder JP, Jr., Ryan DP, Seiden MV, Tatsuta N, Sherman ML, et al. (2007). Phase I clinical trial of STA-4783 in combination with paclitaxel in patients with refractory solid tumors. Clin Cancer Res 13: 584-590.
Cao H, Zou L, He B, Zeng L, Huang Y, Yu H, et al. (2017). Albumin Biomimetic Nanocorona Improves Tumor Targeting and Penetration for Synergistic Therapy of Metastatic Breast Cancer. Advanced Functional Materials 27.
Cierlitza M, Chauvistre H, Bogeski I, Zhang X, Hauschild A, Herlyn M, et al. (2015). Mitochondrial oxidative stress as a novel therapeutic target to overcome intrinsic drug resistance in melanoma cell subpopulations. Experimental dermatology 24: 155-157.
Cui Q, Wang J-Q, Assaraf YG, Ren L, Gupta P, Wei L, et al.(2018). Modulating ROS to overcome multidrug resistance in cancer. Drug Resistance Updates 41: 1-25.
Davis S, Weiss M, Wong J, Lampidis T, & Chen L (1985). Mitochondrial and plasma membrane potentials cause unusual accumulation and retention of rhodamine 123 by human breast adenocarcinoma-derived MCF-7 cells. The Journal of biological chemistry 260: 13844-13850.
Deribe YL, Sun Y, Terranova C, Khan F, Martinez-Ledesma J, Gay J, et al. (2018). Author Correction: Mutations in the SWI/SNF complex induce a targetable dependence on oxidative phosphorylation in lung cancer. Nat Med 24: 1627.
Desai N (2012). Challenges in development of nanoparticle-based therapeutics. AAPS J 14: 282-295.
Dewhirst M, Mowery Y, Mitchell J, Cherukuri M, & Secomb T (2019). Rationale for hypoxia assessment and amelioration for precision therapy and immunotherapy studies. The Journal of clinical investigation 129: 489-491.
Hao W, Chang CP, Tsao CC, & Xu J (2010). Oligomycin-induced bioenergetic adaptation in cancer cells with heterogeneous bioenergetic organization. J Biol Chem 285: 12647-12654.
Hoskin P, Sibtain A, Daley F, & Wilson G (2003). GLUT1 and CAIX as intrinsic markers of hypoxia in bladder cancer: relationship with vascularity and proliferation as predictors of outcome of ARCON. British journal of cancer 89: 1290-1297.
Housman G, Byler S, Heerboth S, Lapinska K, Longacre M, Snyder N, et al. (2014). Drug Resistance in Cancer: An Overview. Cancers 6: 1769-1792.
Idris NM, Jayakumar MK, Bansal A, & Zhang Y (2015). Upconversion nanoparticles as versatile light nanotransducers for photoactivation applications. Chem Soc Rev 44: 1449-1478.
Jose C, Bellance N, & Rossignol R (2011). Choosing between glycolysis and oxidative phosphorylation: a tumor’s dilemma? Biochim Biophys Acta 1807: 552-561.
JR M, Y S, M P, S G, M B, C B, et al. (2018). An inhibitor of oxidative phosphorylation exploits cancer vulnerability. Nature medicine 24: 1036-1046.
Klyubin I, Kirpichnikova K, Ischenko A, Zhakhov A, & Gamaley I (2000). The role of reactive oxygen species in membrane potential changes in macrophages and astrocytes. Membrane & cell biology 13:557-566.
Kuang Y, Zhang K, Cao Y, Chen X, Wang K, Liu M, et al. (2017). Hydrophobic IR-780 Dye Encapsulated in cRGD-Conjugated Solid Lipid Nanoparticles for NIR Imaging-Guided Photothermal Therapy. ACS Appl Mater Interfaces 9: 12217-12226.
Lucky SS, Muhammad Idris N, Li Z, Huang K, Soo KC, & Zhang Y (2015). Titania coated upconversion nanoparticles for near-infrared light triggered photodynamic therapy. ACS Nano 9: 191-205.
Luo S, Tan X, Fang S, Wang Y, Liu T, Wang X, et al. (2016). Mitochondria-Targeted Small-Molecule Fluorophores for Dual Modal Cancer Phototherapy. Advanced Functional Materials 26: 2826-2835.
Ploeg M, Aben KKH, & Kiemeney LA (2009). The present and future burden of urinary bladder cancer in the world. World Journal of Urology 27: 289-293.
Porporato PE, Filigheddu N, Pedro JMB-S, Kroemer G, & Galluzzi L (2017). Mitochondrial metabolism and cancer. Cell Research 28:265-280.
Roesch A, Vultur A, Bogeski I, Wang H, Zimmermann KM, Speicher D, et al. (2013). Overcoming intrinsic multidrug resistance in melanoma by blocking the mitochondrial respiratory chain of slow-cycling JARID1B(high) cells. Cancer Cell 23: 811-825.
Sabharwal SS, & Schumacker PT (2014). Mitochondrial ROS in cancer: initiators, amplifiers or an Achilles’ heel? Nat Rev Cancer 14:709-721.
Santos J, Blackman RK, Cheung-Ong K, Gebbia M, Proia DA, He S, et al. (2012). Mitochondrial Electron Transport Is the Cellular Target of the Oncology Drug Elesclomol. PLoS ONE 7.
Selvendiran K, Kuppusamy ML, Ahmed S, Bratasz A, Meenakshisundaram G, Rivera BK, et al. (2010). Oxygenation inhibits ovarian tumor growth by downregulating STAT3 and cyclin-D1 expressions. Cancer Biol Ther 10: 386-390.
Stępień K, Ostrowski RP, & Matyja E (2016). Hyperbaric oxygen as an adjunctive therapy in treatment of malignancies, including brain tumours. Medical Oncology 33.
Svatek RS, Hollenbeck BK, Holmang S, Lee R, Kim SP, Stenzl A, et al. (2014). The economics of bladder cancer: costs and considerations of caring for this disease. Eur Urol 66: 253-262.
Tan X, Luo S, Long L, Wang Y, Wang D, Fang S, et al. (2017). Structure-Guided Design and Synthesis of a Mitochondria-Targeting Near-Infrared Fluorophore with Multimodal Therapeutic Activities. Advanced Materials 29.
Uthaman S, Mathew AP, Park HJ, Lee BI, Kim HS, Huh KM, et al.(2018). IR 780-loaded hyaluronic acid micelles for enhanced tumor-targeted photothermal therapy. Carbohydr Polym 181: 1-9.
Wang Y, Liu T, Zhang E, Luo S, Tan X, & Shi C (2014). Preferential accumulation of the near infrared heptamethine dye IR-780 in the mitochondria of drug-resistant lung cancer cells. Biomaterials 35: 4116-4124.
Wang Y, Luo S, Zhang C, Liao X, Liu T, Jiang Z, et al. (2018). An NIR-Fluorophore-Based Therapeutic Endoplasmic Reticulum Stress Inducer. Adv Mater: e1800475.
Weinberg SE, & Chandel NS (2015). Targeting mitochondria metabolism for cancer therapy. Nat Chem Biol 11: 9-15.
Wen S, Zhu D, & Huang P (2013). Targeting cancer cell mitochondria as a therapeutic approach. Future medicinal chemistry 5: 53-67.
Wu L, Zhao J, Cao K, Liu X, Cai H, Wang J, et al. (2018). Oxidative phosphorylation activation is an important characteristic of DOX resistance in hepatocellular carcinoma cells. Cell Communication and Signaling 16.
WX Z, JD R, & E W (2016). Mitochondria and Cancer. Molecular cell 61: 667-676.
Xiao T, Fan JK, Huang HL, Gu JF, Li LY, & Liu XY (2010). VEGI-armed oncolytic adenovirus inhibits tumor neovascularization and directly induces mitochondria-mediated cancer cell apoptosis. Cell Res 20: 367-378.
Y S, SK L, Q L, SV I, HY W, Z W, et al. (2019). Gboxin is an oxidative phosphorylation inhibitor that targets glioblastoma. Nature 567: 341-346.
Yan F, Duan W, Li Y, Wu H, Zhou Y, Pan M, et al. (2016). NIR-Laser-Controlled Drug Release from DOX/IR-780-Loaded Temperature-Sensitive-Liposomes for Chemo-Photothermal Synergistic Tumor Therapy. Theranostics 6: 2337-2351.
Zehnder P, Studer UE, Skinner EC, Thalmann GN, Miranda G, Roth B, et al. (2013). Unaltered oncological outcomes of radical cystectomy with extended lymphadenectomy over three decades. BJU Int 112:E51-58.
Zhang C, Liu T, Su Y, Luo S, Zhu Y, Tan X, et al. (2010). A near-infrared fluorescent heptamethine indocyanine dye with preferential tumor accumulation for in vivo imaging. Biomaterials 31:6612-6617.
Zhang E, Luo S, Tan X, & Shi C (2014). Mechanistic study of IR-780 dye as a potential tumor targeting and drug delivery agent. Biomaterials 35: 771-778.
Zielonka J, Joseph J, Sikora A, Hardy M, Ouari O, Vasquez-Vivar J, et al. (2017). Mitochondria-Targeted Triphenylphosphonium-Based Compounds: Syntheses, Mechanisms of Action, and Therapeutic and Diagnostic Applications. Chemical reviews 117: 10043-10120.