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Abstract In present paper, an original form of exact analytical solutions was introduced to solve nonlinear evolution

equations by means of bilinear neural network method and symbolic computation. We gave high-order rational solutions

including high-order lump-type solutions and higher-order rational solutions, periodic wave solutions, breather solutions and

two kinds of rogue waves solutions of extended (2+1)-dimensional Calogero-Bogoyavlenskii-Schiff-like equation to exemplify

the availability and advantage of the proposed approach which expand exact analytical solutions of nonlinear evolution

equations. Meanwhile, physical properties and characters of the solutions were graphically shown through several groups of

maps which are determined by special values.
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1 Introduction

Nonlinear evolution equations (NLEEs) is a generic term of nonlinear mathematical physical partial differential

equation including variate t that can describe the evolution along with times in dynamics, physics, biology and other

natural science. Recently, with the increasing development of technology and endeavor of numerous scholars, the

study of solving NLEEs has aroused more and more attention, hence, there are various effective methods applied

to solve NLEEs, such as homogeneous balance method [1], inverse scattering method [2], Bäcklund transformation

[3], Darboux transformation [4], Hirota bilinear method [5] and simplest equation method [6]. In accordance with

these methods, multiple rational solutions including lump solution [7, 8], lump-type solution [9], soliton solution

[10], rogue wave solution [11], periodic solution [12, 13] and breather solution [14] are obtained.

Soliton is a stable solitary wave with constant speed, no deformation, no damage in interaction so that soliton

theory has been widely studied in various domains while lump solution is a special type of rational function solutions

which is localized in all directions of space compared with solitary wave solution. Ma [15, 16, 17, 18] proposed an

approach to obtain lump solution directly by using symbolic computation has pushed lump solution to a new high.

However, in the absence of external energy input, the wave train will evolve into a modulated wave train when the

constituent waves of the wave train satisfied a certain relation, and with the appearance of self-focusing phenomenon,

the maximum modulated amplitude may be far greater than the initial amplitude. Similarly, the occurrence of

modulation instability is directly related to the characteristics of sea conditions. The steeper the wave is and the

more concentrated the frequency distribution of the constituent wave is, the more likely the modulation instability
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and rogue wave will be generated. Therefore, a increasing number of scholars have focused on the study of rogue

waves and various rogue waves solutions have been obtain through symbolic computation [19, 20].

The study of neural networks have been around for a long time, Kohonen proposed that simple adaptive units

make up the neural network which is a wide and interconnected network in 1988. The basic elements of the neural

networks is neuron model, the neuron received input signal from other neuron, these input signal transmitted trough

a weighted connection. This idea is similar to the method of solving NLEEs, thus, we introduced a method called

bilinear neural network method based on neural network model and bilinear method to look for the solutions of

NLEEs [21]. This method covers many methods of constructing a function after bilinearization to solve NLEEs

that can be seen as models with only one hidden layer. For example, rogue wave solution, rational solution, lump

solution, interaction solution, breather solution, periodic solitary wave solution [7]-[21], etc.

This article is divided into six parts. In section 2, bilinear neural network method and a new approach which

solve NLEEs effectively will be introduced. In section 3, we will obtain the general bilinear form of extended (2+1)-

dimensional Calogero-Bogoyavlenskii-Schiff equation by using general bilinear method and get extended (2+1)-

dimensional Calogero-Bogoyavlenskii-Schiff-like (eCBSL) equation through transformation. Then, we obtain high-

order lump-type solutions, higher-order rational solutions, periodic wave solutions, breather solutions of the equation

through Maple. In section 4, by setting special values to coefficients of (2+1)-dimensional eCBSL equation, we will

derive two kinds of rogue waves solutions of the equation. In section 5, several groups of maps including three-

dimensional, contour and density plots will be provided to illustrate the dynamic properties and characters of these

waves graphically. A few of conclusions and outlook will be given in the final section.

2 Bilinear neural network method

In this section, a l-hidden layer neural network model [see figure 1] which have a neurons of xa, l-hidden layers

of G1,ρ, G2,γ , . . . , Gl,µ, weight functions of w1c, w2d, . . . , wlp and output layer of F1, F2, . . . , Fb will be plot, where

a, b, c, d, l, p, ρ, γ and µ are natural numbers. As it shown, the l-hidden layer neural network has l hidden layer of

Gl which are satisfied that the later hidden layer was obtained by the weighted sum of the previous hidden layer,

through weighting sum the last hidden layer, the output layer of Fb will be derived.
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Figure 1: l-hidden layer neural network model

In order to obtain exact analytical solutions of NLEEs, we will construct a single-hidden layer neural network
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model [see figure 2]. Taking the number of input neuron equal to L (L represents the dimension of space), thus, by

taking the sum of xL weighted by aik, the functions GN (φN ) of hidden layer was obtained while taking the sum of

xL weighted by bjk , the functions gM (ψM ) of hidden layer was obtained, where i = 1, 2, . . . , N ; j = 1, 2, . . . ,M and

k = 1, 2, . . . , L. At the same time, taking the number of functions in the output layer be one and through taking

the sum of GN and gM weighted by 1 and mj , the output function of f will be obtained.
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Figure 2: single-hidden layer neural network model

Step 1. According to the above model, we can construct the expression of f as follows [22],

f = a0 +

N∑
i=1

φ2ni
i +

M∑
j=1

mjgj(ψj), (1)

where

φi = ai0 +

L∑
k=1

aikxk, ψj = bj0 +

L∑
k=1

bjkxk, (2)

where ni ∈ N and the weight coefficients of a0, aik, bjk,mj (i = 1, 2, . . . , N ; j = 1, 2, . . . ,M ; k = 1, 2, . . . , L) are

real constants to be determined later. By choosing dependent variable transformation, we will obtain the general

bilinear form of NLEEs.

Step 2. Substituting (1) and (2) into the general bilinear equation of NLEEs, we will obtain a polynomial

about a0, aik, bjk,mj and collect all wight coefficients of the terms with the same order. Then, taking the weight

coefficients of different terms equal to zero, a group of nonlinear algebraic equations about a0, aik, bjk,mj will be

generated. We will solve the above nonlinear algebraic equations take the advantage of symbolic computation

Maple.

Step 3. Substituting a0, aik, bjk,mj into (1) and (2) and through variable transformation, we will obtain

abundant solutions of NLEEs.

So as to obtaining high-order lump-type solutions, higher-order rational solutions, periodic wave solutions,

breather solutions and rogue waves solutions to (2+1)-dimensional NLEEs, we hypothesize: N = 3, M = 4,

g1(ψ1) = eψ1 , g2(ψ2) = e−ψ2 in (1) and L = 3, x1 = x, x2 = y, x3 = t in (2). The solution to general bilinear

equation reads:

f = a0 + φ2n1
1 + φ2n2

2 + φ2n3
3 +m1e

ψ1 +m2e
−ψ2 +m3g3(ψ3) +m4g4(ψ4), (3)
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where φi = ai0 + ai1x + ai2y + ai3t (i = 1, 2, 3), ψi = bj0 + bj1x + bj2y + bj3t (j = 1, 2, 3, 4) satisfying
3∏
i=1

aik ̸= 0

(k = 1, 2, 3),
3∏
k=1

aik ̸= 0 (i = 1, 2, 3),
3∏
j=1

bjk ̸= 0 (k = 1, 2, 3),
3∏
k=1

bjk ̸= 0 (j = 1, 2, 3, 4).

Remark 2.1: If we choose n2 = n1 = 1, a3k = mj = 0 (j = 1, 2, 3, 4; k = 0, 1, 2, 3), we will get lump solutions

[23] of NLEEs. If we choose n2 = n1 = m1 = 1, a3k = mj = 0, (j = 2, 3, 4; k = 0, 1, 2, 3), we will get lump-kink

solutions [24]. If we choose n2 = n1 = 1, g4(ψ4) = coshψ4, a3k = mj = 0 (j = 1, 2, 3; k = 0, 1, 2, 3), we will get

lump-hyperbolic cosine solutions [25]. If we choose aik = mj = 0 (j = 2, 3, 4; k = 0, 1, 2, 3), we will get 1-soliton

solutions [26]. In a word, with the alter of the variate, we will obtain various kinds of solutions to NLEEs.

3 Various exact solutions to extended (2+1)-dimensional Calogero-

Bogoyavlenskii-Schiff-like equation

We consider an extended (2+1)-dimensional Calogero-Bogoyavlenskii-Schiff (eCBS) equation:

uxt + uxxxy + 6uxxuy + 6uxuxy + αuxy + βuxx + δuxxxx + 12δuxuxx = 0, (4)

where α, β, δ are arbitrary nonzero real parameters and u = u(x, y, t).

Via dependent variable transformation

u = ln f(x, y, t)xx, (5)

we can obtain the generalize bilinear form of equation (4) as follows:

GBeCBS := (Dp,xDp,t +D3
p,xDp,y + αDp,xDp,y + βD2

p,x + δD4
p,x)f · f = 0, (6)

where D is generalized bilinear differential operators [27] reads:

Dm
p,xD

n
p,yD

l
p,tf · f = (∂x + χp∂x′)m(∂y + χp∂y′)

n(∂t + χp∂t′)
lf(x, y, t)f(x′, y′, t′) |x=x′,y=y′,t=t′

=

m∑
i=0

n∑
j=0

l∑
k=0

 m

i

 n

j

 l

k

χipχ
j
pχ

k
p

∂m−i

∂xm−i
∂i

∂x′i
∂n−j

∂yn−j
∂j

∂y′j
∂l−k

∂tl−k
∂k

∂t′k
|x=x′,y=y′,t=t′ , (7)

where m,n, l ≥ 0, χsp = (−1)rp(s), s ≡ rp(s) mod p.

When taking p = 3, we can obtain the generalized bilinear eCBS equation:

GBeCBS := (D3,xD3,t +D3
3,xD3,y + αD3,xD3,y + βD2

3,x + δD4
3,x)f · f

= 2ffxt − 2ftfx + 6fxxfxy + 2α(ffxy − fxfy) + 2β(ffxx − f2x) + 6δf2xx = 0. (8)

By applying transformation u = fx
f , v =

fy
f , the generalized bilinear equation (8) is transformed into an extended

(2+1)-dimensional Calogero-Bogoyavlenskii-Schiff-like (eCBSL) equation which has lump-soliton, lump-periodic,

and lump-periodic-soliton solutions [28] as follows:

GPeCBSL := ut + 3uxuy + 3u2uy + 3uuxv + 3u3v + αuy + βux + 3δ(u2 + 2ux)
2 = 0, (9)

where uy = vx. Therefore, if f solves equation (8), u(x, y, t) = ln f(x, y, t)xx will solve (2+1)-dimensional eCBSL

equation (9). In this section, we will study diversely exact analytical solutions to equation (9).
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3.1 High-order lump-type solutions

When n1 = 2, n3 = n2 = 1,mj = 0 (j = 1, 2, 3, 4) in (3), (3) represents quartic function solutions of the

generalized bilinear eCBS equation (8): f = a0 + φ4
1 + φ2

2 + φ2
3. According to Step 2 in the section 2, we get three

classes of solutions.

Case 1.1 :β = −αa32 + a33
a31

, δ = −a32
a31

, a11 = a10 = a21 = 0, a13 = −αa12, a22 = −a23
α
, αa31 ̸= 0. (10)

Case 1.2 :a11 = a10 = 0, a13 = −αa12, a22 = −αδa
2
21 + αδa231 − βa231 − a33a31

αa21
,

a23 =
(αδ − β)(a221 + a231)− a33a31

a21
, a32 = −βa31 + a33

α
, a30 =

a20a31
a21

, αa21 ̸= 0. (11)

Case 1.3 :a11 = a10 = 0, a13 = −αa12, a22 = −δa
2
21 + δa231 + a32a31

a21
, a23 =

αδ(a221 + a231) + αa32a31 − βa221
a21

,

a33 = −αa32 − βa31, a21 ̸= 0, (12)

where other parameters are arbitrary real constants. Through transformation (5), we obtain the high-order lump-

type solutions of equation (9).

3.2 Higher-order rational solutions

I. When n1 = 4, n2 = 2, n3 = 1,mj = 0 (j = 1, 2, 3, 4) in (3), (3) represents the solutions of the eighth function

of equation (8): f = a0 + φ8
1 + φ4

2 + φ2
3. According to Step 2 in the section 2, we get five classes of solutions.

Case 2.1 :a10 = a11 = a21, α = −a23
a22

, δ = −a22(βa31 + a33)

a23a31
, a13 =

a23a12
a22

, a32 =
a22(βa31 + a33)

a23
,

a12a23a31 ̸= 0. (13)

Case 2.2 :a10 = a11 = a20 = a21, α = −a13
a12

, δ = −a12(βa31 + a33)

a13a31
, a23 =

a13a22
a12

, a32 =
a12(βa31 + a33)

a13
,

a12a13a31 ̸= 0. (14)

Case 2.3 :a11 = a21 = 0, β = −αa32 + a33
a31

, δ = −a32
a31

, a13 = −αa12, a22 = −a23
α
, αa31 ̸= 0. (15)

Case 2.4 :a11 = 0, α = −a13
a12

, β = −a12a23a31 − a13a21a32
a12a21a31

, δ = −a32
a31

, a22 =
a21a32
a31

, a33 =
a23a31
a21

,

a12a21a31 ̸= 0. (16)

Case 2.5 :a11 = a31 = 0, α = −a33
a32

, β =
a22a33 − a23a32

a32a21
, δ = −a22

a21
, a13 =

a12a33
a32

, a32a21 ̸= 0, (17)

where other parameters are arbitrary real constants. Through transformation (5), we obtain the higher-order

rational solutions of equation (9).

Remark 3.2: We can get the same results as Case 2.1 - Case 2.5 when (N = 3, n1 = 3, n2 = 2, n1 = 1,mj = 0),

(N = 3, n1 = 5, n2 = 2, n1 = 1,mj = 0), (N = 3, n1 = 6, n2 = 2, n1 = 1,mj = 0) and (N = 3, n1 = 7, n2 = 2, n1 =

1,mj = 0), we can get the same results as Case 2.2 - Case 2.5 when (N = 3, n1 = 5, n2 = 3, n1 = 1,mj = 0),

(N = 3, n1 = 6, n2 = 3, n1 = 1,mj = 0), (N = 3, n1 = 5, n2 = 4, n1 = 1,mj = 0) and (N = 3, n1 = 6, n2 = 4, n1 =

1,mj = 0) other than the above.

II. When n1 = 5, n2 = 3, n3 = 1,mj = 0 (j = 1, 2, 3, 4) in (3), (3) represents the solutions of the tenth function

of equation (8): f = a0 + φ10
1 + φ6

2 + φ2
3. According to Step 2 in the section 2, we get two classes of solutions.

Case 2.6 :a11 = a21 = 0, α = −a23
a22

, β = −a22a33 − a23a32
a22a31

, δ = −a32
a31

, a13 =
a23a12
a22

, a22a31 ̸= 0. (18)
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Case 2.7 :a11 = a20 = 0, α = −a13
a12

, β = −a12a33 − a13a32
a12a31

, δ = −a32
a31

, a22 =
a21a32
a31

, a23 =
a21a33
a31

,

a12a31 ̸= 0, (19)

where other parameters are arbitrary real constants. Through transformation (5), we obtain the higher-order

rational solutions of equation (9).

Remark 3.3: We can get the same results as Case 2.6 and Case 2.7 when (N = 3, n1 = 6, n2 = 3, n1 = 1,mj =

0), (N = 3, n1 = 5, n2 = 4, n1 = 1,mj = 0) and (N = 3, n1 = 6, n2 = 4, n1 = 1,mj = 0) other than the above.

3.3 Periodic wave solutions

I. When aik = 0, m4 = m3 = m2 = m1, ψ2 = ψ1, g3(ψ3) = tanψ3, g4(ψ4) = tanhψ4 in (3), (3) represents the

solutions of equation (8): f = a0 +m1e
ψ1 +m1e

−ψ1 +m1 tanψ3 +m1 tanhψ4. According to Step 2 in the section

2, we get ten classes of solutions.

Case 3.1 :b11 = b31 = 0, δ = −b42
b41

, b13 = −αb12, b33 = −αb32, b43 = −αb42 − βb41, b41 ̸= 0. (20)

Case 3.2 :b11 = b41 = 0, δ = −b32
b31

, b13 = −αb12, b33 = −αb32 − βb31, b43 = −αb42, b31 ̸= 0. (21)

Case 3.3 :b31 = b41 = 0, δ = −b12
b11

, b13 = −αb12 − βb11, b33 = −αb32, b43 = −αb42, b11 ̸= 0. (22)

Case 3.4 :b41 = 0, δ = −b32
b31

, b12 =
b32b11
b31

, b13 = −b11(αb32 + βb31)

b31
, b33 = −αb32 − βb31, b43 = −αb42,

b31 ̸= 0. (23)

Case 3.5 :b31 = 0, δ = −b42
b41

, b12 =
b42b11
b41

, b13 = −b11(αb42 + βb41)

b41
, b33 = −αb32, b43 = −αb42 − βb41,

b41 ̸= 0. (24)

Case 3.6 :b31 = 0, δ = −b12
b11

, b13 = −αb12 − βb11, b33 = −αb32, b42 =
b12b41
b11

, b43 = −b41(αb12 + βb11)

b11
,

b11 ̸= 0. (25)

Case 3.7 :b41 = 0, δ = −b12
b11

, b13 = −αb12 − βb11, b32 =
b12b31
b11

, b33 = −b31(αb12 + βb11)

b11
, b43 = −αb42,

b11 ̸= 0. (26)

Case 3.8 :b11 = 0, δ = −b32
b31

, b13 = −αb12, b33 = −αb32 − βb31, b42 =
b32b41
b31

, b43 = −b41(αb32 + βb31)

b31
,

b31 ̸= 0. (27)

Case 3.9 :a0 = 0, δ = −b32
b31

, b12 =
b32b11
b31

, b13 = −b11(αb32 + βb31)

b31
, b33 = −αb32 − βb31, b42 =

b32b41
b31

,

b43 = −b41(αb32 + βb31)

b31
, b31 ̸= 0. (28)

Case 3.10 :δ = −b12
b11

, b13 = −αb12 − βb11, b32 =
b12b31
b11

, b33 = −b31(αb12 + βb11)

b11
, b42 =

b12b41
b11

,

b43 = −b41(αb12 + βb11)

b11
, b11 ̸= 0, (29)

where other parameters are arbitrary real constants. Through transformation (5), we obtain the periodic wave

solutions of equation (9).

Remark 3.4: In addition, we can get the same results other than the above as follows:

When m4 ̸= m3 ̸= m2 ̸= m1 (f = a0 +m1e
ψ1 +m2e

−ψ1 +m3 tanψ3 +m4 tanhψ4), we get the same results as

Case 3.1 - Case 3.5.
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When m4 ̸= m3 ̸= m2 ̸= m1, ψ3 = ψ2 = ψ1 (f = a0 +m1e
ψ1 +m2e

−ψ1 +m3 tanψ1 +m4 tanhψ4), we get the

same results as Case 3.2 - Case 3.4.

When m4 ̸= m3 ̸= m2 ̸= m1, ψ4 = ψ3 = ψ2 = ψ1 (f = a0 +m1e
ψ1 +m2e

−ψ1 +m3 tanψ1 +m4 tanhψ1), we get

the same result as Case 3.3.

When g3(ψ3) = cosψ3, g4(ψ4) = coshψ4 (f = a0 +m1e
ψ1 +m1e

−ψ1 +m1 cosψ3 +m1 coshψ4) and g3(ψ3) =

cosψ3, g4(ψ4) = sinψ4 (f = a0 +m1e
ψ1 +m1e

−ψ1 +m1 cosψ3 +m1 sinψ4), we get the same results as Case 3.3 -

Case 3.5.

When m4 = 0, m3 ̸= m2 ̸= m1, ψ2 ̸= ψ1, g3(ψ3) = cosψ3 (f = a0 +m1e
ψ1 +m2e

−ψ2 +m3 cosψ3), we get the

same results as Case 3.1, Case 3.3, Case 3.4, Case 3.6, Case 3.10.

II. When aik = 0, m2 = m1, ψ2 = ψ1, g3(ψ3) = cosψ3, g4(ψ4) = sinψ4 in (3), (3) represents the solutions of

equation (8): f = a0 +m1e
ψ1 +m1e

−ψ1 +m3 cosψ3 +m4 sinψ4. According to Step 2 in the section 2, we get seven

classes of solutions.

Case 3.11 :δ = −b12
b11

, b13 =
3b12b

2
11

2
− (3b211 + 2α)b12

2
− βb11, b32 =

b12b31
b11

, b33 = −αb12b31
b11

− βb31,

b42 =
b12b41
b11

, b43 = −αb12b41
b11

− βb41, b11 ̸= 0. (30)

Case 3.12 :b41 = 0, b11 =
b13

αδ − β
, b12 =

δb13
αδ − β

, b31 =
b33

αδ − β
, b32 = − δb13

αδ − β
, b42 = −b43

α
,

α(αδ − β) ̸= 0. (31)

Case 3.13 :b31 = 0, b11 =
b13

αδ − β
, b12 =

δb13
αδ − β

, b32 = −b33
α
, b41 =

b43
αδ − β

, b42 = − δb43
αδ − β

,

α(αδ − β) ̸= 0. (32)

Case 3.14 :b31 = b41 = 0, b11 =
b13

αδ − β
, b12 =

δb13
αδ − β

, b32 = −b33
α
, b42 = −b43

α
, α(αδ − β) ̸= 0. (33)

Case 3.15 :b11 = 0, b12 = −b13
α
, b31 =

b33
αδ − β

, b32 = − δb33
αδ − β

, b41 =
b43

αδ − β
, b42 = − δb43

αδ − β
,

α(αδ − β) ̸= 0. (34)

Case 3.16 :b11 = b41 = 0, b12 = −b13
α
, b31 =

b33
αδ − β

, b32 = − δb33
αδ − β

, b42 = −b43
α
, α(αδ − β) ̸= 0. (35)

Case 3.17 :b11 = b31 = 0, b12 = −b13
α
, b32 = −b33

α
, b41 =

b43
αδ − β

, b42 = − δb43
αδ − β

, α(αδ − β) ̸= 0, (36)

where other parameters are arbitrary real constants. Through transformation (5), we obtain the periodic wave

solutions of equation (9).

Remark 3.5: We can get the same results as Case 3.15 - Case 3.17 when m4 = m3 = m2 = m1 (f =

a0+m1e
ψ1 +m1e

−ψ1 +m1 cosψ3+m1 sinψ4) and when m4 = m3 = m2 = m1, g4(ψ4) = coshψ4 (f = a0+m1e
ψ1 +

m1e
−ψ1 +m1 cosψ3 +m1 coshψ4), we can get the same result as Case 3.11 when m4 = m3 = m2 = m1, ψ4 = ψ3

(f = a0 +m1e
ψ1 +m1e

−ψ1 +m1 cosψ3 +m1 sinψ3) other than the above.

3.4 Breather solutions

When aik = 0, m4 = 0, g3(ψ3) = cosψ3 in (3), (3) represents solutions of equation (8): f = a0 + m1e
ψ1 +

m2e
−ψ2 +m3 cosψ3. According to Step 2 in the section 2, we get two classes of solutions.

Case 4.1 :b11 = 0, δ = −b32
b31

, b13 = −αb12, b22 =
b21b32
b31

, b23 = −b21(αb32 + βb31)

b31
, b33 = −αb32 − βb31,

b31 ̸= 0. (37)
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Case 4.2 :δ = −b32
b31

, b12 =
b11b32
b31

, b13 = −b11(αb32 + βb31)

b31
, b22 =

b21b32
b31

, b23 = −b21(αb32 + βb31)

b31
,

b33 = −αb32 − βb31, b31 ̸= 0, (38)

where other parameters are arbitrary real constants. Through transformation (5), we obtain the breather solutions

of equation (9).

4 Rogue waves solutions

In order to derive rogue waves solutions to (2+1)-dimensional eCBSL equation, we can set special values for

α, β, δ, for instance, if set α = 1 in equation (9), we will obtain:

GPeCBSL := ut + 3uxuy + 3u2uy + 3uuxv + 3u3v + uy + βux + 3δ(u2 + 2ux)
2 = 0. (39)

The corresponding generalize bilinear equation reads:

GBeCBS := (D3,xD3,t +D3
3,xD3,y + αD3,xD3,y + βD2

3,x + δD4
3,x)f · f

= 2ffxt − 2ftfx + 6fxxfxy + 2(ffxy − fxfy) + 2β(ffxx − f2x) + 6δf2xx = 0. (40)

I. When n1 = 4, n2 = 2, n3 = 1, m4 = m3 = m2 = m1, ψ4 = ψ3 = ψ2 = ψ1, g3(ψ1) = cosψ1, g4(ψ1) = sinψ1 in

(3), (3) represents rogue waves solutions of equation (40): f = a0 + φ8
1 + φ4

2 + φ2
3 +m1e

ψ1 +m1e
−ψ1 +m1 cosψ1 +

m1 sinψ1. According to Step 2 in the section 2, we get five classes of solutions.

Case 5.1 :a11 = a10 = a21 = b11 = 0, β = −a32 + a33
a31

, δ = −a32
a31

, a12 = −a13, a22 = −a23, b12 = −b13,

a31 ̸= 0. (41)

Case 5.2 :a11 = a10 = a21 = 0, β = −a31b12 + a33b11
a31b11

, δ = −b42
b11

, a12 = −a13, a22 = −a23, a32 =
a31b12
b11

,

b11 ̸= 0. (42)

Case 5.3 :a11 = a10 = a21 = 0, β = −a31b13 + a32b11
a31b11

, δ = −a32
a31

, a22 = −a23, a33 =
a31b13
b11

, b12 =
a32b11
a31

,

b11a31 ̸= 0. (43)

Case 5.4 :a11 = a10 = a21 = b11 = 0, δ = −a32
a31

, a12 = −a13, a22 = −a23, a33 = −a31β − a32, b12 = −b13,

a31 ̸= 0. (44)

Case 5.5 :a11 = a10 = a21 = 0, δ = −b12
b11

, a22 = −a23, a32 =
a31b12
b11

, a33 = −a31(βb11 + b12)

b11
, b13 = −βb11 − b12,

b11 ̸= 0, (45)

where other parameters are arbitrary real constants. Through transformation (5), we obtain one class rogue waves

solutions of equation (39).

Remark 4.1: We can get the same results as Case 5.4 and Case 5.5 when g4(ψ1) = sinhψ1 (f = a0+φ
8
1+φ

4
2+

φ2
3+m1e

ψ1 +m1e
−ψ1 +m1 cosψ1+m1 sinhψ1), when g4(ψ1) = coshψ1 (f = a0+φ

8
1+φ

4
2+φ

2
3+m1e

ψ1 +m1e
−ψ1 +

m1 cosψ1+m1 coshψ1), when m4 = 0 (f = a0+φ
8
1+φ

4
2+φ

2
3+m1e

ψ1+m1e
−ψ1+m1 cosψ1) and when m4 = m3 = 0

(f = a0+φ
8
1+φ

4
2+φ

2
3+m1e

ψ1 +m1e
−ψ1) other than the above. In addition, we can get the same results as Case 5.1

and Case 5.2 when g3(ψ3) = cosψ3, g4(ψ4) = sinψ4 (f = a0+φ
8
1+φ

4
2+φ

2
3+m1e

ψ1+m1e
−ψ1+m1 cosψ3+m1 sinψ4).
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II. When n1 = 2, n3 = n2 = 1, m4 = m3 = m2 = 1, ψ4 = ψ3 = ψ2 = ψ1, g3(ψ1) = tanψ1, g4(ψ1) = tanhψ1 in

(3), (3) represents rogue waves solutions of equation (40): f = a0+φ
4
1+φ

2
2+φ

2
3+m1e

ψ1 + e−ψ1 +tanψ1+tanhψ1.

According to Step 2 in the section 2, we get three classes of solutions.

Case 6.1 :a11 = a10 = a21 = b11 = 0, β = −a32 + a33
a31

, δ = −a32
a31

, a12 = −a13, a22 = −a23, a31 ̸= 0. (46)

Case 6.2 :a11 = a10 = b11 = 0, a12 = −a13, a22 =
(β − δ)a231 − δa221 + a33a31

a21
,

a23 = − (β − δ)(a221 + a231) + a33a31
a21

, a32 = −βa31 − a33, a30 =
a20a31
a21

, b12 = −b13, a21 ̸= 0.

Case 6.3 :a11 = a10 = b11 = 0, a12 = −a13, a22 = −δ(a
2
31 + a221) + a32a31

a21
, a23 = − (β − δ)a221 − δa231 + a32a31

a21
,

a33 = −βa31 − a32, b12 = −b13, a21 ̸= 0, (47)

where other parameters are arbitrary real constants. Through transformation (5), we obtain the rogue waves

solutions of equation (39).

Remark 4.2: We can get the same results as Case 6.1 - Case 6.3 when g3(ψ1) = cosψ1, g4(ψ1) = coshψ1

(f = a0 + φ4
1 + φ2

2 + φ2
3 +m1e

ψ1 + e−ψ1 + cosψ1 + coshψ1) and g3(ψ1) = sinψ1, g4(ψ1) = sinhψ1 (f = a0 + φ4
1 +

φ2
2 + φ2

3 +m1e
ψ1 + e−ψ1 + sinψ1 + sinhψ1).

5 Dynamic properties

In this section, we will study the dynamic properties of the above solutions, multifarious three-dimensional plots,

contour and density maps for (2+1)-dimensional eCBSL equation are depicted.

5.1 Three-dimensional, contour and density plots of the solution to Case 1.1

If we substitute Case 1.1 into equation (3), the solution f1 to (2+1)-dimensional eCBSL equation as follows:

f1 = a0 + (−αa12t+ a12y)
4 + (a23t−

a23y

α
+ a20)

2 + (a31x+ a32y + a33t+ a30)
2.

Through transformation (5), we can derive high-order lump-type solution of equation (9) as follows:

u1 =
2a231
f1

− 4a231ψ
2
3

f21
,

where ψ3 = a31x+ a32y + a33t+ a30 and a0, a12, a23, a20, a31, a32, a33, a30 are arbitrary real numbers.

We choose particular values to illustrate the high-order lump-type solution to (2+1)-dimensional eCBSL equa-

tion:

α = 1, a0 = 4, a12 = 2, a23 = 1, a20 = 4, a31 = 5, a32 = 3, a33 = 2, a30 = 5. (48)

Through selecting appropriate values for the parameters, the dynamic characters and structures of the high-order

lump-type solution are vividly shown in figure 3 which contained the three-dimensional plots [see figure 3(a,b,c)]

that exhibit the localized structures and we adopt the same color for the points that x + y are identical and and

density maps [see figure 3(d,e,f)] in the (x, y)-plane that reflect the energy distribution when t = -10, 0, 10. It is

clear that the wave is keep moving with the shape unchanged.
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(a) t=-10 (b) t=0 (c) t=10

(d) t=-10 (e) t=0 (f) t=10

Figure 3: Three-dimensional plots, contour and density plots of the wave with the parameters (48) at times t =

-10, 0, 10.

5.2 Three-dimensional and contour plots of the solution to Case 4.2

If we substitute Case 4.2 into equation (3), the solution f2 to (2+1)-dimensional eCBSL equation as follows:

f2 = a0 +m1e
− b11(αb32+βb31)

b31
+b11x+

b11b32y
b31

+b10 +m2e
b21(αb32+βb31)

b31
−b21x− b21b32y

b31
−b20

+m3 cos((αb32 + βb31)t− b31x− b32y − b30).

Through transformation (5), we can derive breather solution of equation (9) as follows:

u2 =
1

f22
(−m2

1b
2
21e

−2ψ2 + 2m1m2b11b21e
ψ1−ψ2 + (2m2m3b21b31 sinψ3 + b21f2)e

−ψ2 +m2
3b

2
31 cosψ

2
3

− 2m1m2b11b31e
ψ1 sinψ3 −m3b

2
31f2 cosψ3 +m1b

2
11f2e

ψ1 −m2
1b

2
11e

2ψ1 −m2
3b

2
31),

where ψ1 = − b11(αb32+βb31)
b31

+ b11x+
b11b32y
b31

+ b10, ψ2 = − b21(αb32+βb31)
b31

+ b21x+
b21b32y
b31

+ b20, ψ3 = (αb32 + βb31)t−

b31x− b32y − b30 and a0, b10, b11, b20, b21, b30, b31, b32 are arbitrary real numbers.

We choose particular values to illustrate breather solution to (2+1)-dimensional eCBSL equation:

α = 1, β = 1,m1 = 2,m2 = 3,m3 = 2, a0 = 1, b10 = 6, b11 = 2, b20 = 6, b21 = 3, b30 = 2, b31 = 10, b32 = 2. (49)

Dynamical behaviors of breather solution along with the time evolution is depicted in figure 4 including three-

dimensional plots [see figure 4(a, b, c)] and contour maps [see figure 4(d, e, f)]. These waves are mutual independence

and remain parallel at times t = -10, 0, 10. If setting the different values in f2, we will obtain different shape of

waves, at the same time, we can choose t freely to illustrate the dynamic characters of the solutions clearly with

the aid of Maple. It is obvious that the waves are keep moving finely.
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(a) t=-10 (b) t=0 (c) t=10

(d) t=-10 (e) t=0 (f) t=10

Figure 4: Three-dimensional plots and contour maps of the wave with the parameters (49) at times t = -10, 0, 10.

5.3 Three-dimensional and contour plots of the solution to Case 5.5

If we substitute Case 5.5 into equation (3), the solution f3 to (2+1)-dimensional eCBSL equation as follows:

f3 = a0 + (a13t− a13y)
8 + (a23t− a23y + a20)

4 + (a31x+
a31b12
b11

y − a31(b11β + b12)

b11
t+ a30)

2

+m1e
b11x+b12y−(βb11+b12)t+b10 +m1e

−b11x−b12y+(βb11+b12)t−b10

+m1 cos(b11x+ b12y − (βb11 + b12)t+ b10) +m1 sin(b11x+ b12y − (βb11 + b12)t+ b10).

Through transformation (5), we can derive rogue waves solutions of equation (39) as follows:

u3 =
1

f23
[m2

1b
2
11((cos(−ψ1) + 2 sin(−ψ1))e

−ψ1 − 2e−2ψ1 − 2eψ1(cos(−ψ1)− 1)− sin(−2ψ1)− 1)

+m1a31b11(4φ3e
−ψ1 − 4eψ1 − 2φ3 cos(−ψ1)− 4φ3 sin(−ψ1))− 4a231φ

2
3 + 2a231f3

+m1b
2
11f3(e

ψ1 + e−ψ1 + sin(−ψ1)− cos(−ψ1))],

where φ3 = a31x+
a31b12
b11

y− a31(b11β+b12)
b11

t+ a30, ψ1 = b11x+ b12y− (βb11 + b12)t+ b10 and a0, a13, a23, a20, a31, a30,

b11, b12, b10 are arbitrary real numbers.

We choose particular values to illustrate rogue waves solution to (2+1)-dimensional eCBSL equation:

β = 4, a0 = 1, a13 =
1

2
, a23 = −4, a20 = 4, a31 = 40, a30 = 2, b11 = 2, b12 = 1, b10 = 0,m1 = 2. (50)

The dynamic characters and structures of the rogue wave solution are vividly shown in figure 5 which contained

the three-dimensional plots [see figure 5(a,b,c)] that exhibit the localized structures and contour plots [see figure

5(d,e,f)] in the (x, y)-plane when t = -2, -1, 0. This wave is composed of two parts including a higher-order rational
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(a) t=-2 (b) t=-1 (c) t=0

(d) t=-2 (e) t=-1 (f) t=0

Figure 5: Three-dimensional plots and contour maps of the wave with the parameters (50) at times t = -2, -1, 0.

wave and other functions wave (double-exponential function, tangent function and tanh function). As we have seen,

the higher-order rational wave, double exponential function, tangent function and tanh function waves react with

each other finely and keep moving forward while the height of higher-order rational wave increases with time.

6 Conclusion

In this paper, we constructed an original form of exact analytical solutions to nonlinear evolution equation with

the aid of bilinear neural network method and several examples were given to illustrate the methodology. We were

of free choice to the number of N and M , the order of φ, the hidden layer of g(ψ) and the weight coefficients in the

expression (3), for instance, we derived the high-order lump-type solutions when N = 3, n1 = 2, n3 = n2 = 1,mj = 0

in (3), the higher-order rational solutions when N = 3, n1 = 4, n3 = 2, n2 = 1,mj = 0 in (3), the periodic wave

solutions when aik = 0, m4 = m3 = m2 = m1, ψ2 = ψ1, g3(ψ3) = tanψ3, g4(ψ4) = tanhψ4 and when aik = 0,

m2 = m1, ψ2 = ψ1, g3(ψ3) = cosψ3, g4(ψ4) = sinψ4 in (3), the breather solutions when aik = 0, m4 = 0,

g3(ψ3) = cosψ3 in (3) and the rogue waves solutions of (2+1)-dimensional eCBSL equation. In particular, the

results were identical when N = 3, n1 = 2p, n2 = 2, n3 = 1, mi = 0 (p = 3, 4, 5, 6), and so did the results when N

= 3, n1 = 2q, n2 = 3, n3 = 1, mi = 0 (q = 4, 5, 6), etc. The exact analytical solutions were widely expanded due

to choosing different basic functions of the hidden layer and the order of the terms. In addition to the results we

obtained in this paper, our approach can be applied to calculate other types multiple solutions of NLEEs.

12



Acknowledgments

This work is supported by the National Natural Science Foundation of China (11661060, 12061054), Program

for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region (NJYT-20-A06)

and the Natural Science Foundation of Inner Mongolia Autonomous Region of China (2018LH01013).

References

[1] Wang ML, Zhou YB, Li ZB.Application of a homogeneous balance method to exact solutions of nonlinear

equations in mathematical physics. Physics Letters A. 1996;216:67.

[2] Chen HH, Li YC, Liu CS. Integrability of nonlinear Hamiltonian systems by inverse scattering method. Physica

Scripta. 1979;20(3-4):490.

[3] Hirota R, Satsuma J. A variety of nonlinear network equations generated from the Bäcklund transformation
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